
MTVEC CORRUPTION FOR
HARDENING ISA

Adam 'pi3' Zabrocki
Twitter: @Adam_pi3

GLITCHING RISC-V CHIPS:

Alex Matrosov
Twitter: @matrosov

/USR/BIN/WHOWEARE

Adam ‘pi3’ Zabrocki:

2

• Phrack author
• Bughunter (Hyper-V, Intel/NVIDIA vGPU,

Linux kernel, OpenSSH, Apache, gcc SSP /
ProPolice, Apache, xpdf, more…) – CVEs

• The ERESI Reverse Engineering Software
Interface

• Creator and a developer of Linux Kernel
Runtime Guard (LKRG)

• More…

Private contact:

http://pi3.com.pl
pi3@pi3.com.pl
Twitter: @Adam_pi3

Alex Matrosov:

Private contact:

github.com/binarly-io
Twitter: @matrosov

• Security REsearcher since 1997
• Conference speaker and trainer
• Breaking all shades of firmware
• codeXplorer & efiXplorer IDA plugins
• Author "Bootkits and Rootkits" book
• Founder of Binarly, Inc.
• More...

WHAT IS THIS TALK ABOUT?

3

Hardware: Software:

WHAT IS THIS TALK ABOUT?

4

Hardware: Software:

WHAT IS THIS TALK ABOUT?

5

Hardware: Software:

WHAT IS THIS TALK ABOUT?

6

Hardware: Software:

Hacker
Pure HW attacks, e.g.:

• Glitching

• Side channel

• Physical probing

• More...

Pure SW attacks, e.g.:

• Memory safety (like overflows)

• Injections (like cmd, XSS, SQL, etc.)

• Logical issues (like bad design)

• More...

WHAT IS THIS TALK ABOUT?

7

Hardware: Software:

Hacker
Pure HW attacks, e.g.:

• Glitching

• Side channel

• Physical probing

• More...

Pure SW attacks, e.g.,:

• Memory safety (like overflows)

• Injections (like cmd, XSS, SQL, etc.)

• Logical issues (like bad design)

• More...

Targeting specific
implementation (e.g.,

programming language,
compiler, firmware, etc.)

WHAT IS THIS TALK ABOUT?

8

Hardware: Software:

Hacker
Pure HW attacks, e.g.,:

• Glitching

• Side channel

• Physical probing

• More...

Pure SW attacks, e.g.,:

• Memory safety (like overflows)

• Injections (like cmd, XSS, SQL, etc.)

• Logical issues (like bad design)

• More...

Targeting specific
implementation (e.g.,

programming language,
compiler, firmware, etc.)

Targeting specific
implementation (e.g., CPU
family, implementation of

architecture, etc.)

WHAT IS THIS TALK ABOUT?

9

Hardware: Software:

Hacker
Pure HW attacks, e.g.,:

• Glitching

• Side channel

• Physical probing

• More...

Pure SW attacks, e.g.,:

• Memory safety (like overflows)

• Injections (like cmd, XSS, SQL, etc.)

• Logical issues (like bad design)

• More...

Targeting specific
implementation (e.g.,

programming language,
compiler, firmware, etc.)

Targeting specific
implementation (e.g., CPU
family, implementation of

architecture, etc.)

Mix of HW and SW
attacks e.g.:

Spectre / Meltdown

WHAT IS THIS TALK ABOUT?

10

Hardware: Software:

Hacker
Pure HW attacks, e.g.,:

• Glitching

• Side channel

• Physical probing

• More...

Pure SW attacks, e.g.,:

• Memory safety (like overflows)

• Injections (like cmd, XSS, SQL, etc.)

• Logical issues (like bad design)

• More...

Targeting specific
implementation (e.g.,

programming language,
compiler, firmware, etc.)

Targetting specific
implementation (e.g., CPU
family, implementatino of

architecture, etc.)

Mix of HW and SW
attacks e.g.:

Spectre / Meltdown

What if the bug is in the
„reference code” like HW

ISA itself?

WHAT IS THIS TALK ABOUT?

11

Hardware: Software:

Hacker
Pure HW attacks, e.g.,:

• Glitching

• Side channel

• Physical probing

• More...

Pure SW attacks, e.g.,:

• Memory safety (like overflows)

• Injections (like cmd, XSS, SQL, etc.)

• Logical issues (like bad design)

• More...

Targeting specific
implementation (e.g.,

programming language,
compiler, firmware, etc.)

Targetting specific
implementation (e.g., CPU
family, implementatino of

architecture, etc.)

Mix of HW and SW
attacks e.g.:

Spectre / Meltdown

What if the bug is in the
„reference code” like HW

ISA itself?

• Problem with all implementations
not a specific one!

• SW can’t trust HW at all...

WHAT IS THIS TALK ABOUT?

12

Hardware: Software:

Hacker
Pure HW attacks, e.g.,:

• Glitching

• Side channel

• Physical probing

• More...

Pure SW attacks, e.g.,:

• Memory safety (like overflows)

• Injections (like cmd, XSS, SQL, etc.)

• Logical issues (like bad design)

• More...

Targeting specific
implementation (e.g.,

programming language,
compiler, firmware, etc.)

Targetting specific
implementation (e.g., CPU
family, implementatino of

architecture, etc.)

Mix of HW and SW
attacks e.g.:

Spectre / Meltdown

What if the bug is in the
„reference code” like HW

ISA itself?

• Problem with all implementations
not a specific one!

• SW can’t trust HW at all...

13

HOW DID WE FIND IT?

 We wanted to analyze Boot-SW where specific microcode runs but…

 It was running on the RISC-V chip (which we had 0 experience with)

 Moreover, it was a custom implementation of RISC-V with custom extensions and
functionalities!

 Boot-SW was written in AdaCore/SPARK language (which we had 0 experience
with):

 Is there any public offensive research on that language?

 Did anyone ever hear about it before?

 At that time none of the Reverse Engineering tools natively supported RISC-V

 Including IDA Pro and Ghidra

14

HOW DID WE FIND IT?

 We wanted to analyze Boot-SW where specific microcode runs but…

 It was running on the RISC-V chip (which we had 0 experience with)

 Moreover, it was a custom implementation of RISC-V with custom extensions and
functionalities!

 Boot-SW was written in AdaCore/SPARK language (which we had 0 experience
with):

 Is there any public offensive research on that language?

 Did anyone ever hear about it before?

 At that time none of the Reverse Engineering tools natively supported RISC-V

 Including IDA Pro and Ghidra

 During this talk we will describe our journey through all of the problems which
resulted in a discovery of the ambiguity of the RISC-V specification

 And one additional problem as well ;-)

15

RISC-V IN A NUTSHELL

 RISC-V is an open standard instruction set architecture (ISA) based on
established RISC principles

 Unlike most other ISAs, the RISC-V ISA is provided under open-source licenses
that do not require fees to use

 The same RISC-V chip might have tons of different implementations

 RISC-V has a small standard base ISA, with multiple standard extensions:

 Potential huge fragmentation of the silicons

 Everyone can easily add their own custom RISC-V extension (it’s open source!)

 Even bigger fragmentation!

 There are more than 500+ members of the RISC-V Foundation

16

RISC-V IN A NUTSHELL

 RISC-V is an open standard instruction set architecture (ISA) based on
established RISC principles

 Unlike most other ISAs, the RISC-V ISA is provided under open-source licenses
that do not require fees to use

 The same RISC-V chip might have tons of different implementations

 RISC-V has a small standard base ISA, with multiple standard extensions:

 Huge fragmentation of the silicons

 Everyone can easily add own custom RISC-V extension (it’s open source!)

 Even bigger fragmentation!

17

RISC-V VS X86

x86(-64) RISC-V

License Fees for ISA and microarchitecture No fee for ISA & microarchitecture

Instruction Set CISC* RISC

ISA variants 16 / 32 / 64 bits 32 / 64 / 128 bits

Memory model Register-memory architecture Load-store architecture

Registers 16-bit: 6 semi-dedicated registers, BP and
SP are not general-purpose
32-bit: 8 GPRs, including EBP and ESP
64-bit: 16 GPRs, including RBP and RSP

32 (16 in the embedded variant) –
including one always-zero register

XOM Only using SLAT – requires
hypervisor

Everywhere

SW ecosystem support Linux, Windows, MacOS, more... Linux only...

* Since Pentium Pro, x86 instructions are turned into micro ops (kind of like RISC)

18

RISC-V VS X86
 Privilege modes / levels

19

RISC-V VS X86
 Privilege modes / levels

https://medium.com/swlh/negative-rings-in-
intel-architecture-the-security-threats-youve-
probably-never-heard-of-d725a4b6f831

X86(-64):

20

RISC-V VS X86
 Privilege modes / levels

https://medium.com/swlh/negative-rings-in-
intel-architecture-the-security-threats-youve-
probably-never-heard-of-d725a4b6f831

X86(-64): RISC-V:

U-mode

S-mode

M-mode

User

Supervisor

Machine

Supported
combinations:
• M
• M + U
• M + S + U

21

RISC-V VS X86
 Privilege modes / levels

https://medium.com/swlh/negative-rings-in-
intel-architecture-the-security-threats-youve-
probably-never-heard-of-d725a4b6f831

X86(-64): RISC-V:

U-mode

HS-mode

M-mode

User

Hypervisor
Extended
Supervisor

Machine

Supported
combinations:
• M
• M + U
• M + S + U
• M + (V)S + (V)U

VS-mode

VU-mode

Virtualized
User

Virtualized
Supervisor

22

RISC-V VS X86
 Privilege modes / levels

https://medium.com/swlh/negative-rings-in-
intel-architecture-the-security-threats-youve-
probably-never-heard-of-d725a4b6f831

X86(-64): RISC-V:

U-mode

HS-mode

M-mode

User

Hypervisor
Extended
Supervisor

Machine

Supported
combinations:
• M
• M + U
• M + S + U
• M + (V)S + (V)U

VS-mode

VU-mode

Virtualized
User

Virtualized
Supervisor

“GOD” MODE

23

ADACORE / SPARK

24

ADACORE / SPARK

25

WHAT IS ADACORE/SPARK?
 Programming language + set of analysis tools

 The strength is in the analysis tools…

 GNATProve, GNATStack,
GNATTest, GNATEmulator

26

WHAT IS ADACORE/SPARK?
 Programming language + set of analysis tools

 The strength is in the analysis tools…

 GNATProve, GNATStack,
GNATTest, GNATEmulator

 Statically provable

 Proves that dynamic checks cannot fail

 Absence of Run-Time Errors

 Formal verification (Proofs)

27

WHAT IS ADACORE/SPARK?
 Programming language + set of analysis tools

 The strength is in the analysis tools…

 GNATProve, GNATStack,
GNATTest, GNATEmulator

 Statically provable

 Proves that dynamic checks cannot fail

 Absence of Run-Time Errors

 Formal verification (Proofs)

 Memory safe language (like RUST)

28

WHAT IS ADACORE/SPARK?
 Programming language + set of analysis tools

 The strength is in the analysis tools…

 GNATProve, GNATStack,
GNATTest, GNATEmulator

 Statically provable

 Proves that dynamic checks cannot fail

 Absence of Run-Time Errors

 Formal verification (Proofs)

 Memory safe language (like RUST)

 Very strong typing system (much stronger than RUST)

 No arithmetic overflows, integer overflows, etc.

29

WHAT IS ADACORE/SPARK?
 Programming language + set of analysis tools

 The strength is in the analysis tools…

 GNATProve, GNATStack,
GNATTest, GNATEmulator

 Statically provable

 Proves that dynamic checks cannot fail

 Absence of Run-Time Errors

 Formal verification (Proofs)

 Memory safe language (like RUST)

 Very strong typing system (much stronger than RUST)

 No arithmetic overflows, integer overflows, etc.

 Traditionally used in industries such as:

 Avionics, Railways, Defense, Auto, IoT

30

WHAT IS ADACORE/SPARK?
 Programming language + set of analysis tools

 The strength is in the analysis tools…

 GNATProve, GNATStack,
GNATTest, GNATEmulator

 Statically provable

 Proves that dynamic checks cannot fail

 Absence of Run-Time Errors

 Formal verification (Proofs)

 Memory safe language (like RUST)

 Very strong typing system (much stronger than RUST)

 No arithmetic overflows, integer overflows, etc.

 Traditionally used in industries such as:

 Avionics, Railways, Defense, Auto, IoT

31

WHAT IS ADACORE/SPARK?
 Programming language + set of analysis tools

 The strength is in the analysis tools…

 GNATProve, GNATStack,
GNATTest, GNATEmulator

 Statically provable

 Proves that dynamic checks cannot fail

 Absence of Run-Time Errors

 Formal verification (Proofs)

 Memory safe language (like RUST)

 Very strong typing system (much stronger than RUST)

 No arithmetic overflows, integer overflows, etc.

 Traditionally used in industries such as:

 Avionics, Railways, Defense, Auto, IoT

test.adb:28:25: medium: divide by zero might fail (e.g. when b = 42)

test.adb:30:31: medium: array index check might fail (e.g. when MyIndex =
36)

test.adb:37:30: value not in range of type "MyType" defined at test.ads:6
test.adb:37:30: "Constraint_Error" would have been raised at run time

32

WHAT IS ADACORE/SPARK?
 Programming language + set of analysis tools

 The strength is in the analysis tools…

 GNATProve, GNATStack,
GNATTest, GNATEmulator

 Statically provable

 Proves that dynamic checks cannot fail

 Absence of Run-Time Errors

 Formal verification (Proofs)

 Memory safe language (like RUST)

 Very strong typing system (much stronger than RUST)

 No arithmetic overflows, integer overflows, etc.

 Traditionally used in industries such as:

 Avionics, Railways, Defense, Auto, IoT

test.adb:28:25: medium: divide by zero might fail (e.g. when b = 42)

test.adb:30:31: medium: array index check might fail (e.g. when MyIndex =
36)

test.adb:37:30: value not in range of type "MyType" defined at test.ads:6
test.adb:37:30: "Constraint_Error" would have been raised at run time

33

WHAT IS ADACORE/SPARK?
 Programming language + set of analysis tools

 The strength is in the analysis tools…

 GNATProve, GNATStack,
GNATTest, GNATEmulator

 Statically provable

 Proves that dynamic checks cannot fail

 Absence of Run-Time Errors

 Formal verification (Proofs)

 Memory safe language (like RUST)

 Very strong typing system (much stronger than RUST)

 No arithmetic overflows, integer overflows, etc.

 Traditionally used in industries such as:

 Avionics, Railways, Defense, Auto, IoT

test.adb:28:25: medium: divide by zero might fail (e.g. when b = 42)

test.adb:30:31: medium: array index check might fail (e.g. when MyIndex =
36)

test.adb:37:30: value not in range of type "MyType" defined at test.ads:6
test.adb:37:30: "Constraint_Error" would have been raised at run time

Lessons learned:
• You can compile buggy code – problems are

detected by the tools and developers might not
run them at all!

• Tools are orthogonal and detect different classes
of problems – to be fully protected you must run
all of them!

• What are the classes of problems which can or
cannot be detected? – very limited public
information :(

34

WHAT IS ADACORE/SPARK?
 Programming language + set of analysis tools

 The strength is in the analysis tools…

 GNATProve, GNATStack,
GNATTest, GNATEmulator

 Statically provable

 Proves that dynamic checks cannot fail

 Absence of Run-Time Errors

 Formal verification (Proofs)

 Memory safe language (like RUST)

 Very strong typing system (much stronger than RUST)

 No arithmetic overflows, integer overflows, etc.

 Traditionally used in industries such as:

 Avionics, Railways, Defense, Auto, IoT

test.adb:28:25: medium: divide by zero might fail (e.g. when b = 42)

test.adb:30:31: medium: array index check might fail (e.g. when MyIndex =
36)

test.adb:37:30: value not in range of type "MyType" defined at test.ads:6
test.adb:37:30: "Constraint_Error" would have been raised at run time

Lessons learned:
• You can compile buggy code – problems are

detected by the tools and developers might not
run them at all!

• Tools are orthogonal and detect different classes
of problems – to be fully protected you must run
all of them!

• What are the classes of problems which can or
cannot be detected? – very limited public
information :(- time for more research!

35

ADACORE/SPARK - EVALUATION

36

ADACORE/SPARK - EVALUATION

37

ADACORE/SPARK - EVALUATION

38

ADACORE/SPARK - EVALUATION

39

ADACORE/SPARK - EVALUATION

40

ADACORE/SPARK - EVALUATION

41

ADACORE/SPARK - EVALUATION

42

ADACORE/SPARK - EVALUATION
 Lesson learned:

 You can compile buggy code – problems are detected by the tools and
developers might not run them at all!

 Tools are orthogonal and detect different classes of problems – to be fully
protected you must run all of them!

43

ADACORE/SPARK - EVALUATION
 Lesson learned:

 You can compile buggy code – problems are detected by the tools and
developers might not run them at all!

 Tools are orthogonal and detect different classes of problems – to be fully
protected you must run all of them!

 Most of the potential security issues might be:

 In the design

 Logical errors

44

ADACORE/SPARK - EVALUATION
 Lesson learned:

 You can compile buggy code – problems are detected by the tools and
developers might not run them at all!

 Tools are orthogonal and detect different classes of problems – to be fully
protected you must run all of them!

 Most of the potential security issues might be:

 In the design

 Logical errors

 Bugs can be introduced by the compiler itself as well

45

ADACORE/SPARK - EVALUATION
 Lesson learned:

 You can compile buggy code – problems are detected by the tools and
developers might not run them at all!

 Tools are orthogonal and detect different classes of problems – to be fully
protected you must run all of them!

 Most of the potential security issues might be:

 In the design

 Logical errors

 Bugs can be introduced by the compiler itself as well

We need to analyze
the binary!

46

ADACORE/SPARK - EVALUATION
 Lesson learned:

 You can compile buggy code – problems are detected by the tools and
developers might not run them at all!

 Tools are orthogonal and detect different classes of problems – to be fully
protected you must run all of them!

 Most of the potential security issues might be:

 In the design

 Logical errors

 Bugs can be introduced by the compiler itself as well

We need to analyze
the binary!

During this research, neither IDA Pro nor Ghidra supported RISC-V ; (

47

ADACORE/SPARK - EVALUATION
 Lesson learned:

 You can compile buggy code – problems are detected by the tools and
developers might not run them at all!

 Tools are orthogonal and detect different classes of problems – to be fully
protected you must run all of them!

 Most of the potential security issues might be:

 In the design

 Logical errors

 Bugs can be introduced by the compiler itself as well

We need to analyze
the binary!

During this research, neither IDA Pro nor Ghidra supported RISC-V ; (

48

BRINGING RISC-V TO GHIDRA
 Ghidra 9.0 didn’t support RISC-V…

 Moreover, we were dealing with the custom RISC-V with the custom
extensions…

49

BRINGING RISC-V TO GHIDRA
 Ghidra 9.0 didn’t support RISC-V…

 Moreover, we were dealing with the custom RISC-V with the custom
extensions…

 RISC-V is huge!

 Implementing entire RISC-V base would take TONS of time…

 … additionally, we needed custom RISC-V extension support

50

BRINGING RISC-V TO GHIDRA
 Ghidra 9.0 didn’t support RISC-V…

 Moreover, we were dealing with the custom RISC-V with the custom
extensions…

 RISC-V is huge!

 Implementing entire RISC-V base would take TONS of time…

 … additionally, we needed custom RISC-V extension support

 We found on the github a few RISC-V base plugins – different
implementations:

 We decided to “integrate” one of the plugin to Ghidra TOT

 … Few months after our research Ghidra 9.2 brought RISC-V support using
exactly the same plugin ;-)

51

BRINGING RISC-V TO GHIDRA
 Where to start?

 We successfully integrated RISC-V plugin, but we needed to modify it…

 Ghidra is using SLEIGH language to describe the CPU

 SLEIGH is a processor specification language developed for Ghidra (heritage from the
SLED)

 Very little documentation about it

 If you want to model a simple CPU, it’s fine, but a more complex one could be very painful
(at least it was for me ;-))

 We used already supported CPUs as a “source of knowledge”

 Additionally, we found only one really useful resource - Guillaume Valadon presentation:
https://guedou.github.io/talks/2019_BeeRump/slides.pdf

 You need to create a cspec, ldefs, pspec, slaspec, and a Module.manifest file:

 We already had it, but we needed to modify slaspec

 You define there the register definitions, aliases, instructions etc.

 Ghidra can be compiled with a bad SLASPEC if its syntax is correct:

 Then you will see on runtime if it works, or you will see tons of JAVA exceptions

 We used “check & try” + “calm down” technique to achieve what we wanted :)

52

BRINGING RISC-V TO GHIDRA
 Where to start?

 We successfully integrated RISC-V plugin, but we needed to modify it…

 Ghidra is using SLEIGH language to describe the CPU

 SLEIGH is a processor specification language developed for Ghidra (heritage from the
SLED)

 Very little documentation about it

 If you want to model a simple CPU, it’s fine, but a more complex one could be very painful
(at least it was for me ;-))

 We used already supported CPUs as a “source of knowledge”

 Additionally, we found only one really useful resource - Guillaume Valadon presentation:
https://guedou.github.io/talks/2019_BeeRump/slides.pdf

 You need to create a cspec, ldefs, pspec, slaspec, and a Module.manifest file:

 We already had it, but we needed to modify slaspec

 You define there the register definitions, aliases, instructions etc.

 Ghidra can be compiled with a bad SLASPEC if its syntax is correct:

 Then you will see on runtime if it works, or you will see tons of JAVA exceptions

 We used “check & try” + “calm down” technique to achieve what we wanted :)

53

BRINGING RISC-V TO GHIDRA
 Where to start?

 We successfully integrated RISC-V plugin, but we needed to modify it…

 Ghidra is using SLEIGH language to describe the CPU

 SLEIGH is a processor specification language developed for Ghidra (heritage from the
SLED)

 Very little documentation about it

 If you want to model a simple CPU, it’s fine, but a more complex one could be very painful
(at least it was for me ;-))

 We used already supported CPUs as a “source of knowledge”

 Additionally, we found only one really useful resource - Guillaume Valadon presentation:
https://guedou.github.io/talks/2019_BeeRump/slides.pdf

 You need to create a cspec, ldefs, pspec, slaspec, and a Module.manifest file:

 We already had it, but we needed to modify slaspec

 You define there the register definitions, aliases, instructions etc.

 Ghidra can be compiled with a bad SLASPEC if its syntax is correct:

 Then you will see on runtime if it works, or you will see tons of JAVA exceptions

 We used “check & try” + “calm down” technique to achieve what we wanted :)

54

BRINGING RISC-V TO GHIDRA
 Where to start?

 We successfully integrated RISC-V plugin, but we needed to modify it…

 Ghidra is using SLEIGH language to describe the CPU

 SLEIGH is a processor specification language developed for Ghidra (heritage from the
SLED)

 Very little documentation about it

 If you want to model a simple CPU, it’s fine, but a more complex one could be very painful
(at least it was for me ;-))

 We used already supported CPUs as a “source of knowledge”

 Additionally, we found only one really useful resource - Guillaume Valadon presentation:
https://guedou.github.io/talks/2019_BeeRump/slides.pdf

 You need to create a cspec, ldefs, pspec, slaspec, and a Module.manifest file:

 We already had it, but we needed to modify slaspec

 You define there the register definitions, aliases, instructions etc.

 Ghidra can be compiled with a bad SLASPEC if its syntax is correct:

 Then you will see on runtime if it works, or you will see tons of JAVA exceptions

 We used “check & try” + “calm down” technique to achieve what we wanted :)

55

BRINGING RISC-V TO GHIDRA
 Where to start?

 We successfully integrated RISC-V plugin, but we needed to modify it…

 Ghidra is using SLEIGH language to describe the CPU

 SLEIGH is a processor specification language developed for Ghidra (heritage from the
SLED)

 Very little documentation about it

 If you want to model a simple CPU, it’s fine, but a more complex one could be very painful
(at least it was for me ;-))

 We used already supported CPUs as a “source of knowledge”

 Additionally, we found only one really useful resource - Guillaume Valadon presentation:
https://guedou.github.io/talks/2019_BeeRump/slides.pdf

 You need to create a cspec, ldefs, pspec, slaspec, and a Module.manifest file:

 We already had it, but we needed to modify slaspec

 You define there the register definitions, aliases, instructions etc.

 Ghidra can be compiled with a bad SLASPEC if its syntax is correct:

 Then you will see on runtime if it works, or you will see tons of JAVA exceptions

 We used “check & try” + “calm down” technique to achieve what we wanted :)

56

BRINGING RISC-V TO GHIDRA
 Where to start?

 We successfully integrated RISC-V plugin, but we needed to modify it…

 Ghidra is using SLEIGH language to describe the CPU

 SLEIGH is a processor specification language developed for Ghidra (heritage from the
SLED)

 Very little documentation about it

 If you want to model a simple CPU, it’s fine, but a more complex one could be very painful
(at least it was for me ;-))

 We used already supported CPUs as a “source of knowledge”

 Additionally, we found only one really useful resource - Guillaume Valadon presentation:
https://guedou.github.io/talks/2019_BeeRump/slides.pdf

 You need to create a cspec, ldefs, pspec, slaspec, and a Module.manifest file:

 We already had it, but we needed to modify slaspec

 You define there the register definitions, aliases, instructions etc.

 Ghidra can be compiled with a bad SLASPEC if its syntax is correct:

 Then you will see on runtime if it works, or you will see tons of JAVA exceptions

 We used “check & try” + “calm down” technique to achieve what we wanted :)

57

BRINGING RISC-V TO GHIDRA
 Where to start?

 We successfully integrated RISC-V plugin, but we needed to modify it…

 Ghidra is using SLEIGH language to describe the CPU

 SLEIGH is a processor specification language developed for Ghidra (heritage from the
SLED)

 Very little documentation about it

 If you want to model a simple CPU, it’s fine, but a more complex one could be very painful
(at least it was for me ;-))

 We used already supported CPUs as a “source of knowledge”

 Additionally, we found only one really useful resource - Guillaume Valadon presentation:
https://guedou.github.io/talks/2019_BeeRump/slides.pdf

 You need to create a cspec, ldefs, pspec, slaspec, and a Module.manifest file:

 We already had it, but we needed to modify slaspec

 You define there the register definitions, aliases, instructions etc.

 Ghidra can be compiled with a bad SLASPEC if its syntax is correct:

 Then you will see on runtime if it works, or you will see tons of JAVA exceptions

 We used “check & try” + “calm down” technique to achieve what we wanted :)

58

BRINGING RISC-V TO GHIDRA
 Where to start?

 We successfully integrated RISC-V plugin, but we needed to modify it…

 Ghidra is using SLEIGH language to describe the CPU

 SLEIGH is a processor specification language developed for Ghidra (heritage from the
SLED)

 Very little documentation about it

 If you want to model a simple CPU, it’s fine, but a more complex one could be very painful
(at least it was for me ;-))

 We used already supported CPUs as a “source of knowledge”

 Additionally, we found only one really useful resource - Guillaume Valadon presentation:
https://guedou.github.io/talks/2019_BeeRump/slides.pdf

 You need to create a cspec, ldefs, pspec, slaspec, and a Module.manifest file:

 We already had it, but we needed to modify slaspec

 You define there the register definitions, aliases, instructions etc.

 Ghidra can be compiled with a bad SLASPEC if its syntax is correct:

 Then you will see on runtime if it works, or you will see tons of JAVA exceptions

 We used “check & try” + “calm down” technique to achieve what we wanted :)

59

PROBLEM WITH MTVEC
 What to look for?

 SPARK limits what we could hunt for...

 We focused on the design and how HW is modeled

 We saw the very first instructions configuring the HW...

 ... and later setting up the MTVEC value

 What is MTVEC?

 Official RISC-V documentation defines MTVEC register as a read-only or
read/write register that holds the BASE address of the M-mode trap vector

 By default, RISC-V handles all traps at any privilege level in machine mode (though
a machine-mode handler might redirect traps back to the appropriate level)

 When trap arrives, RISC-V switches to the machine mode and sets the instruction
pointer counter (pc) register to the value configured in MTVEC.

60

PROBLEM WITH MTVEC
 What to look for?

 SPARK limits what we could hunt for...

 We focused on the design and how is HW modeled

 We saw the very first instructions configuring the HW...

 ... and later setting up the MTVEC value

 What is MTVEC?

 Official RISC-V documentation defines MTVEC register as a read-only or
read/write register that holds the BASE address of the M-mode trap vector

 By default, RISC-V handles all traps at any privilege level in machine mode (though
a machine-mode handler might redirect traps back to the appropriate level)

 When trap arrives, RISC-V switches to the machine mode and sets the instruction
pointer counter (pc) register to the value configured in MTVEC.

61

PROBLEM WITH MTVEC
 What to look for?

 SPARK limits what we could hunt for...

 We focused on the design and how is HW modeled

 We saw the very first instructions configuring the HW...

 ... and later setting up the MTVEC value

 What is MTVEC?

 Official RISC-V documentation defines MTVEC register as a read-only or
read/write register that holds the BASE address of the M-mode trap vector

 By default, RISC-V handles all traps at any privilege level in machine mode (though
a machine-mode handler might redirect traps back to the appropriate level)

 When trap arrives, RISC-V switches to the machine mode and sets the instruction
pointer counter (pc) register to the value configured in MTVEC.

 What will happen if any interrupt arrives before MTVEC is initialized?

62

PROBLEM WITH MTVEC
 RISC-V MTVEC register specifications does not define the initial value at all

(undefined)

 We observed when the CPU starts, MTVEC is undefined by the standard though most
of the tested implementations set it to 0

 In many implementations 0 is not a valid address (or not mapped) and any reference
to it generates an exception

 If there is any trap/exception generated before initialization of MTVEC register, RISC-
V ends up in a very “stable” infinitive exception loop

 when exception arises, RISC-V reads MTVEC register (NULL value at that time) and tries to
jump to the NULL page. This generates an exception again, because it’s a reserved and not
accessible memory, and it jumps to MTVEC again, and so on. RISC-V is not halted, it’s just
spinning in the infinitive exception loop.

 Such state is an ideal situation for a fault injection (glitching) attack. RISC-V is running
at the highest privilege mode and constantly dereferencing glitchable register.

63

PROBLEM WITH MTVEC
 RISC-V MTVEC register specifications does not define the initial value at all

(undefined)

 We observed when the CPU starts, MTVEC is undefined by the standard though most
of the tested implementations set it to 0

 In many implementations 0 is not a valid address (or not mapped) and any reference
to it generates an exception

 If there is any trap/exception generated before initialization of MTVEC register, RISC-
V ends up in a very “stable” infinitive exception loop

 when exception arises, RISC-V reads MTVEC register (NULL value at that time) and tries to
jump to the NULL page. This generates an exception again, because it’s a reserved and not
accessible memory, and it jumps to MTVEC again, and so on. RISC-V is not halted, it’s just
spinning in the infinitive exception loop.

 Such state is an ideal situation for a fault injection (glitching) attack. RISC-V is running
at the highest privilege mode and constantly dereferencing glitchable register.

First bug:
ISA does not define the initial
value of MTVEC register

64

PROBLEM WITH MTVEC
 RISC-V MTVEC register specifications does not define the initial value at all

(undefined)

 We observed when the CPU starts, MTVEC is undefined by the standard though most
of the tested implementations set it to 0

 In many implementations 0 is not a valid address (or not mapped) and any reference
to it generates an exception

 If there is any trap/exception generated before initialization of MTVEC register, RISC-
V ends up in a very “stable” infinitive exception loop

 when exception arises, RISC-V reads MTVEC register (NULL value at that time) and tries to
jump to the NULL page. This generates an exception again, because it’s a reserved and not
accessible memory, and it jumps to MTVEC again, and so on. RISC-V is not halted, it’s just
spinning in the infinitive exception loop.

 Such state is an ideal situation for a fault injection (glitching) attack. RISC-V is running
at the highest privilege mode and constantly dereferencing glitchable register.

First bug:
ISA does not define the initial
value of MTVEC register

Second bug:
ISA „allows” for infinitive exception loop
without halting the core (lack of „double/triple
fault”-like exceptions)

65

HOW TO EXPLOIT MTVEC?
 The described problem is fully exploitable if the attacker has the capabilities to:

 Prefill D/I MEM of the RISC-V core (e.g., via „external” / recover (USB) boot functionality)

 Generate an early exception during core execution (e.g., physical HW damage)

 Scenario:

 Attacker pre-fills IMEM with the custom shellcode:

 Attacker does that in a smart way by filling the entire IMEM with NOPs and in the edge of
IMEM attacker puts a real shellcode.

 Attacker boots RISC-V

 Attacker enforces the necessary conditions to generate an early exception during
Boot-SW or secure code execution and before MTVEC is initialized

 RISC-V jumps to the NULL page and it enters the state of the infinitive exception loop
(very stable and predictable state)

 Attacker glitches the MTVEC register value of the looped core, and points it
somewhere in the IMEM where special payload with the desired shellcode is placed
(step 1):

 Because MTVEC register has a NULL value, it is very likely that the change of just 1 bit ends
up generating an address pointing in the middle of the NOPed filled IMEM memory.

66

HOW TO EXPLOIT MTVEC?
 The described problem is fully exploitable if the attacker has the capabilities to:

 Prefill D/I MEM of the RISC-V core (e.g., via „external” / recover (USB) boot functionality)

 Generate an early exception during core execution (e.g., physical HW damage)

 Scenario:

 Attacker pre-fills IMEM with the custom shellcode:

 Attacker does that in a smart way by filling the entire IMEM with NOPs and in the edge of
IMEM attacker puts a real shellcode.

 Attacker boots RISC-V

 Attacker enforces the necessary conditions to generate an early exception during
Boot-SW or secure code execution and before MTVEC is initialized

 RISC-V jumps to the NULL page and it enters the state of the infinitive exception loop
(very stable and predictable state)

 Attacker glitches the MTVEC register value of the looped core, and points it
somewhere in the IMEM where special payload with the desired shellcode is placed
(step 1):

 Because MTVEC register has a NULL value, it is very likely that the change of just 1 bit ends
up generating an address pointing in the middle of the NOPed filled IMEM memory.

67

HOW TO EXPLOIT MTVEC?

Step 3: ecall triggers the exception handler with the corrupted MTVEC.

Step 2: the MTVEC value has been changed.

Step 1: pull a trigger to corrupt MTVEC register value on the looped core.

68

HOW TO EXPLOIT MTVEC?
 The described problem is fully exploitable if the attacker has the capabilities to:

 Prefill D/I MEM of the RISC-V core (e.g., via „external” / recover (USB) boot functionality)

 Generate an early exception during core execution (e.g., physical HW damage)

 Scenario:

 Attacker pre-fill IMEM with the custom shellcode:

 Attacker does that in a smart way by filling the entire IMEM with NOPs and in the edge of
IMEM attacker puts a real shellcode.

 Attacker boots RISC-V

 Attacker enforces the necessary conditions to generate an early exception during
Boot-SW or secure code execution and before MTVEC is initialized

 RISC-V jumps to the NULL page and it enters the state of the infinitive exception loop
(very stable and predictable state)

 Attacker glitches the MTVEC register value of the looped core, and points it
somewhere in the IMEM where special payload with the desired shellcode is placed
(step 1):

 Because MTVEC register has a NULL value, it is very likely that the change of just 1 bit ends
up generating an address pointing in the middle of the NOPed filled IMEM memory.

69

HOW TO REPORT AND FIX THE BUG
IN ISA NOT IMPLEMENTATION?

70

HOW TO REPORT AND FIX THE BUG
IN ISA NOT IMPLEMENTATION?

 The described problem(s) affects:

 Uninitialized MTVEC:

 All tested chips have MTVEC programmable (the most common mode) vulnerable to the described problem

 Standard allows to have hardcoded read-only MTVEC value – in such case, it might point to the valid address (no bug)

 Lack of "double/triple fault"-like exception

 Standard doesn’t define that at all – affects all the implementations

 What did we do?

 Contact RISC-V Foundation

 Until that time, there was no official security response group – now there is one!

 Contact SiFive

 They were deeply involved in analyzing and working with the RISC-V Foundation to address the issue!

 New CVE was allocated – CVE-2021-1104

 Contact NVIDIA’s internal RISC-V HW team

 They confirmed and fixed the issue internally

 Sync with all involved parties for responsible disclosure

 How to inform all the vendors (hundred+) about the issue(s)?

 It can only be done through the RISC-V Foundation (with the SiFive help)

custom extension might fix that problems as well

71

HOW TO FIX MTVEC ISSUE?

72

HOW TO FIX MTVEC ISSUE?
 The described problem is a chain of multiple problems…

 To exploit the bug, we need to perform Fault Injection

 What are the effective Fault Injection protections?

 DCLS (strong)

 TCLS (even stronger!)

 SW mitigation (complexity++)

 Compiler mitigations

73

HOW TO FIX MTVEC ISSUE?
 The described problem is a chain of multiple problems…

 To exploit the bug, we need to perform Fault Injection

 What are the effective Fault Injection protections?

 DCLS (strong)

 TCLS (even stronger!)

 SW mitigation (complexity++)

 Compiler mitigations

74

HOW TO FIX MTVEC ISSUE?
 The described problem is a chain of multiple problems…

 To exploit the bug, we need to perform Fault Injection

 What are the effective Fault Injection protections?

 DCLS (strong)

 TCLS (even stronger!)

 SW mitigation (complexity++)

 Compiler mitigations

CPU_1

75

HOW TO FIX MTVEC ISSUE?
 The described problem is a chain of multiple problems…

 To exploit the bug, we need to perform Fault Injection

 What are the effective Fault Injection protections?

 DCLS (strong)

 TCLS (even stronger!)

 SW mitigation (complexity++)

 Compiler mitigations

Shadow
CPUCPU_1

76

HOW TO FIX MTVEC ISSUE?
 The described problem is a chain of multiple problems…

 To exploit the bug, we need to perform Fault Injection

 What are the effective Fault Injection protections?

 DCLS (strong)

 TCLS (even stronger!)

 SW mitigation (complexity++)

 Compiler mitigations

Shadow
CPUCPU_1

77

HOW TO FIX MTVEC ISSUE?
 The described problem is a chain of multiple problems…

 To exploit the bug, we need to perform Fault Injection

 What are the effective Fault Injection protections?

 DCLS (strong)

 TCLS (even stronger!)

 SW mitigation (complexity++)

 Compiler mitigations

Shadow
CPU

x = CPU_1(instruction_1)
y = Shadow_CPU(instruction_1)
if (x != y)

panic();
…

CPU_1

78

HOW TO FIX MTVEC ISSUE?
 The described problem is a chain of multiple problems…

 To exploit the bug, we need to perform Fault Injection

 What are the effective Fault Injection protections?

 DCLS (strong)

 TCLS (even stronger!)

 SW mitigation (complexity++)

 Compiler mitigations

79

HOW TO FIX MTVEC ISSUE?
 The described problem is a chain of multiple problems…

 To exploit the bug, we need to perform Fault Injection

 What are the effective Fault Injection protections?

 DCLS (strong)

 TCLS (even stronger!)

 SW mitigation (complexity++)

 Compiler mitigations

x = CPU_1(instruction_1)
y = Shadow_1_CPU(instruction_1)
z = Shadow_2_CPU(instruction_1)
if (x != y || x!=z || y!=z)

panic();
…

CPU_1
Shadow_1

CPU

Shadow_2
CPU

80

HOW TO FIX MTVEC ISSUE?
 The described problem is a chain of multiple problems…

 To exploit the bug, we need to perform Fault Injection

 What are the effective Fault Injection protections?

 DCLS (strong)

 TCLS (even stronger!)

 SW mitigation (complexity++)

 Compiler mitigations

81

HOW TO FIX MTVEC ISSUE?
 The described problem is a chain of multiple problems…

 To exploit the bug, we need to perform Fault Injection

 What are the effective Fault Injection protections?

 DCLS (strong)

 TCLS (even stronger!)

 SW mitigation (complexity++)

 Compiler mitigations

1. Init/Re-init to fail/error
2. Branch re-check
3. Redundant checks
4. Pre-scrub payload destination
5. Clear memory on auth fail
6. Random delay
7. Exception on error (instead of inf. loop)
8. Hamming distance
9. Loop counter checks
10. Default fail
11. More…

82

HOW TO FIX MTVEC ISSUE?
 The described problem is a chain of multiple problems…

 To exploit the bug, we need to perform Fault Injection

 What are the effective Fault Injection protections?

 DCLS (strong)

 TCLS (even stronger!)

 SW mitigation (complexity++)

 Compiler mitigations

1. Init/Re-init to fail/error
2. Branch re-check
3. Redundant checks
4. Pre-scrub payload destination
5. Clear memory on auth fail
6. Random delay
7. Exception on error (instead of inf. loop)
8. Hamming distance
9. Loop counter checks
10. Default fail
11. More…

Automatically
applied by
compiler

83

HOW TO FIX MTVEC ISSUE?
 The described problem is a chain of multiple problems…

 To exploit the bug, we need to perform Fault Injection

 What are the effective Fault Injection protections?

 DCLS (strong)

 TCLS (even stronger!)

 SW mitigation (complexity++)

 Compiler mitigations

84

HOW TO FIX MTVEC ISSUE?
 The described problem is a chain of multiple problems…

 To exploit the bug, we need to perform Fault Injection

 What are the effective Fault Injection protections?

 DCLS (strong)

 TCLS (even stronger!)

 SW mitigation (complexity++)

 Compiler mitigations

 Design decision to address MTVEC weakness:

 As soon as START_CPU signal arrives, pre-initialize MTVEC to point to halt instruction

 Change ISA to at least WARN about the potential problems with the late MTVEC
initialization

 Introduce “double / triple” fault-like exception which halts the core (instead of infinitive
exception loop):

 E.g., if MEPC == MTVEC then panic()

85

HOW TO FIX MTVEC ISSUE?
 The described problem is a chain of multiple problems…

 To exploit the bug, we need to perform Fault Injection

 What are the effective Fault Injection protections?

 DCLS (strong)

 TCLS (even stronger!)

 SW mitigation (complexity++)

 Compiler mitigations

 Design decision to address MTVEC weakness:

 As soon as START_CPU signal arrives, pre-initialize MTVEC to point to halt instruction

 Change ISA to at least WARN about the potential problems with the late MTVEC
initialization

 Introduce “double / triple” fault-like exception which halts the core (instead of infinitive
exception loop):

 E.g., if MEPC == MTVEC then panic()

 What else can be done to harden RISC-V?

 What about mitigation against the software attacks?

86

HARDENING RISC-V
 Pointer Masking extension for RISC-V

 Driven by Adam Zabrocki (NVIDIA), Martin Maas (Google), Lee Campbell (Google),
RISC-V TEE and J-Ext Task Groups

 From the security perspective it allows to implement:

 HWASAN

 Pointer Authentication Codes (PAC)

 HW Memory Sandboxing

 Foundation for:

 HW MTE

 Protecting RISC-V CFI (WIP)

 Protecting RISC-V Shadow Stack (WIP)

87

HARDENING RISC-V
 Pointer Masking extension for RISC-V

 Driven by Adam Zabrocki (NVIDIA), Martin Maas (Google), Lee Campbell (Google),
RISC-V TEE and J-Ext Task Groups

 From the security perspective it allows to implement:

 HWASAN

 Pointer Authentication Codes (PAC)

 HW Memory Sandboxing

 Foundation for:

 HW MTE

 Protecting RISC-V CFI (WIP)

 Protecting RISC-V Shadow Stack (WIP)

88

HARDENING RISC-V
 Pointer Masking extension for RISC-V

 Driven by Adam Zabrocki (NVIDIA), Martin Maas (Google), Lee Campbell (Google),
RISC-V TEE and J-Ext Task Groups

 From the security perspective it allows to implement:

 HWASAN

 Pointer Authentication Codes (PAC)

 HW Memory Sandboxing

 Foundation for:

 HW MTE

 Protecting RISC-V CFI (WIP)

 Protecting RISC-V Shadow Stack (WIP)

89

HARDENING RISC-V
 Pointer Masking extension for RISC-V

 Driven by Adam Zabrocki (NVIDIA), Martin Maas (Google), Lee Campbell (Google),
RISC-V TEE and J-Ext Task Groups

 From the security perspective it allows to implement:

 HWASAN

 Pointer Authentication Codes (PAC)

 HW Memory Sandboxing

 Foundation for:

 HW MTE

 Protecting RISC-V CFI (WIP)

 Protecting RISC-V Shadow Stack (WIP)

Portion of memory needed by
the execution context

Secrets

Vuln

Stops the
attack

Flat memory:

Pointer Masking isolation

90

HARDENING RISC-V
 Pointer Masking extension for RISC-V

 Driven by Adam Zabrocki (NVIDIA), Martin Maas (Google), Lee Campbell (Google),
RISC-V TEE and J-Ext Task Groups

 From the security perspective it allows to implement:

 HWASAN

 Pointer Authentication Codes (PAC)

 HW Memory Sandboxing

 Foundation for:

 HW MTE

 Protecting RISC-V CFI (WIP)

 Protecting RISC-V Shadow Stack (WIP)

Portion of memory needed by
the execution context

Secrets

Vuln

Stops the
attack

Flat memory:

Pointer Masking isolation

91

ACKNOWLEDGMENTS
 We would like to thank:

 NVIDIA:

 GPU System Software:
James Xu, Marko Mitic, Mateusz Kulikowski, RISC-V SW team

 HW team:
Joe Xie, Andy Ma, Jim Zhang, Dorin Yin, RISC-V HW team

 Product Security:
Alex Tereshkin, Shawn Richardson and PSIRT team

 SiFive

 RISC-V Foundation

92

SUMMARY
 The use of Type Safety languages and Formal Verification

minimizes the attack surfaces for memory corruption
issues, but it is not a silver bullet.

 There are CPU ISA bugs, and real-world attacks can
combine physical attacks with software exploitation
techniques.

 And the disclosure of ISA bugs is tough :-(

Adam 'pi3' Zabrocki
Twitter: @Adam_pi3

Alex Matrosov
Twitter: @matrosov

