GLITCHING CHIPS:
BEEN

Adam' 'Zabrocki I I I I I Alex Matrosov
Twitter: @Adam pi3 Twitter: @matrosov

CORRUPTION FOR
HARDENING ISA

/USR/BIN/WHOWEARE

Private contact:)| Private contact:

;". i qu | '
f ey

http://pi3.com.pl
13@pid.com.pl
Twitter: @Adam pi3

github.com/binarly-io
Twitter: @matrosov

Adam ° > Zabrocki: Alex Matrosov:

e Phrack author » Security REsearcher since 1997

* Bughunter (Hyper-V, Intel/NVIDIA vGPU, Conference speaker and trainer
Linux kernel, OpenSSH, Apache, gcc SSP / Breaking all shades of firmware
ProPolice, Apache, xpdf, more...) - CVEs codeXplorer & efiXplorer IDA plugins

» The ERESI Reverse Engineering Software Author "Bootkits and Rootkits" book

Interface Founder of Binarly, Inc.
* Creator and a developer of Linux Kernel * More...
Runtime Guard (LKRG)

e More...

S

NVIDIA. :

WHAT IS THIS TALK ABOUT?

Hardware: Software:

WHAT IS THIS TALK ABOUT?

Hardware: Software:

WHAT IS THIS TALK ABOUT?

Hardware: Software:

i - 5 b SRR PP PEPTR
........ Linux. . .

6e’l

) 0000

WHAT IS THIS TALK ABOUT?

Hardware: Software:

; Hacker ¥
Pure HW attacks, e.qg.: Pure SW attacks, e.g.:
* GClitching B « Memory safety (like overflows)
* Side channel e Injections (like cmd, XSS, SQL, etc.)
* Physical probing * Logical issues (like bad design)
* More... * More...

WHAT IS THIS TALK ABOUT?

Hardware: Software:

|
e h X
= le ear = N
51|« Slotel ¢
2 [l @l@) 8918 =
‘ [Ve _'\ Woislofe

v Hacker /
Pure HW attacks, e.qg.:
o Clichie N : Targeting specific
implementation (e.qg.,
* Side channel programming language,
. Prysivdlpe e compiler, firmware, etc.)

* More... k

WHAT IS THIS TALK ABOUT?

Hardware:

Targeting specific

implementation (e.g., CPU
family, implementation of

9

architecture, etc.)

4

Hacker

Software:

b

Targeting specific
implementation (e.qg.,
programming language,
compiler, firmware, etc.)

W

WHAT IS THIS TALK ABOUT?

Hardware: Software:

/ i \ Hacker /

Targeting specific Targeting specific
implementation (e.g., CPU implementation (e.g.,
family, implementation of programming language,
architecture, etc.) compiler, firmware, etc.)
\ /Mix of HW and SW\
attacks e.qg.:

Spectre / Meltdown

WHAT IS THIS TALK ABOUT?

Hardware:

N
\\\\\\\\

Software:

What 1f the bug 1s in the

,,reference code” 111<e HW

\

ISA 1tse1f’?

Hacke
e M

b

Targeting specific
implementation (e.qg.,

programming language,

compiler, firmware, etc.)

v

Mix of HW and SW
attacks e.qg.:
Spectre / Meltdown

10

WHAT IS THIS TALK ABOUT?

Software:

Hardware:

=N
uuuuuuuu

/ - \ Hacker / : \

Targeting specific

What if the bug,_,is.ir_l the implementation (e.g.,
»reference code” like HW programming language,

e its?lf? - compiler, firmware, etc.)

A W h /

Mix of HW and SW
* Problem with all implementations attacks e.qg.:
not a specific one! Spectre / Meltdown

11
e SW can’t trust HW at all...

|
WHAT IS THIS TALK ABOUT?

Software:

Hardware:

=N
uuuuuuuu

/ - \ Hacker / : \

Targeting specific

What if the bug,_,is.ir_l the implementation (e.g.,
»reference code” like HW programming language,

e its?lf? - compiler, firmware, etc.)

A W h /

Mix of HW and SW
* Problem with all implementations attacks e.qg.:
|, not a specific one! Spectre / Meltdown

12
e SW can’t trust HW at all...

DID WE FIND IT?

 We wanted to analyze Boot-SW where specific microcode runs but...

&

4

L)

It was running on the RISC-V chip (which we had 0 experience with)

% Moreover, it was a custom implementation of RISC-V with custom extensions and
functionalities!

Boot-SW was written in AdaCore/SPARK language (which we had 0 experience
with):

X/

¢ Is there any public offensive research on that language?

RY

» Did anyone ever hear about it before?

At that time none of the Reverse Engineering tools natively supported RISC-V

% Including IDA Pro and Ghidra

13

DID WE FIND IT?

‘0

» We wanted to analyze Boot-SW where specific microcode runs but...

&

» It was running on the RISC-V chip (which we had 0 experience with)

L)

/

¢ Moreover, it was a custom implementation of RISC-V with custom extensions and
functionalities!

** Boot-SW was written in AdaCore/SPARK language (which we had 0 experience
with):

X/

*» Is there any public offensive research on that language?

RY

» Did anyone ever hear about it before?

*» At that time none of the Reverse Engineering tools natively supported RISC-V

% Including IDA Pro and Ghidra

» During this talk we will describe our journey through all of the problems which
14

L)

resulted in a discovery of the ambiguity of the RISC-V specification

/

¢ And one additional problem as well ;-)

.0

&

L0

0

L0

IN A NUTSHELL

RISC-V is an open standard instruction set architecture (ISA) based on
established RISC principles

Unlike most other ISAs, the RISC-V ISA is provided under
that do not require fees to use

X/

¢ The same RISC-V chip might have tons of different implementations

RISC-V has a small standard base ISA, with multiple standard extensions:

% Potential huge fragmentation of the silicons

Everyone can easily add their own custom RISC-V extension (it’s open source!)

/

*» Even bigger fragmentation!

There are more than 500+ members of the RISC-V Foundation A

IN A NUTSHELL

Architecture
Research

Wom oW P

Berkeley .aaﬂtmlcm ('9 SANECHIPS West:\n; Digital. <
icron NVIDIA.

gle QUALCOMM
oKy mxi & SiFive Rambus

: 4 R]SC Foundation: 100+ Members

’ L e & Fri - ﬁ' .
t QuickLogic AH_D'ES ga lois llh_erasl @ runtime.o
" mEEFRN m

” ,'| ire o i S '-:';"'-%EE . P .
A Hortomworks -y o ~ ETH:zurich f 3 % ﬂ e EV”"““‘"‘ =0 EINUS

g = 1. - __-'"I. chlus ﬁ- (. Hﬂ-—w—u—.
Silicon H : SECUREIRF =
@ S INTRINSIC 1D THIHAHIE UBTLITE

e + . DOLPHIN "
SIEMENS A HiTacH! Minima wircsan imt. GOWIN| Menbr /gy

Inapire the Mexd
= PFCIIT FRAPRDW" CEFRLAREAT O A

2gcosm’ (SFEORTH . TESLA ¥
@ :nBialll INTRINSIX ﬁlm DBVER ﬂ CEVA voTion
S@wundAl AL 7. » S ,fl @ oc ‘”F"'”'L‘ f‘ Y = '
i b J:?,\:‘.ErpmpEDA HEX Security cMC (4 dence
DRAPER Sy | < VectorBlox BITRMAIN

EEE'EE“ 'I::'lnT . . ' Tathnnlutl:-nl'l

, —
“%.;ﬂg | Mmcuu@x IoyRISC g == V] g, Cocosie

oD e Ta

VS X86

License

Instruction Set
ISA variants

Memory model

Registers

XOM

SW ecosystem support

x86(-64)

Fees for ISA and microarchitecture

CISC*
16 / 32 / 64 bits
Register-memory architecture

16-bit: 6 semi-dedicated registers, BP and
SP are not general-purpose

32-bit: 8 GPRs, including EBP and ESP
64-bit: 16 GPRs, including RBP and RSP

Only using SLAT - requires
hypervisor

Linux, Windows, MacOS, more...

| RISC-V

No fee for ISA & microarchitecture

RISC
32 /64 / 128 bits

Load-store architecture

32 (16 in the embedded variant) —
including one always-zero register

Everywhere

Linux only...

17

* Since Pentium Pro, x86 instructions are turned into micro ops (kind of like RISC)

Privilege modes / levels

VS X86

18

VS X86

R

» Privilege modes / levels

X86(-64):

User Applications

Device Drivers
Device Drivers
Kernel
Hypervisor

SMM

19
https://medium.com/swlh/negative-rings-in-

intel-architecture-the-security-threats-youve-

probably-never-heard-of-d725a4b6{831
5

VS X86

/

¢ Privilege modes / levels

X86(-64): RISC-V:
User Applications Supported M-mode
combinations:
Device Drivers G M
Device Drivers e M+U
e M+S+U S-mode

Kernel

Hypervisor User
SMM
U-mode

20
https://medium.com/swlh/negative-rings-in-

intel-architecture-the-security-threats-youve-
probably-never-heard-of-d725a4b6{831

VS X86

R

» Privilege modes / levels

X86(-64):

User Applications

Device Drivers
Device Drivers
Kernel
Hypervisor

SMM

https://medium.com/swlh/negative-rings-in-

intel-architecture-the-security-threats-youve-
probably-never-heard-of-d725a4b6{831

RISC-V:
Supported M-mode
combinations:
e M
e M+U
« M+S+U HS-mode

M e+ (VYU

VS-mode
User
[VU-mode] U-mode
\ Virtualized

User

21

VS X86

R

» Privilege modes / levels

X86(-64):

User Applications

Device Drivers
Device Drivers
Kernel
Hypervisor

SMM

https://medium.com/swlh/negative-rings-in-

intel-architecture-the-security-threats-youve-
probably-never-heard-of-d725a4b6{831

RISC-V.
Supported M-mode
combinations:
e M
e M+U
« M+S+U HS-mode

M e+ (VYU

VS-mode
User
[VU-mode] U-mode
\ Virtualized

User

22

ADACORE /

SPARK

Expanding the
boundaries of safe and
secure programming.

ADACORE /

SPARK

Expanding the
boundaries of safe and
secure programming.

WHAT IS ADACORE/

** Programming language + set of analysis tools

¢ The strength is in the analysis tools...

< GNATProve, GNATStack,
GNATTest, GNATEmulator

Core
language
constructs
common to
Ada and
SPARK

Additional
SPARK
aspects

25

WHAT IS ADACORE/

** Programming language + set of analysis tools

¢ The strength is in the analysis tools...

o Core
< GCNATProve, GNATStack, : language Additional
constructs
GNATTest, GNATEmulator cOMMOn 1o SPARK

aspects

Ada and
¢ Statically provable

/7

* Proves that dynamic checks cannot fail

/

s Absence of Run-Time Errors

/

s Formal verification (Proofs)

26

WHAT IS ADACORE/

** Programming language + set of analysis tools

¢ The strength is in the analysis tools...

< GNATProve, GNATStack,
GNATTest, GNATEmulator

¢ Statically provable

/7

* Proves that dynamic checks cannot fail

/

s Absence of Run-Time Errors

/

s Formal verification (Proofs)

** Memory safe language (like RUST)

Core
language
constructs
common to
Ada and

Additional
SPARK
aspects

27

0

WHAT IS ADACORE/

Programming language + set of analysis tools

¢ The strength is in the analysis tools...

; Core
s GNATProve, GNATStack, R language Additional
constructs
GNATTest, GNATEmulator _ouiss common to SRARS
Adaand aspects
Statically provable " SPARK

/7

* Proves that dynamic checks cannot fail

/

s Absence of Run-Time Errors

/

s Formal verification (Proofs)
Memory safe language (like RUST)

Very strong typing system (much stronger than RUST)

¢ No arithmetic overflows, integer overflows, etc.

28

0

WHAT IS ADACORE/

Programming language + set of analysis tools

¢ The strength is in the analysis tools...

; Core
s GNATProve, GNATStack, R language Additional
constructs
GNATTest, GNATEmulator _ouiss common to SRARS
Adaand aspects
Statically provable " SPARK

/7

* Proves that dynamic checks cannot fail

/

s Absence of Run-Time Errors

/

s Formal verification (Proofs)
Memory safe language (like RUST)

Very strong typing system (much stronger than RUST)

¢ No arithmetic overflows, integer overflows, etc.

Traditionally used in industries such as:

s Avionics, Railways, Defense, Auto, IoT

29

WHAT IS ADACORE/

Machine states

Correct states

WHAT IS ADACORE/

Machine states

test.

test.
30)

test.
test.

adb:28:25: medium: divide by zero might fail (e.g. when b = 42)
adb:30:31: medium: array index check might fail (e.g. when MyIndex =

adb:37:30: value not in range of type "MyType" defined at test.ads:6
adb:37:30: "Constraint Error" would have been raised at run time

C:\GNAT\Tmp\1>gnatprove -P pi3_test -jO --ide-progress-bar --steps=30000 --prover=all --
assumptions --proof-warnings

| Phase 1 of 2: generation of Global contracts ...

Phase 2 of 2: flow analysis and proof ...

completed 1 out of 2 (50%)...

pi3_test.adb:18:18: warning: unreachable code[#0]

MaChl ﬂ completed 2 out of 2 (100%)...
Summary logged in C:\GNAT\Tmp\1\gnatprove\gnatprove.out

CAGNAT\Tmp\1>gprbuild p_run.adb -cargs -fcallgraph-info=sy,
using project file pi3_test.gpr
test.adp Compile . 12)
[Ada] p_run.adb GNAt":'lprove c_ic;es:- t see.any
fest adb [Ada] pi3_test.adb problems with this project Index —
Bind
306) :
[gprbind] p_run.bexch
test.adb Uﬁda} A_ruR-ai GNATstack detected potential st.ads: 6
test.adb problem where prover didn’t “ime

[link] p_run.adb

C:\GNAT\Tmp\1>gnatstack *.ci
Worst case analysis is *not* accurate because of unbounded frames, external calls. Use -Wa for
details.

Accumulated stack usage information for entry points

main : total bytes

+-> main

+->p_run
+-> pi3 test.pi3_run *
+-><__gnat _rcheck CE_Index Check> *

GNATstack: analysis successfully finished
C\GNAT\Tmp\1>

Lessons learned:

* You can compile buggy code — problems are
detected by the tools and developers might not
run them at all!

* Tools are orthogonal and detect different classes
of problems — to be fully protected you must run
all of them!

* What are the classes of problems which can or
cannot be detected? — very limited public
information :(

Lessons learned:

* You can compile buggy code — problems are
detected by the tools and developers might not
run them at all!

* Tools are orthogonal and detect different classes
of problems — to be fully protected you must run
all of them!

* What are the classes of problems which can or
cannot be detected? — very limited public
information :(- time for more research!

ADACORE/ - EVALUATION

ADACORE

T
Classic buffer overflow (heap
stack / .bss / more)

Buffer underflow
Out-of-bound read / write

Improper Validation of Array
Index

Off-by-one (over/under flow of an
allocated buffer)

Size
/ Padding

Use of Inherently or Potentially
Dangerous Function

Improper Clearing of Heap
Memory Before Release

Double Free

Use After Free

Use of Uninitialized Variable

Memory Leak

Vulnerable

Vulnerable

Vulnerable

Vulnerable

Vulnerable

Vulnerable

Vulnerable

Vulnerable

Vulnerable

Vulnerable

Vulnerable
Vulnerable

Vulnerable

standard but still possible
standard but still possible
standard but still possible
standard but still possible
standard but still possible

Vulnerable

Vulnerable

Might be limited in new
standard but still possible

Vulnerable

Might be limited in new
standard but still possible

Vulnerable

Might be limited in new
standard but still possible

Vulnerable

Safe

*if a developer mixes SPARK with other programming languages (e.g. ADA) where function/procedure
has a SPARK spec and body not in SPARK, prover might make a presumption that user ensures certain
validation. However, user might make a mistake and if ADA pointers (access type) was used, it is possible

to leak dynamically allocated memory.

**if access type is freed, ADA zeros it. If user is not aware that memory was freed. it will always read
zero as a value. However, there might be a case that behavior/flow of the program depends on that

value.

- EVALUATION

36

ADACORE/

- EVALUATION

General memory corruption

General pointers’ security

Language
Type of Problem

Classic buffer overflow (heap /
stack / .bss / more)

Buffer underflow

Out-of-bound read / write

Improper Validation of Array
Index

Off-by-one (over/under flow of an
allocated buffer)

Incorrect Calculation of Buffer
Size

Reliance on Data/Memory Layout
/ Padding

Use of Inherently or Potentially
Dangerous Function

Improper Clearing of Heap
Memory Before Release

Double Free

Use After Free

C

Vulnerable

Vulnerable

Vulnerable

Vulnerable

Vulnerable

Vulnerable

Vulnerable

Vulnerable

Vulnerable

Vulnerable

Vulnerable

C++

Might be limited in new
standard but still possible

Might be limited in new
standard but still possible

Might be limited in new
standard but still possible

Might be limited in new
standard but still possible

Might be limited in new
standard but still possible
Vulnerable

Vulnerable

Might be limited in new
standard but still possible
Vulnerable

Might be limited in new
standard but still possible
Vulnerable

Language
Type of Problem

Improper Null Termination

NULL Pointer Dereference

Use of sizeof() on a Pointer Type

Incorrect Pointer Scaling

Use of Pointer Subtraction to
Determine Size

Assighment of a Fixed Address to
a Pointer

Uncontrolled Memory Allocation

Return of Stack Variable Address

Dangling Pointers

Type confusion

Double Fetch

o

Vulnerable

Vulnerable

Vulnerable
Vulnerable

Vulnerable

Vulnerable

Vulnerable
Vulnerable

Vulnerable

Vulnerable

C++

Might be limited in new
standard but still
possible

Might be safe
(references)
Vulnerable

Might be safe (smart
pointers) in new
standard but still

possible

Vulnerable

Might be limited in new
standard but still
possible
Vulnerable

Vulnerable
Vulnerable
Vulnerable
Vulnerable

Vulnerable

N/A

N/A

Vulnerable*

N/A

N/A**

Might be possible if
mixed with non-SPARK
code

Might be possible

*if a developer mixes SPARK with other programming languages (e.g. ADA) where function/procedure
has a SPARK spec and body not in SPARK, prover might make a presumption that user ensures certain
validation. However, user might make a mistake and if data type has discriminants (<>) depending on
non-SPARK values (e.g. ADA types), uncontrolled memory allocation is possible. Similar problem might
exist during uncontrolled call graph flow which can dynamically pressure the stack. Nevertheless, these
problems might be detected by GNATstack tool and it is very important to not rely only on the prover.
**It is the same situation as described in “General memory corruption” point *. Not freed access type
might generate a problematic variant known as “dangling references”. This is only possible in a non-
SPARK part of the code (with SPARK spec) through incorrect uses of Unchecked Deallocation®

Use of Uninitialized Variable Vulnerable Might be limited in new
standard but still possible

Vulnerable

Memory Leak Vulnerable

*if a developer mixes SPARK with other programming languages (e.g. ADA) where function/procedure
has a SPARK spec and body not in SPARK, prover might make a presumption that user ensures certain
validation. However, user might make a mistake and if ADA pointers (access type) was used, it is possible
to leak dynamically allocated memory.

**if access type is freed, ADA zeros it. If user is not aware that memory was freed. it will always read
zero as a value. However, there might be a case that behavior/flow of the program depends on that
value.

ADACORE

ithmetic security
Integer Underflow

Integer Overflow
Arithmetic Overflow

Numeric Truncation Error
Signed / unsigned conversion error

Vulnerable

Vulnerable

Vulnerable

Vulnerable
Vulnerable

Might be limited (Safelnt)
but in general still possible
Might be limited (Safelnt)
but in general still possible
Might be limited (Safelnt)
but in general still possible
Vulnerable
Vulnerable

Divide by zero

Vulnerable

Vulnerable

- EVALUATION

38

ADACORE - EVALUATION

ithmetic security

Vulnerable Might be limited (Safelnt)
but in general still possible

Vulnerable Might be limited (Safelnt)
but in general still possible

Vulnerable Might be limited (Safelnt)
but in general still possible

Numeric Truncation Error Vulnerable Vulnerable

Signed / unsigned conversion error [RVEIEETE Vulnerable
Divide by zero Vulnerable Vulnerable

Use of Externally-Controlled Vulnerable Might be

Format String general still possible
Missing Default Case in Switch Vulnerable Vulnerable
Statement

Assigning instead of Comparing R EL]E Vulnerable
and Otherwise

Function Call with Incorrect RV Vulnerable
Arguments

- EVALUATION

of Proble

Integer Underflow Vulnerable Might be limited (Safelnt)
but in general still possible

Integer Overflow Vulnerable Might be limited (Safelnt)
but in general still possible Vulnerable Vulnerable Might be limited*
Arithmetic Overflow Vulnerable Might be limited (Safelnt) Signal Handler Race Condition Vulnerable Vulnerable

but in general still possible Unsafe Function Call from a RIGEEE Vulnerable Might be possible**

Vulnerable Vulnerable Signal Handler
Signed / unsigned conversion error [ERUVREELI Vulnerable Race Condition in Switch() BROILEEE Vulnerable Might be limited*

Divide by zero Vulnerable Vulnerable Statement
Deadlock Vulnerable Vulnerable Might be limited*

Passing Mutable Objects to an R ELIE Vulnerable Might be possible**
Untrusted Method

Improper Cleanup on Thrown RUREEL]E Vulnerable Vulnerable***
Exception

Use of Externally-Controlled Vulnerable Might be

Format String general still possible
Missing Default Case in Switch Vulnerable Vulnerable
Statement

Assigning instead of Comparing R EL]E
and Otherwise

Function Call with Incorrect RV
Arguments

*Might be limited by “protected objects” and appropriate modeled in Ravenscar

**Might be possible if function call for method) is coming to the language which is not trusted/secured
***In generic case SPARK won’t be able to help unless developer write specific contracts that reflected
requirements (in this case “cleanup” requirement). But if the requirement was indeed modeled, then
SPARK prover will catch an implementation mistake

Vulnerable

Vulnerable

40

ADACORE - EVALUATION

Arithmetic security

ag " .

T e Parallel execution security
Integer Underflow Vulnerable Might be limited (Safelnt) Safe

but in general still possible

Integer Overflow Vulnerable Might be limited (Safelnt) Safe
but in general still possible Vulnerable Vulnerable Might be limited*

= =
Arithmetic Overflow Vulnerable Might be limited (Safelnt) Signal Handler Race Condition Vulnerable Vulnerable

but in general still possible Unsafe Function Call from a RIGEEE Vulnerable Might be possible**

Vulnerable Vulnerable Signal Handler
Signed / unsigned conversion error [ERITITEElS Vulnerable Race Condition in Switch() [REIEEE Vulnerable Might be limited*

Divide by zero Vulnerable Vulnerable Statement
Deadlock Vulnerable Vulnerable Might be limited*

Passing Mutable Objects to an R ELIE Vulnerable Might be possible**
Untrusted Method

Improper Cleanup on Thrown RUREEL]E Vulnerable Vulnerable***
Exception

of Externally-Controlled ENEIUEERIE Might be limited but in *Might be limited by “protected objects” and appropriate modeled in Ravenscar

Format String general still possible

I ——— | o o = o **Might be possible if function call for method) is coming to the language which is not trusted/secured
Stlstsmg ze BULL (Case: In: Swile Linerale neranle ***In generic case SPARK won’t be able to help unless developer write specific contracts that reflected
atemen

Assigning instead of Comparing BALTT Filnatalile Sate requirements {m— this case n—:leanup reqt.urem_ent). But if the requirement was indeed modeled, then
and Otherwise SPARK prover will catch an implementation mistake

Function Call with Incorrect Vulnerable Vulnerable Safe
Arguments

Logic bugs

Vulnerable Vulnerable Vulnerable
Vulnerable Vulnerable Vulnerable
Vulnerable Vulnerable Vulnerable
Vulnerable Vulnerable Vulnerable

Rely on the behavior from the non- R [t E]S Vulnerable Vulnerable
SPARK code which can be badly 41

em

design / implemented*

Aliasing with overlays* Vulnerable Vulnerable Vulnerable
Confidential / privacy data leak* Vulnerable Vulnerable Vulnerable
Multiple threads stack collision* Vulnerable Vulnerable Vulnerable

ADACORE/ - EVALUATION

/

%* Lesson learned:

* You can compile buggy code — problems are detected by the tools and
developers might not run them at all!

*» Tools are orthogonal and detect different classes of problems — to be fully
protected you must run all of them!

42

ADACORE/ - EVALUATION

/

%* Lesson learned:

You can compile buggy code — problems are detected by the tools and
developers might not run them at all!

Tools are orthogonal and detect different classes of problems — to be fully
protected you must run all of them!

Most of the potential security issues might be:

¢ In the design

% Logical errors

43

ADACORE/ - EVALUATION

/

%* Lesson learned:

You can compile buggy code — problems are detected by the tools and
developers might not run them at all!

Tools are orthogonal and detect different classes of problems — to be fully
protected you must run all of them!

Most of the potential security issues might be:

/

¢ In the design

% Logical errors

Bugs can be introduced by the compiler itself as well

44

ADACORE/ - EVALUATION

/

0

%* Lesson learned:

You can compile buggy code — problems are detected by the tools and
developers might not run them at all!

Tools are orthogonal and detect different classes of prok s — to be fully
protected you must run all of them!

Most of the potential security issues might be:

In the design We need to analyze
< Logical errors the binarY!

Bugs can be introduced by the compiler itself as well

45

ADACORE/ - EVALUATION

/

0

%* Lesson learned:

You can compile buggy code — problems are detected by the tools and
developers might not run them at all!

Tools are orthogonal and detect different classes of prok s — to be fully
protected you must run all of them!

Most of the potential security issues might be:

In the design We need to analyze
< Logical errors the binarY!

Bugs can be introduced by the compiler itself as well

During this research, neither IDA Pro nor Ghidra supported RISC-V ; (

46

ADACORE/ - EVALUATION

/

%* Lesson learned:

* You can compile buggy code — problems are detected by the tools and
developers might not run them at all!

*» Tools are orthogonal and detect different classes of prok s — to be fully
protected you must run all of them!

»* Most of the potential security issues might be:

In the design We need to analyze
< Logical errors the binarY!

¢ Bugs can be introduced by the compiler jtself as well

During this research, neither IDA Pro nor Ghidra supported RISC-V ; (

47

BRINGING TO GHIDRA

¢ Ghidra 9.0 didn’t support RISC-V...

/7

** Moreover, we were dealing with the custom RISC-V with the custom
extensions...

48

BRINGING TO GHIDRA

¢ Ghidra 9.0 didn’t support RISC-V...

/7

** Moreover, we were dealing with the custom RISC-V with the custom
extensions...

% RISC-V is huge!

R/

 Implementing entire RISC-V base would take TONS of time...

/7

¢ ... additionally, we needed custom RISC-V extension support

49

BRINGING TO GHIDRA

* Ghidra 9.0 didn’t support RISC-V...

% Moreover, we were dealing with the custom RISC-V with the custom

(g

L)

L)

extensions...

% RISC-V is huge!
% Implementing entire RISC-V base would take TONS of time...

% ... additionally, we needed custom RISC-V extension support

(4

L)

L)

» We found on the github a few RISC-V base plugins — different
implementations:

% We decided to “integrate” one of the plugin to Ghidra TOT

R

» ... Few months after our research Ghidra 9.2 brought RISC-V support using
exactly the same plugin ;-)

50

BRINGING TO GHIDRA

«* Where to start?

% We successfully integrated RISC-V plugin, but we needed to modify it...

% Ghidra is using SLEIGH language to describe the CPU

s SLEIGH is a processor specification language developed for Ghidra (heritage from the
SLED)

¢ Very little documentation about it

% If you want to model a simple CPU, it’s fine, but a more complex one could be very painful

(at least it was for me ;-))
* We used already supported CPUs as a “source of knowledge”

% Additionally, we found only one really useful resource - Guillaume Valadon presentation:
https://guedou.github.io/talks/2019 BeeRump/slides.pdf

% You need to create a cspec, ldefs, pspec, slaspec, and a Module.manifest file:

s We already had it, but we needed to modify slaspec
** You define there the register definitions, aliases, instructions etc.

% Ghidra can be compiled with a bad SLASPEC if its syntax is correct: 51
+ Then you will see on runtime if it works, or you will see tons of JAVA exceptions

s We used “check & try” + “calm down” technique to achieve what we wanted :)

BRINGING TO GHIDRA

define token instr (32)
opeeel=(0,1) ct?
0p0204=(2,4)
ope506=(5,6)

0p787=(7,7) sfully integrated RISC-V plugin, but we needed to modify it...

ope711=(7,11)

re711=(7,11) ;

fro711=(7,11) ng SLEIGH language to describe the CPU

opes811=(8,11)

0p1214=(12,14) 31 processor specification language developed for Ghidra (heritage from the

funct3=(12,14)
op1219=(12,19)
opl231=(12,31)
sop1231=(12,31) signed jocumentation about it
op1519=(15,19)
r1519=(15,19)
fr1519=(15,19)
opl527=(15,27) wvas for me ,_))
op1531=(15,31)
0p2020=(20,20)
succ=(20,23)

Sgéiiﬁééfgi‘)‘) ly, we found only one really useful resource - Guillaume Valadon presentation:

E;iﬁéﬁ?gg?ﬁ;’) xdou.github.io/talks/2019 BeeRump/slides.pdf

to model a simple CPU, it’s fine, but a more complex one could be very painful

ready supported CPUs as a “source of knowledge”

/7

¢ You need to create a cspec, ldefs, pspec, slaspec, and a Module.manifest file:

/

 We already had it, but we needed to modify slaspec

K/

** You define there the register definitions, aliases, instructions etc.

/

¢ Ghidra can be compiled with a bad SLASPEC if its syntax is correct: 52

X/

s Then you will see on runtime if it works, or you will see tons of JAVA exceptions

s We used “check & try” + “calm down” technique to achieve what we wanted :)
LSS

BRINGING

define token instr (32)

TO GHIDRA

0peee1=(0,1) t? define register offset=0x90000000 size=$(XLEN) [ustatus];
0pe204=(2,4) ’ define register offset=0x90000010 size=$(XLEN) [fflags];
ggg?gg:gg:g; sfully inte deﬁ:.ne r*eg:}ster‘ offset=0x90000020 s:Z.ze=$(XLEN) [frm];‘
0pe711=(7,11) define register offset=0x90000030 size=$%$(XLEN) [fcsr];
0711=(7,11 :

i ng SLEIGH language to describe the CPU

op0811=(8,11)

0p1214=(12,14) 31 processor specification language developed for Ghidra (heritage from the

funct3=(12,14)
op1219=(12,19)
opl231=(12,31)

sop1231=(12,31) signed Jocumentation about it

0p1519=(15,19)
r1519=(15,19)
£r1519=(15,19)
opl527=(15,27) wvas for me ,_))
op1531=(15,31)
0p2020=(20,20)
succ=(20,23)
0p2024=(20,24)

to model a simple CPU, it’s fine, but a more complex one could be very painful

ready supported CPUs as a “source of knowledge”

r2024=(20, 24) ly, we found only one really useful resource - Guillaume Valadon presentation:
iPeeit 0. >dou.github.io/talks/2019 BeeRump/slides.pdf

€srlg=(20,27)

/7

\/
7/
\/

X/

¢ You need to create a cspec, ldefs, pspec, slaspec, and a Module.manifest file:
* We already had it, but we needed to modify slaspec
** You define there the register definitions, aliases, instructions etc.

¢ Ghidra can be compiled with a bad SLASPEC if its syntax is correct: 53

s Then you will see on runtime if it works, or you will see tons of JAVA exceptions

s We used “check & try” + “calm down” technique to achieve what we wanted :)
LSS

BRINGING

define token instr (32)

TO GHIDRA

0peee1=(0,1) t? define register offset=0x90000000 size=$(XLEN) [ustatus];
0p@204=(2,4) : define register offset=0x90000010 size=%$(XLEN) [fflags];
ope506=(5,6) ; ; 1 = ize= =
0p8707=(7.7) sfully inte de-FJ..ne reg{.ster offset_axgeaaeeza s%ze_$(XLEN) [frm]; ‘
0p@711=(7,11) define register offset=0x90000030 size=$(XLEN) [fcsr];
re711=(7,11 ”
frwnig,li) ng SLEIGH language to describe the CPU
op@811=(8,11)
op1214=(12,14) 3 prc attach variables [I e
Cliess e [ustatus fflags frm fcsr uie utvec _ _ _ _ _ _ _ _ _ _
0p1219=(12,19) '
op1231=(1231 T+ 0 A B Bl R
sop1231=(12,31) signed Jocul | | —————=————— == - - — -
op1519=(15,19) e e e e e e = =
r1519=(15,19) uscratch uepc ucause utval uip _ _ _ _ _ _ _ _ _ _ _ :
£r1519=(15,19) tom 1inful
0P1527=(15,27) nas i ________________
op1531=(15,31)
0p2020=(20,20) 7 ”
Cleciion39) ready supported CPUs as a “source of knowledge

2024=(20,24 : :
?2924=< §9,24)) ly, we found only one really useful resource - Guillaume Valadon presentation:

feps (0 >dou.github.io/talks/2019 BeeRump/slides.pdf

€srlg=(20,27)

/7

\/
7/
\/

X/

¢ You need to create a cspec, ldefs, pspec, slaspec, and a Module.manifest file:
* We already had it, but we needed to modify slaspec
** You define there the register definitions, aliases, instructions etc.

¢ Ghidra can be compiled with a bad SLASPEC if its syntax is correct: 54

s Then you will see on runtime if it works, or you will see tons of JAVA exceptions

s We used “check & try” + “calm down” technique to achieve what we wanted :)
LSS

BRINGING

define token instr (32)

TO GHIDRA

0peee1=(0,1) t? define register offset=0x90000000 size=$(XLEN) [ustatus];
0p@204=(2,4) : define register offset=0x90000010 size=%$(XLEN) [fflags];
ope506=(5,6) ; ; 1 = ize= =
0p8707=(7.7) sfully inte def}ne reg{.ster offset_axgaaaaaza s%ze_$(XLEN) [frm]; ‘
0p@711=(7,11) define register offset=0x90000030 size=$(XLEN) [fcsr];
re711=(7,11 ”
frmnig,li) ng SLEIGH language to describe the CPU
op@811=(8,11)
op1214=(12,14) 3 prc attach variables [€sFld] he
Cliess e [ustatus fflags frm fcsr uie utvec _ _ _ _ _ _ _ _ _ _
0p1219=(12,19) '
op1231=(1231 T+ 0 A B Bl R
sop1231=(12,31) signed Jocul | | —————=————— == - - — -
op1519=(15,19) | | | | o D L L _____
r1519=(15,19) uscratch uepc ucause utval uip _ _ _ _ _ _ _ _ _ _ _ :
£r1519=(15,19) tom 1inful
0P1527=(15,27) nas i ________________
op1531=(15,31)
0p2020=(20,20) 7 ”
SUcce (26 23) ready supported CPUs as a “source of knowledge

2024=(20,24 : :
229244 59,24)) ly, we found only one really useful resource - Guillaume Valadon presentation:

feps (0 >dou.github.io/talks/2019 BeeRump/slides.pdf

€srlg=(20,27)

:c.add crd,crs2 is RVC & crd & crs2 & copeeel=0x2 & copl315=0x4 & copl212=0x1 & cop®711!=0 & copB266!=0

{
crd = crd + crs2;
}
P LOU UCIIIIC UITCIC UIC ICYISIEL UCIIILUUILS, dllasSES, 1IISI UTlIULLS S1C.
% Ghidra can be compiled with a bad SLASPEC if its syntax is correct: 55

X/

s Then you will see on runtime if it works, or you will see tons of JAVA exceptions

s We used “check & try” + “calm down” technique to achieve what we wanted :)
LSS

BRINGING

define token instr (32)

TO GHIDRA

0peee1=(0,1) t? define register offset=0x90000000 size=$(XLEN) [ustatus];
0p@204=(2,4) : define register offset=0x90000010 size=%$(XLEN) [fflags];
ope506=(5,6) ; ; 1 = ize= =
0p8707=(7.7) sfully inte def}ne reg{.ster offset_axgaaaaaza s%ze_$(XLEN) [frm]; ‘
0p@711=(7,11) define register offset=0x90000030 size=$(XLEN) [fcsr];
re711=(7,11 ”
frmnig,li) ng SLEIGH language to describe the CPU
op@811=(8,11)
op1214=(12,14) 3 prc attach variables [€sFld] he
Cliess e [ustatus fflags frm fcsr uie utvec _ _ _ _ _ _ _ _ _ _
0p1219=(12,19) '
op1231=(1231 T+ 0 A B Bl R
sop1231=(12,31) signed Jocul | | —————=————— == - - — -
op1519=(15,19) | | | | o D L L _____
r1519=(15,19) uscratch uepc ucause utval uip _ _ _ _ _ _ _ _ _ _ _ :
£r1519=(15,19) tom 1inful
0P1527=(15,27) nas i ________________
op1531=(15,31)
0p2020=(20,20) 7 ”
SUcce (26 23) ready supported CPUs as a “source of knowledge

2024=(20,24 : :
229244 59,24)) ly, we found only one really useful resource - Guillaume Valadon presentation:

feps (0 >dou.github.io/talks/2019 BeeRump/slides.pdf

€srlg=(20,27)

:c.add crd,crs2 is RVC & crd & crs2 & copeeel=0x2 & copl315=0x4 & copl212=0x1 & cop®711!=0 & copB266!=0

{
}

crd = crd + crs2;

c.beqz Cs,Cp ©000ce01 ©000ePd3 CONDBRANCH (@, ©)

:c.beqz cre7e9s,cbimm is RVC & cbimm & cr@709s & cop@e@l=0x1 & copl315=0x6

{

if (cre7e9s == @) goto cbimm;

}

e vve usea CIeCK«Iry = Callll AOWIlL [eciIgque 10 dcCllleve widl we waltea :)
LSS

BRINGING TO GHIDRA

define token instr (32)

13 05 00 00 mv 4 1
93 05 00 00 mv . if ((—Jee =0
13 0e 00 00 mv 4 = 0;
93 0€é 00 00 mv A =
13 07 00 00 mv A =
93 07 00 00 mv 5 =
13 08 00 00 mv ‘ = (undefined? *)s&
93 08 00 00 mv A do {
13 08 00 00 mv ; R =
93 09 00 00 mv - [1] =
13 0a 00 00 mv - [2] =
93 0a 00 00 mv 2 [3] =
13 0b 00 00 mv . [4] =
93 0b 00 00 mv r [5]1 =
13 0c 00 00 mv : [€] =
93 Oc 00 00 mv ; [7] =
13 0d 00 00 mv s = + 87
93 0d 00 00 mnv " } while
13 0e 00 00 mv . _ada_rv
93 O0e 00 00 mv ; }
13 0£ 00 00 mv ; * (undefineds *) ((longlong) ———F = -
%3 0f 00 00 mv ’ = 03
97 £1 10 00 auipc . 0x10£ =
93 81 cl 32 addi + 9P, 0x32 =
addi , - =
carrwi = [}
auipc ,UXIUT = 03
addi p20,-0x4e4 = Z:_'.

:c.beqz cre7e9s,cbimm is RVC & cbimm & cr@709s & cop@e@l=0x1 & copl315=0x6
{

}

if (cre7e9s == @) goto cbimm;

vve used CIlIleCK « Iy T Cdllll OowlIl lecCIilillgue 10 acCllleve Wildl we wadllleq ;)

BRINGING TO GHIDRA

define token instr (32)

13 05 00 00 mv 4 1
93 05 00 00 mv . if ((—Jee =0
13 0e 00 00 mv 4 = 0;
93 0€é 00 00 mv A =
13 07 00 00 mv A =
93 07 00 00 mv 5 =
13 08 00 00 mv ‘ = (undefined? *)s&
93 08 00 00 mv A do {
13 08 00 00 mv ; R =
93 09 00 00 mv - [1] =
13 0a 00 00 mv - [2] =
93 0a 00 00 mv 2 [3] =
13 0b 00 00 mv . [4] =
93 0b 00 00 mv r [5]1 =
13 0c 00 00 mv : [€] =
93 Oc 00 00 mv ; [7] =
13 0d 00 00 mv s = + 87
93 0d 00 00 mnv " =<
13 0e 00 00 mv . < _ada_rv \
93 O0e 00 00 mv ; }
13 0£ 00 00 mv ; * (undefineds *) ((longlong) ———F = -
%3 0f 00 00 mv ’ = 03
97 £1 10 00 auipc . 0x10£ =
93 81 cl 32 addi + 9P, 0x32 =
addi , - =
carrwi = [}
auipc ,UXIUT = 03
addi p20,-0x4e4 = Z:_'.

:c.beqz cre7e9s,cbimm is RVC & cbimm & cr@709s & cop@e@l=0x1 & copl315=0x6
{

}

if (cre7e9s == @) goto cbimm;

vve used CIlIleCK « Iy T Cdllll OowlIl lecCIilillgue 10 acCllleve Wildl we wadllleq ;)

PROBLEM WITH

«» What to look for?
«» SPARK limits what we could hunt for...

% We focused on the design and how HW is modeled

“ We saw the very first instructions configuring the HW...

% ...and later setting up the MTVEC value
¢ Whatis MTVEC?

% Official RISC-V documentation defines MTVEC register as a read-only or
read/write register that holds the BASE address of the M-mode trap vector

4

)

» By default, RISC-V handles all traps at any privilege level in machine mode (though
a machine-mode handler might redirect traps back to the appropriate level)

L)

*

L)

% When trap arrives, RISC-V switches to the machine mode and sets the instruction
pointer counter (pc) register to the value configured in MTVEC.

59

The mtvec register is an MXLEN-bit WARL read/write register that holds trap vector configura-
tion, consisting of a vector base address (BASE) and a vector mode (MODE).

MXLEN-1 21 0
BASEMXLEN-1:2| (WARL) I MODE (WARL) |
MXLEN-2 2

Figure 3.9: Machine trap-vector base-address register (mtvec).

The mtvec register must always be implemented, but can contain a hardwired read-only value. If
mtvec is writable, the set of values the register may hold can vary by implementation. The value in
the BASE field must always be aligned on a 4-byte boundary, and the MODE setting may impose
additional alignment constraints on the value in the BASE field.

We allow for considerable flexibility in implementation of the trap vector base address. On the
one hand, we do not wish to burden low-end implementations with a large number of state bits,
but on the other hand, we wish to allow flexibility for larger systems.

;ﬁ;}-{llu' Name Description
0 | Direct All exceptions set pc to BASE.
Vectored | Asynchronous interrupts set pc to BASE+4 xcause.

Reserved

Table 3.5: Encoding of mtvec MODE field.

The encoding of the MODE field is shown in Table 3.5. When MODE=Direct, all traps into
machine mode cause the pc to be set to the address in the BASE field. When MODE=Vectored,
all synchronous exceptions into machine mode cause the pc to be set to the address in the BASE
field, whereas interrupts cause the pc to be set to the address in the BASE field plus four times the
interrupt cause number. For example, a machine-mode timer interrupt (see Table 3.6 on page 39)
causes the pc to be set to BASE+0x1c.

y or
rector

mode (though

e level)

> instruction

The mtvec register is an MXLEN-bit WARL read/write register that holds trap vector configura-
finn concictine of a vecrtar hace addrese (BASED) and a vector mode {1\[()DE1

MXLEN-1 21 0
BASE[MXLEN-1:2! (**] MODE (WARL)
2

AMY

The mtvec register must | read-only value. If
mtvec is writable, the se

the BASE field must a'

additional alignment ¢

wtion. The value in

F.l}_',lll'(‘ 3.9: B ﬁ ntvec).

i
-

tting may impose

We allow for co ss. On the
one hand, we do “state bits,
but on the other

r

._ Value
[0

y or
rector

mode (though
The encoding of the MO when MODE=Direct, all traps into
machine mode cause the pc wddress in the BASE field. When MODE=Vectored,
all synchronous exceptions into mac.. aude cause the pc to be set to the address in the BASE

e level)

> instruction

field, whereas interrupts cause the pc to be set to the address in the BASE field plus four times the
interrupt cause number. For example, a machine-mode timer interrupt (see Table 3.6 on page 39)
causes the pc to be set to BASE+0x1c.

/

¢ What will happen if any interrupt arrives MTVEC is

<&

PROBLEM WITH

RISC-V MTVEC register specifications the initial value at all
(undefined)

We observed when the CPU starts, MTVEC is undefined by the standard though most
of the tested implementations set it to O

In many implementations O is not a valid address (or not mapped) and any reference
to it generates an exception

If there is any trap/exception generated before initialization of MTVEC register, RISC-
V ends up in a very “stable” infinitive exception loop

% when exception arises, RISC-V reads MTVEC register (NULL value at that time) and tries to
jump to the NULL page. This generates an exception again, because it’s a reserved and not
accessible memory, and it jumps to MTVEC again, and so on. , it’s just
spinning in the infinitive exception loop.

Such state is an ideal situation for a fault injection (glitching) attack. RISC-V is running
at the and constantly dereferencing glitchable register.

62

<&

PROBLEM WITH

RISC-V MTVEC register specifications the initial value at all
(undefined)
We observed when 1ed by the standard though most
of the tested implen| &St DUG:

ISA does not define the initial
In many implement: value of MTVEC register not mapped) and any reference

to it generates an ex<

If there is any trap/exception generated before initialization of MTVEC register, RISC-
V ends up in a very “stable” infinitive exception loop

% when exception arises, RISC-V reads MTVEC register (NULL value at that time) and tries to
jump to the NULL page. This generates an exception again, because it’s a reserved and not
accessible memory, and it jumps to MTVEC again, and so on. , it’s just
spinning in the infinitive exception loop.

Such state is an ideal situation for a fault injection (glitching) attack. RISC-V is running
at the and constantly dereferencing glitchable register.

63

<&

PROBLEM WITH

RISC-V MTVEC register specifications the initial value at all
(undefined)
We observed when 1ed by the standard though most
of the tested implen| £ 1St DUG: . -

ISA does not define the initial
In many implement: value of MTVEC register not mapped) and any reference

to it generates an ex<

If there is any trap/exception generated before initialization of MTVEC register, RISC-
V ends up in a very “stable” infinitive exception loop

% when exception arises, RISC-V reads MTVEC register (NULL value at that time) and tries to
jump to the NULL page. This generates an exception again, because it’s a reserved and not
accessible memory, and it jumps to MTVEC again, and so on. , it’s just
spinning in the infinitive exception loop.

Such state is an ideal 2C-V is running
e Second bug:

ISA ,,allows” for infinitive exception loop
without halting the core (lack of ,,double/triple
fault”-like exceptions)

register.

64

HOW TO EXPLOIT e

* The described problem is fully exploitable if the attacker has the capabilities to:
s Prefill D/I MEM of the RISC-V core (e.g., via ,,external” / recover (USB) boot functionality)

% Generate an early exception during core execution (e.g., physical HW damage)

/

¢ Scenario:
s Attacker pre-fills IMEM with the custom shellcode:

% Attacker does that in a smart way by filling the entire IMEM with NOPs and in the edge of
IMEM attacker puts a real shellcode.

«» Attacker boots RISC-V

* Attacker enforces the necessary conditions to generate an early exception during
Boot-SW or secure code execution and before MTVEC is initialized

% RISC-V jumps to the NULL page and it enters the state of the infinitive exception loop
(very stable and predictable state)

* Attacker glitches the MTVEC register value of the looped core, and points it

somewhere in the IMEM where special payload with the desired shellcode is placed

(step 1):

s Because MTVEC register has a NULL value, it is very likely that the change of just 165bit ends
up generating an address pointing in the middle of the NOPed filled IMEM memory.

HOW TO EXPLOIT ?

RIGOL H 50.0ns 300 pia” v D 0.00000000ps N
Horizontal 6

=

o

S

) NI

|| |

s EE NS EERE

HOW TO EXPLOIT ?

I
Gl :
ned_c1x [l 0 - 1 1 A AR AN UV
5 B csr mtvec gen nnx[63:0] 88 -» 0 0 | T 10_0000
B reu_csr_trap_ret e VLT 0L O 00 T _JL _TL VL _JL LUL _JL 1T

B rcu_retire po_retx[63:0] 10_16d8 0 | 10_0000 JFpepepepen et 10_0020

E csr_corestatus_active_nn 1 i
‘IE = csr_rcu_corestatus _walt_nn 0 i |

G2 §

= G1 3
i ! csr_mtwvec_gen rroc[63:0] 0 %77 1]) 10_0000

A Bl rcu_retire_pe_retx[63:0] i] i ' 1 } 10 _0000 JF=5F1 L 10 0020
: rcu_csr_trap ret 0->1 II__’L—l_[ﬁ _I_H_r

.’ riscv_falcon_core_stat_active a | |

8 B csr_rou corestatus halt 1] I [——

)
G2
-

Step 1: pull a trigger to corrupt MTVEC register value on the looped core.
Step 2: the MTVEC value has been changed.

0 N 10_0000
1] 1 10_0000 I+I+x I*I*I H 10 0020
/I R O 0 O i i O A O O O O

i
| |
|
1
1
i

DEMO

HOW TO REPORT AND FIX THE BUG
IN ISA IMPLEMENTATION?

HOW TO REPORT AND FIX THE BUG
IN ISA IMPLEMENTATION?

J

*» The described problem(s) affects:

| custom extension might fix that problems as well]—

< Uninitialized MTVEC: < §
X All tested chips have MTVEC programmable (the most common mode) vulnerable to the described problem
<> Standard allows to have hardcoded read-only MTVEC value — in such case, it might point to the valid address (no bug)

s Lack of "double/triple fault"-like exception <

X/

<> Standard doesn’t define that at all — affects all the implementations

< What did we do?

% Contact RISC-V Foundation
<> Until that time, there was no official security response group — now there is one!
% Contact SiFive
<> They were deeply involved in analyzing and working with the RISC-V Foundation to address the issue!

X/

o New CVE was allocated —

< Contact NVIDIA’s internal RISC-V HW team

<> They confirmed and fixed the issue internally

<> Sync with all involved parties for responsible disclosure

10
3

** How to inform all the vendors (hundred+) about the issue(s)?
X2 It can only be done through the RISC-V Foundation (with the SiFive help)

HOW TO FIX ISSUE?

HOW TO FIX ISSUE?

¢ The described problem is a chain of multiple problems...

< To exploit the bug, we need to perform Fault Injection

/

* What are the effective Fault Injection protections?
s DCILS (strong)

% TCLS (even stronger!)

s SW mitigation (complexity++)

% Compiler mitigations

0

0

HOW TO FIX ISSUE?

The described problem is a chain of multiple problems...

X/

< To exploit the bug, we need to perform Fault Injection

What are the effective Fault Injection protections?

s TCLS (even stronger!)
s SW mitigation (complexity++)

% Compiler mitigations

13

HOW TO FIX ISSUE?

¢ The described problem is a chain of multiple problems...

< To exploit the bug, we need to perform Fault Injection

/

* What are the effective Fault Injection protections?

s TCLS (even stronger!)
s SW mitigation (complexity++)

% Compiler mitigations

CPU_1

HOW TO FIX ISSUE?

¢ The described problem is a chain of multiple problems...

< To exploit the bug, we need to perform Fault Injection

/

* What are the effective Fault Injection protections?

s TCLS (even stronger!)
s SW mitigation (complexity++)

% Compiler mitigations

CPU_1 CPU

\/
000

\/
000

HOW TO FIX ISSUE?

The described problem is a chain of multiple problems...

X/

< To exploit the bug, we need to perform Fault Injection

What are the effective Fault Injection protections?

s TCLS (even stronger!)
s SW mitigation (complexity++)

% Compiler mitigations

CPU_1

1l ‘
. (_ 4

16

HOW TO FIX ISSUE?

¢ The described problem is a chain of multiple problems...

< To exploit the bug, we need to perform Fault Injection

/

* What are the effective Fault Injection protections?

x = CPU_1(instruction_1)
% TCLS (even stronger!) y = Shadow_CPU(instruction_1)

% SW mitigation (complexity++)

% Compiler mitigations

CPU_1 CPU

11 . ’

INRENNENNER NNNNNNNNNNNNENEND DNDRDENNERENEENNNEEENENENNDNDNE 77

4

4

D)

4

4

D)

HOW TO FIX

ISSUE?

The described problem is a chain of multiple problems...

X/

< To exploit the bug, we need to perform Fault Injection

What are the effective Fault Injection protections?
s DCILS (strong)

% SW mitigation (complexity++)

X/

% Compiler mitigations

18

HOW TO FIX ISSUE?

¢ The described problem is a chain of multiple problems...

X/

< To exploit the bug, we need to perform Fault Injection

/

* What are the effective Fault Injection protections?

< DCLS (strong) x = CPU_1(instruction_1)

y = Shadow_1_CPU(instruction_1)
% SW mitigation (compleiShadow 2 z = Shadow_2_CPU(instruction_1)
CPU

% Compiler mitigations

Shadow_1
CPU

CPU_1

HEE

©

INRNRARNNED DNNDRENNNERNENENEEED NEREDNNRNNNNNNNNNNENENNNNENEENR 79

4

4

D)

4

4

D)

HOW TO FIX

ISSUE?

The described problem is a chain of multiple problems...

X/

< To exploit the bug, we need to perform Fault Injection

What are the effective Fault Injection protections?
s DCILS (strong)

s TCLS (even stronger!)

X/

% Compiler mitigations

80

0

0

HOW TO FIX ISSUE?

The described problem is a chain of multiple problems...

X/

 To exploit the bug, we need to perform Fault Injection

What are the effective Fault Injection protections?
s DCILS (strong)

s TCLS (even stronger!)

Init/Re-init to fail/error
Branch re-check

Redundant checks

Pre-scrub payload destination
Clear memory on auth fail
Random delay

Exception on error (instead of inf. loop)
Hamming distance

9. Loop counter checks

10. Default fail

11.More...

X/

% Compiler mitigations

00 IS OTLOL e e

81

HOW TO FIX ISSUE?

¢ The described problem is a chain of multiple problems...

X/

 To exploit the bug, we need to perform Fault Injection

/

* What are the effective Fault Injection protections?
s DCILS (strong)

s TCLS (even stronger!)

Init/Re-init to fail/error
Branch re-check

Redundant checks

Pre-scrub payload destination
Clear memory on auth fail
Random delay

Exception on error (instead of inf. loop)
Hamming distance

9. Loop counter checks

10. Default fail

11.More...

Automatically
applied by
compiler

00 IS OTLOL e e

82

HOW TO FIX ISSUE?

¢ The described problem is a chain of multiple problems...

< To exploit the bug, we need to perform Fault Injection

/

* What are the effective Fault Injection protections?
s DCILS (strong)

% TCLS (even stronger!)

s SW mitigation (complexity++)

% Compiler mitigations

HOW TO FIX ISSUE?

¢ The described problem is a chain of multiple problems...

X/

< To exploit the bug, we need to perform Fault Injection

/

* What are the effective Fault Injection protections?
s DCILS (strong)

s TCLS (even stronger!)

s SW mitigation (complexity++)

% Compiler mitigations

A/

*¢ Design decision to address weakness:

» Assoon as START_ CPU signal arrives, pre-initialize MTVEC to point to instruction

* Change ISA to at least WARN about the potential problems with the late MTVEC
initialization

» Introduce “double / triple” fault-like exception which halts the core (instead of infinitive

exception loop):

% E.g.,if MEPC == MTVEC then

84

HOW TO FIX ISSUE?

¢ The described problem is a chain of multiple problems...

X/

< To exploit the bug, we need to perform Fault Injection

/

* What are the effective Fault Injection protections?
s DCILS (strong)

s TCLS (even stronger!)

s SW mitigation (complexity++)

% Compiler mitigations

A/

*¢ Design decision to address weakness:

» As soon as START CPU signal arrives, pre-initialize MTVEC to point to instruction

* Change ISA to at least WARN about the potential problems with the late MTVEC
initialization

» Introduce “double / triple” fault-like exception which halts the core (instead of infinitive

exception loop):

% E.g.,if MEPC == MTVEC then

A/

< What else can be done to harden ¢ %

s What about mitigation against the software attacks?

HARDENING

*» Pointer Masking extension for RISC-V

% Driven by Adam Zabrocki (NVIDIA), Martin Maas (Google), Lee Campbell (Google),
RISC-V TEE and J-Ext Task Groups

X/

*» From the security perspective it allows to implement:
X HWASAN

X2 Pointer Authentication Codes (PAC)

> HW Memory Sandboxing

o Foundation for:

<> HW MTE

<> Protecting RISC-V CFI (WIP)

<> Protecting RISC-V Shadow Stack (WIP)

HARDENING

*» Pointer Masking extension for RISC-V

% Driven by Adam Zabrocki (NVIDIA), Martin Maas (Google), Lee Campbell (Google),
RISC-V TEE and J-Ext Task Groups

X/

*» From the security perspective it allows to implement:
X HWASAN
X Pointer Authentication Codes (PAC)

X Foundation for:
X3 HW MTE
& Protecting RISC-V CFI (WIP)

<> Protecting RISC-V Shadow Stack (WIP)

HARDENING

*» Pointer Masking extension for RISC-V

% Driven by Adam Zabrocki (NVIDIA), Martin Maas (Google), Lee Campbell (Google),
RISC-V TEE and J-Ext Task Groups

X/

* From the security perspective it allows to implement:
X HWASAN
X2 Pointer Authentication Codes (PAC)

o Foundation for:

<> HW MTE

<> Protecting RISC-V CFI (WIP)

<> Protecting RISC-V Shadow Stack (WIP)

88

HARDENING

*» Pointer Masking extension for RISC-V

% Driven by Adam Zabrocki (NVIDIA), Martin Maas (Google), Lee Campbell (Google),
RISC-V TEE and J-Ext Task Groups

X/

* From the security perspective it allows to implement:
X HWASAN
X Pointer Authentication Codes (PAC)

" Foundation for:

<> HW MTE

<> Protecting RISC-V CFI (WIP)

<> Protecting RISC-V Shadow Stack (WIP)

Flat memory:

Stops the 89

attack \

Pointer Masking isolation

HARDENING

¢ Pointer Masking extension for RISC-V

% Driven by Adam Zabrocki (NVIDIA), Martin Maas (Google), Lee Campbell (Google),
RISC-V TEE and J-Ext Task Groups

% From the security perspective it allows to implement:
X HWASAN
X Pointer Authentication Codes (PAC)

" Foundation for:

<> HW MTE

<> Protecting RISC-V CFI (WIP)

<> Protecting RISC-V Shadow Stack (WIP)

Flat memory:

90

Stops the

attack \

Pointer Masking isolation

ACKNOWLEDGMENTS

¢ We would like to thank:
s+ NVIDIA:

*» GPU System Software:

James Xu, Marko Mitic, Mateusz Kulikowski, RISC-V SW team
s HW team:

Joe Xie, Andy Ma, Jim Zhang, Dorin Yin, RISC-V HW team

¢ Product Security:
Alex Tereshkin, Shawn Richardson and PSIRT team

s+ SiFive
«» RISC-V Foundation

91

SUMMARY

“* The use of Type Safety languages and Formal Verification
minimizes the attack surfaces for memory corruption
1ssues, but it is not a silver bullet.

¢ There are CPU ISA bugs, and real-world attacks can
combine physical attacks with software exploitation
techniques.

¢ And the disclosure of ISA bugs is tough :-(

92

Adam' 'Zabrocki
Twitter: @Adam pi3

Alex Matrosov
Twitter: @matrosov

