
The mechanics of compromising 
low entropy RSA keys

Austin Allshouse



This talk is about...

Nominally: 

Recovering private keys from a subset of vulnerable RSA certificates

Functionally: 

Calculating shared factors across large batches of integers

“...using our scalable GCD algorithm for shared factors...”

“...batch GCD on RSA keys, using a custom distributed version...”

“...we adapted the batch GCD implementation…”



p x q = n
random prime random prime public modulus

Hello darkness, my old friend...



When primes are reused...

p x q1 = n1;  p x q2 = n2

gcd(n1, n2) = p
n1/p = q1;  n2/p = q2



Select past research...

2012 2016 2018

“Mining your Ps and 
Qs...”

“Weaks Keys Remain 
Widespread...”

“Reaping and breaking 
keys at scale…”
@DEF CON 26

- Discovered widespread 
prime reuse in 
certificates

- Demonstrated flaws in 
pseudorandom number 
generation

- Greatly expanded scope 
of keys evaluated (81 
million)

- Detail a method of 
parallelizing modulus 
factorization

- Industrialized key 
acquisition and factoring 
on a massive scale from 
diverse sources 
(hundreds of millions)



GCD circa 300 BC (Euclid)

Prime products: (7 x 67) = 469; (11 x 61) = 671; (7 x 59) = 413; (17 x 53) = 901

from itertools import combinations

products = [469, 671, 413, 901]

def gcd(a, b):

  if a == 0:

      return b

  return gcd(b%a, a)

for pair in combinations(products, 2):

   print(f'gcd{pair} = {gcd(*pair)}')

gcd(469, 671) = 1

gcd(469, 413) = 7

gcd(469, 901) = 1

gcd(671, 413) = 1

gcd(671, 901) = 1

gcd(413, 901) = 1



Batch GCD circa 2004 AD (Bernstein)

Product Tree
Building:

child1 * child2 = parent

Remainder Tree
Decomposing: 

parent mod child2 = child

Remainder Tree Leaves
gcd( remainder/product, product ) = shared_factor



Product Tree

117103588987

314699 372113

901413671469

Prime products: (7 x 67) = 469; (11 x 61) = 671; (7 x 59) = 413; (17 x 53) = 901



Remainder Tree

117103588987

117103588987 mod (314699)2 = 
18068128386

117103588987 mod (372113)2 = 
117103588987

117103588987 mod 
(901)2 = 482936

117103588987 mod 
(413)2 = 124313

18068128386 mod 
(671)2 = 407297

18068128386 mod 
(469)2 = 91924

gcd(91924 / 469, 469)
= 7

gcd(407297 / 671, 671)
= 1

gcd(124313 / 413, 413)
= 7

gcd(482936 / 901, 901)
= 1

Prime products: (7 x 67) = 469; (11 x 61) = 671; (7 x 59) = 413; (17 x 53) = 901



Parallelization - 150 million 2048-bit moduli

Batch Count 1 5

Batch Size 150 million 30 million

Product Tree Size > 1 terabyte ~ 180 gigabytes

Tree Permutations 1 20



Tree permutation
Batch 1: (7 x 67) = 469; (11 x 61) = 671; (7 x 59) = 413; (17 x 53) = 901

Batch 2: (17 x 47) = 799; (23 x 43) = 989; (29 x 41) = 1189; (23 x 37) = 851

117103588987

314699 372113

901413671469

799566308029

790211 1011839

8511189989799

(117103588987 x 799566308029) = 93632084303281054076623

gcd(36113 / 
469, 469)

= 7

gcd(50996 / 
671, 671)

= 1

gcd(101185 / 
413, 413)

= 7

gcd(505461 / 
901, 901)

= 17

gcd(258077 / 
799, 799)

= 17

gcd(727904 / 
989, 989)

= 23

gcd(1223481 / 
1189, 1189)

= 1

gcd(665482 / 
851, 851)

= 23



Implementation tech stack

product

product product

productproductproduct

modulusmodulusmodulusmodulus modulus

S3

E
B
S

gob

goroutines/gmpLanguage golang

Arithmetic github.com/ncw/gmp

Storage S3 / EBS

Serialization gob

Concurrency goroutines

Orchestration bash







Old and busted certificates



At risk...

Industry Sectors Relative Likelihood of Vulnerability

Finance, Insurance, Legal 1x

Business Services, Engineering 3x

Government, Manufacturing, Hospitality 4x

Defense, Entertainment, Real Estate 6x

Utilities 10x

● Vendor auto-generated device certificates
● Old, unmanaged devices (i.e. shadow IT)



Shared primes are device-specific; disjoint



In conclusion...

● Vendors have largely addressed this vulnerability
○ doesn’t matter if old keys are still in use

● Isolated to self-signed/non-public CA signed certificates
● Massive scale of key acquisition is not necessary

○ limit batches to keys from specific devices

Reference Implementation 
(Python)

https://github.com/austinallshouse/defcon29
-key-factorization-reference

https://github.com/austinallshouse/defcon29-key-factorization-reference
https://github.com/austinallshouse/defcon29-key-factorization-reference

