
EXTENSION-LAND
EXPLOITS AND ROOTKITS IN

YOUR BROWSER EXTENSIONS
BARAK STERNBERG // DEFCON 2021

ABOUT ME

• Barak Sternberg (@livingbeef)

• Senior Security Researcher, Previously Author @ SentinelOne Labs.

• “Hacking smart-devices for fun and profit” // DC28 IoT Village.

• BSc & MSC in CS on algorithms (bioinfo) from TAU.

• Focus from vulnerability-research (IoT, embedded devices, Linux and web apps) to analyze malwares in
the wild.

• DJ & Party Lover (mixcloud.com/barak-sternberg)

http://mixcloud.com/barak-Sternberg

MOTIVATION

• More than 2 million extensions in webstores - attackers develop malicious ones & exploit.

• Why Extensions?

• More permissions (easy “uXSS“ to any origin)

• Controlling you entire browser & more

• Cross-platform – works on any desktop/OS

• Easier to develop – “JS-malware”

SYLLABUS

1. Intro to chrome-extensions

2. Extensions communication

3. Exploiting Zotero - “Jumping” from one
chrome-app to chrome-extension.

4. Exploiting Vimium – from PRNG’s to
uXSS.

5. Developing & Implanting an "Extension-
Rootkit“

6. Implanting a rootkit inside "good"
extensions

EXTENSIONS ANATOMY – THE BASICS
• Content-Scripts – Extensions’ “frontend”:

• Loaded inside “matching” sites (“sites extension works for”).

• Runs in a special VM context (its own vars and private-world).

• Accessible to site DOM.

• Background-Scripts – Extensions’ “Backend”:

• Run once in a special dedicated process.

• Access to more API’s.

• Persistent – non-site dependent.

• Extension-Dir - %LocalAppData%\Google\Chrome\User
Data\Default\Extensions\EXTENSION_ID\

• Extension-Manifest - Manifest.json (the manifest.xml of extensions)

• Extension-Signature - Gets verified & checked at run-time.

MANIFEST ANATOMY

1

2

3

COMMUNICATING IN EXTENSION-LAND

• For Example, let’s say we go to https://google.com

• For every extension the following interactions are created.

*Picture Credit for “Attacking Browser
Extensions” // Nicolas Golubovic

https://google.com/

CONTENT-SCRIPTS?

• Example: Ad-Blocker wants to remove ad-iframes from your page.

• How? It inspects the dom and remove them.

• Example code:

Let el = document.querySelector('div.slick-slide’);
document.body.removeChild(el);

BACKGROUND-SCRIPTS?

• Example: Ad-Blocker wants to block/redirect specific URL’s.

• How? It adds new “WebRequest-Hook” and filters requests.

• Example code:

function ad_listener() {
if (e.url === “https://BAD_SITE”) {

return {redirectUrl: “about:blank”};
}

}
browser.webRequest.onBeforeRequest.addListener(ad_listener);

WEBSITES <-> EXTENSION’ CONTENT-SCRIPTS:

1. Cross-Origin Messages:

• Content-Script: Defines “message” listeners

• Website: window.postMessage(“DATA”, “chrome-extension://…”);

2. DOM Changes & Events:

• DOM Events - onclick/onfocus/onload

• DOM Queries – search div with class=X

3. Extension Accessible URL’s:

• Manifest: “web_accessible_urls” (URL’s that can be iframed/opened by other sites)

• Website: <iframe src=“chrome-extension://EXTENSION_ID/iframe.html”/>

WEBSITES <-> EXTENSION’ BACKGROUND-SCRIPTS:

1. WebRequest Proxy:

• Background script: onBeforeRequest/onBeforeResponse…

2. Tabs/Cookies/Storage Inspections:

• Background-Script: chrome.tabs Hooks / cookies.get(…) / chrome.downloads /
chrome.storage.

3. Externally connected pages:

• Manifest: A URL “http://X.com” is defined as “externally_connectable”

• WebSite: sendMessage API available on http://X.com:
chrome.runtime.sendMessage(EXTENSION_ID, “DATA”)

EXTENSION <-> EXTENSION
PART 1

• All Website<->Extension comm is available.

• “Externally_Connectable” sites/extensions are allowed – sendMessage to background
available.

• TCP/UDP connections.

• Dependent on permissions.

Cross-extensions Injection – of background-messages:

• Extension 1 – injects code in HTTPS://SITE.EXTENSION2.COM :

• chrome.runtime.sendMessage(EXTENSION_2_ID, DATA, ..);

• Extension 2 – receives message, “thinks” its from its site!

https://mygoodsite.com/

ZOTERO EXTENSION

• Popular Academic extension used to organize citations/share research.

• Works with the “Zotero-Desktop” (saves data locally).

• Extension communicate with Zotero Desktop through TCP.

ZOTERO TRANSLATORS OR
“JUMPING” BETWEEN CHROME APPS/EXTENSIONS

• Zotero Translators –

• 500+ JS-Translators can get executed at every site.

• XSS/”Supply-chain” attacks - https://github.com/zotero/translators/

• Zotero’s Translators’ have auto-update system -

• Check http://127.0.0.1:23119/GetTranslators for updates (“Zotero-Desktop” first).

• Translators need to update? Get new JS code at
http://127.0.0.1:23119/getTranslatorsCode

• Localhost Listener?

• Download & Install my “Mappy” chrome-app! ☺

• “Mappy” – a Chrome-app with one permission - “chrome.tcpServer”.

https://github.com/zotero/translators/
http://127.0.0.1:23119/GetTranslators
http://127.0.0.1:23119/getTranslatorsCode

INJECTING JS IN ZOTERO CONTENT SCRIPTS:
SANDBOX EXECUTION?

Our
Translator
JS
Executed

INJECTING JS IN ZOTERO CONTENT SCRIPTS:
SANDBOX EXECUTION?

Our
Translator
JS
Executed

WITH CONTENT:
EXPLORING ATTACK SURFACE OF CONTENT-SCRIPTS

• Inside content-scripts:

• sendMessage/Connect

• Access to shared extension URL’s

• Storage/Configuration

• Inside Zotero Background Scripts:

• An interesting “eval” inside google docs integration

• Why and how it is done?

WITH CONTENT:
INJECTING JS INTO ZOTERO BACKGROUND CONTEXT

Prefs from
chrome.storage

Injecting
Scripts

WITH CONTENT:
INJECTING JS INTO ZOTERO BACKGROUND CONTEXT

Eval execution
In Background

WITH CONTENT:
INJECTING JS INTO ZOTERO BACKGROUND CONTEXT

• Config Injection?

• Chrome.storage.local is shared across content & background scripts!

• Inject new config from content-scripts.

• Trigger XSS inside background-scripts ☺

• Loaded every time background context re-starts.

“FULL-CHAINING ZOTERO”
DEMO VIDEO

VIMIUM’ING FOR FUN AND PROFIT

Vimium: Extension that convert your browser
into a “vim-like”

• Easy Browser Navigation without mouse.

• Keyboard shortcuts like VIM to
copy/search/navigate.

VIMIUM’ING FOR FUN AND PROFIT

Attack Scenario: You can make a user execute JS in your site (e.g: Ad, site, permission-less
third-party extension, etc).

Goal: Attack Vimium Extension.

Vimium Widgets:

• Vomnibar widget

• Helper widget

• Visual-mode widget

VIMIUM’ING FOR FUN AND PROFIT

2. Vomnibar iframe added

0. User Clicks “O” & Enter

1. Vimium Content-Script catch it & adds iframe

3. Authorize to iframe &
postMessage with
“vimiumSecret” token.

4. Vimium Content-Script & Vomnibar iframe communicate freely.

Website Context Content-Script Context

VIMIUM’ING FOR FUN AND PROFIT:
BREAKING THE VIMIUM SECRET #1

“VimiumSecret” Generation:

• Very “State-of-The-Art” Random Number Generator:

chrome.storage.local.set({vimiumSecret: Math.floor(Math.random() * 2000000000)});

• Math.random prediction works in same-process, the token is generated inside background
process 

• Bruteforce?

• Inject vomnibar iframe

• Try to connect?

VIMIUM’ING FOR FUN AND PROFIT:
BREAKING THE VIMIUM SECRET #2

• Bruteforce PostMessage’s 101:

• If success – Getting success response through “channel.port1”

• If fail – No response

WebWorkers stays-up: as long as chrome & website not closed actively -

• Works when the screen is closed.

• Works when tab/window is hidden.

let secret_to_bruteforce = 0xdeadbeef;
d = document.createElement('iframe');
d.src = 'chrome-extension://dbepggeogbaibhgnhhndojpepiihcmeb/pages/vomnibar.html';
document.body.appendChild(d);
d.contentWindow.postMessage(secret_to_bruteforce, '*', [channel.port2]);

VIMIUM’ING FOR FUN AND PROFIT:
VOMNIBAR COMMUNICATION

• What is the communication between “Vimium” Content-Script & Vomnibar iframe:

• Search for URL completions

• Activate search / jump to new URLs.

• Search for hints & Auto-completion.

• Run JS code.

VIMIUM’ING FOR FUN AND PROFIT:
VOMNIBAR COMMUNICATION

• What is the communication between “Vimium” Content-Script & Vomnibar iframe:

• Search for URL completions

• Activate search / jump to new URLs.

• Search for hints & Auto-completion.

• Run JS code.

VIMIUM’ING FOR FUN AND PROFIT:
VOMNIBAR COMMUNICATION

• What is the communication between “Vimium” Content-Script & Vomnibar iframe:

• Search for URL completions

• Activate search / jump to new URLs.

• Search for hints & Auto-completion.

• Run JS code.

VIMIUM’ING FOR FUN AND PROFIT:
VIMIUM COMMUNICATION #2

How Vomnibar handle javascript scheme?

• Tries to find auto-completion.

• Calls background-script method to find relevant auto-complete.

• Background-script “sendMessage” back to sender tab’s content-scripts.

Problema?

• How about placing another iframe inside our tab?

• Vimium Content-Scripts are loaded at any iframe on tab.

• No validation for targeted url/frameId – JS executed in all iframes!

Why? Read sendMessage reference:

“The runtime.onMessage event is fired in each content script running in the specified tab for the
current extension.”

VIMIUM’ING FOR FUN AND PROFIT:
CONTENT-SCRIPTS MESSAGING INJECTION

1. Content-Script send message from
a specific iframe.

2. Background-scripts send message
back to this tab.

3. Content-scripts inside
another iframe receives
message as well!

4. Content-scripts inside
the sender iframe also
receives a message!

Content-Script Context Background Context

VIMIUM’ING FOR FUN AND PROFIT:
UXSS DEMO

PERSISTENT JS INJECTION INTO ANY EXTENSION
OR GOTTA LOVE KUNPACKED

• Scenario: Post-Exploitation, Managed to run code over users’ device.

• Goal: install a persistent “rootkit”

• Extension unpacked-mode?

• Argument –load-extension=YOUR_EXTENSION_PATH

• Replace original extension – keeps its ID but still can change files/perms.

• Modifying “good” extension:

• Adding Any permissions as needed – cookies/tabs/sites and more.

• Full File-System Access (Read-Access)

• Hidden – All is done in chrome context

• Access to user cookies, mail, data, tabs, and much more in user context.

KUNPACKED DEMO TIME

KUNPACKED DEMO TIME

Replacing extension – How it looks like?

• Installed-Extensions List stays the same.

• Google WebStore “thinks“ it was installed correctly.

• The Icon stays almost the same (identifiable only in chrome://extensions tab).

INTRODUCING “MALTENSIONS”:
GENERATOR FOR JS-MAWARE INSIDE EXTENSIONS

Utility to generate and test malware-techniques inside your browser extensions.

Code: https://github.com/barakolo/Maltensions

Featured-Techniques:

• Inject & run JS in hidden context inside tabs.

• File-System Access /Access to sites/tabs/user-storage data.

• C&C communication.

• Output Formats:

• Unpacked extension mode

• JS to inject inside your favorite extension.

https://github.com/barakolo/Maltensions

CONCLUSIONS
1. Extension can be abused for “PE” –

• Extensions may abuse others to gain privs & stay hidden!

2. Detections will get harder –

• Injection of malicious scripts inside “good” extensions!

• Hidden techniques to exfiltrate data!

3. More Attack surfaces to explore:

• inner communication (cs <-> bg, bg <-> website …)

• Attack surface from one extension to another.

• storage mis-configs & injections.

4. Malicious extensions are here to stay!

THANK YOU!

CREDITS & EXTRA-MATERIALS

• p.4,12,33,41 - URL & picture credits - Generated & Downloaded from - https://imgflip.com

• p.3 – picture Credits go to Mozilla Foundation / Mozilla Firefox & Google, Google Chrome.

• p.19 – credit goes to https://memecreator.org.

• p.18,22,38 - https://www.pinterest.at/pin/410672059765026188/ / https://knowyourmeme.org /
https://memesdroid.org / https://tenor.com/view/hacker-gif-18087134

• p.28 - https://gfycat.com/gifs/tag/schrute

• p.12 - https://memegenerator.net/instance/57339379/spongebob-rainbow-communication

• Any other picture/extra-materials being used, besides the lecture content, are fully credited to their respective owners, if an
author/any owner wants to add copyrights/credits – please contact us and it can be added accordingly.

https://imgflip.com/
https://memecreator.org/
https://www.pinterest.at/pin/410672059765026188/
https://knowyourmeme.org/
https://memesdroid.org/
https://tenor.com/view/hacker-gif-18087134
https://gfycat.com/gifs/tag/schrute
https://memegenerator.net/instance/57339379/spongebob-rainbow-communication

