q.'

BISHOPFOX

YOU'RE DOING 10T RNG

DOING RNG

RANDOM NUMBERS

 Random numbers are very important to security
e Encryption keys
e Authentication tokens

e Business logic

e Computers are notoriously bad at making random numbers

e They inherently only do deterministic functions

* Makes entropy

e Hardware RNG

e Solves the problem... right?

Computer

Magic

DOING RNG

RANDOM NUMBERS

* PRNG (Pseudo RNG)
e Cryptographically Secure

e “Regular”

* “True” RNG (TRNG)
e Terrible name

* Hardware RNG

DOING RNG

HARDWARE RNG DESIGN

e Black boxes Apalo.g
e Very little information Method

e Except the STM32, great info!

* Two common implementations:
L Clock Timings Method
* Analog circuit

QO QO

* |ssues that come up

Clock A ‘ Clock B
* Running too fast /\
Measured Delta
e Accidental syncing
Normal

Distribution

DOING IOT RNG

HOW IOT DOES RNG

e Most new loT SoCs have a hardware RNG as of 2021
* An entire hardware peripheral devoted to doing just this one thing

e Surely it must be super secure

* No operating systems
* |oT devices run C/C++ on bare metal
o Call it like this:

* u8 hal_get_random_number(u32 *out_number);

e Two parts we care about here:
e Output variable (our random number)

e Return code

4 FREERTOS

36,696 code results Sort: Best match +

350 Movasomindustries/NFC_Reader

Core/Src/NFC_Reader/NFC_EncDec.c
for(j=0;j<16;j++)
{

HAL_RNG_GenerateRandomNumber(&hrng, &random_number);
host_buff[j*4] = (random_number=>24) & OxTT;

for(j=0;j<4;j++)

C C {
H E KS HAL_RNG_GenerateRandomNumber (&hrng, &random_number);
buffer[j*4 (random_number=>24) & OxfT;
buffer[(j*4)+1] (random_number>>16) & OxfT;
E R R R @ C Showing the top two matches Last indexed on May 7
c D ES % MEDIATEK 7697

3,216 code results Sort: Best match +

(TWO Examples) will127534/HITCON-Badge-2018
Software/HitconBadge2018/util.cpp

uint32 t max = pow(1@,digit);

hal_trng_get_generated_random_number(&number);
return number%max;

uint32 t randomUint32_t_generator(){
uint32_t number = ©;
hal trng get generated random number(&number);
return number;

@ C++ Showing the top two matches Last indexed on Apr 14

PETRO’S LAW FORESHADOWING

WHAT’S THE WORST THAT COULD HAPPEN?

* What happens when the RNG call fails?

Undefined
Behavior

FORESHADOWING
WHAT’S THE WORST THAT COULD HAPPEN?

e Typically one of:

e Partial entropy
e The number O u8 hal_get random_number(u32 *out_number);

Call #1 Call #2
it gtRondonbnbr) A8 10 4D FF AD B8 E3 E1
bl Pl hitve e PP 00 00 00 00 00 00 00 00 JIIZ

; 8A 46 4C CB 71 DE DC 59

https://imgs.xkcd.com/comics/random_number.png

IT CAN ALWAYS BE WORSE

IT’S WORSE

WHAT’S THE WORST THAT COULD HAPPEN?

e Uninitialized memory

u32 random_number;
hal get random_number(&random number);
// Sends over the network

Arbit bytes f RAM!
packet_send(random_number); rbitrary bytes from

10

THE IOT CRYPTO-POCALYPSE

REAL WORLD INSTANCES?

* RSA Certificate Vulnerability Factoring RSA Keys in the 10T Era
* https://www.keyfactor.com/resources/factoring-rsa-keys-in-the-iot-era/

“435,000 weak certificates — 1 in 172 of the certificate we found on the Internet — are vulnerable to attack.”

e Rationale:

The loT is Comprised Mostly of Lightweight Devices

There is nothing inherently insecure about how such a device would generate an RSA key, but [1] found that lightweight
devices are primarily at risk of this attack due to their low entropy states. Entropy in a device is required to prevent the
random number generation from being predictable. Researchers were able to find deterministic “random” output when
Gl el=YAL ghtweight loT devices are particularly prone to being in low entropy states due to the lack of input

data they might receive, as well as the challenge of incorporating hardware-based random number generation
. Keys generated by lightweight loT devices are therefore at risk of not being sufficiently random, increasing
the chance that two keys share a factor and allow the key to be broken. The authors of [1] found that most of the keys that
broken were from "low-resource” devices. Only two keys on two certificates were publicly trusted, and both of these
certificates had expired.

THE USER

if(HAL_ TRNG_STATUS OK !=
hal_trng_get generated random_number(&random_number)) {
//error handle

» RANDOM NUMBERS ARE CRITICAL

You can’t just “handle” the error and move forward without it

» YOU’RE GIVEN TWO OPTIONS:
Spin-loop (using 100% CPU) indefinitely

Quit out and kill the entire process

» BOTH ARE UNACCEPTABLE

Will lead to buggy, broken, and useless devices

> DEVELOPERS GO FOR OPTION THREE:
YOLO

12

RNG IN IOT IS FUNDAMENTALLY BROKEN

DOING CSPRNG

THE RIGHT WAY TO RNG

* Cryptographically Secure Pseudorandom Number Generator (CSPRNG)
* Never blocks execution
e API calls never fail

e Pools from many entropy sources

e Always returns crypto-quality results Entropy Sources

HW RNG

e This is how every major operating system works
* Linux, MacOS, Windows, BSD, etc...
Network
* This is how loT should work too

Entropy Pool

=i

A

14

WHY YOU DO NEED A
CSPRNG SUBSYSTEM

DOING IOT RNG WITHOUT KNOWING IT

USING HARDWARE RNG TO SEED AN INSECURE PRNG

* Nobody codes from scratch N G

* InloT, there’s lots of reference and example code
Contiki-NG: The OS for Next

* When the reference code has vulnerabilities it propagates out Generation loT Devices

https://contiki-ng.readthedocs.io/en/release-v4.6/ api/arch 2cpu 2nrf52840 2dev 2random 8c source.html

* Some loT devices / Operating Systems use the hardware

* But only to seed the insecure libc PRNG

k7657 1
Module :wrtnode’

Mediatek Linkit7697

https://github.com/MediaTek-Labs/Arduino-Add-On-for-LinkIt-
SDK/blob/53acd43fbee57b034141068969fa643465dfd743/project/linkit7697 hdk/apps/wifi_demo/src/sys_init.c#L198

https://github.com/MediaTek-Labs/Arduino-Add-On-for-LinkIt-SDK/blob/53acd43fbee57b034141068969fa643465dfd743/project/linkit7697_hdk/apps/wifi_demo/src/sys_init.c#L198
https://contiki-ng.readthedocs.io/en/release-v4.6/_api/arch_2cpu_2nrf52840_2dev_2random_8c_source.html

DOING IOT RNG WITHOUT KNOWING IT

USING HARDWARE RNG TO SEED AN INSECURE PRNG

NG

Contiki-NG: The OS for Next

TI11T Generation loT Devices
E E https://contiki-ng.readthedocs.io/en/release-v4.6/ api/arch 2cpu 2nrf52840 2dev 2random 8c source.html
: = libc rand()
TTIIT
HW RNG
Apps
* You're not really using the hardware Mediatek Linkit7697
o https://github.com/MediaTek-Labs/Arduino-Add-On-for-LinkIt-
¢ Even though you thlnk you are SDK/blob/53acd43fbee57b034141068969fa643465dfd743/project/linkit7697 hdk/apps/wifi_demo/src/sys_init.c#L198

https://github.com/MediaTek-Labs/Arduino-Add-On-for-LinkIt-SDK/blob/53acd43fbee57b034141068969fa643465dfd743/project/linkit7697_hdk/apps/wifi_demo/src/sys_init.c#L198
https://contiki-ng.readthedocs.io/en/release-v4.6/_api/arch_2cpu_2nrf52840_2dev_2random_8c_source.html

DEMO

SORRY, BUG BOUNTY HUNTERS

EXPLOITABILITY

e Often very context-dependent
* Not a simple CVE with exploit to apply
e But still very exploitable

e Just not canned

* Look at crypto keys, especially asymmetric keys
* Very long (2048 bits or more)

* Sensitive to low entropy

e Check out “The Mechanics of Compromising Low Entropy RSA Keys”
* At this DEF CON
e (we did not plan this)

19

EVEN WHEN IOT RNG FEELS RIGHT, YOU'RE STILL DOING IOT RNG

USAGE QUIRKS

* Never write your own code that interfaces with a hardware RNG

* |t's no different than crypto code
yp NXP Semiconductors UM1 091 2
* You WILL do it wrong Chapter 49: LPC546xx Random Number Generator (RNG)

49.6 Entropy of the generated random numbers

 Example: LPC 54628

The quality of randomness (entropy) of the numbers generated by the Random Number

e Warning on page 1,106 (of 1,152) Generator relies on the initial states of internal logic. If a 128 bit or 256 bit random number
is required, it is not recommended to concatenate several words of 32 bits to form the
 Throw out 32 results, then use again number. For example, if two 128 bit words are concatenated, the hardware RNG will not

provide 2 times 128 bits of entropy.
Table 1073 shows the entropy distribution that is supported.

Table 1073.Entropy distribution
Number of 128 bit words Entropy
1 128
2 256

To constitute one 128 bit number, a 32 bit random number is read, then the next 32
numbers are read but not used. The next 32 bit number is read and used and so on. Thus
32 32-bit random numbers are skipped between two 32-bit numbers that are used.

‘.|.' 20

THAT'S NOT SO RANDOM

STATISTICAL ANALYSIS

3 [LN 14
S P4 3 Pt Pa 6ND
AARAA LAY
A ———————

. 5 el & o SHLinkit™ 7697
e Mediatek 7697 e ~ By
o : i o Module ; wrtnode

CE nlls

Byte Counts : ‘ ‘ Al FCC 1D:2ALR4-WRT!

mc_‘w‘na 4 ‘-‘”.-‘_.... il b |
P17 P16 PLS P14 PLY p*?'p?lvu!'g.&"”“‘r.‘&.3‘.‘3
2 e 09 e e (AT AR E Y NN

Histogram of the frequency of each byte 0 to 255

That’s not very random...

NULL HYPOTHESIS

STATISTICAL ANALYSIS

* Nordic nrf52840

Repeating 0x000 pattern
Every 0x50 bytes

22

GB OF CONFIDENCE

STATISTICAL ANALYSIS

e STM32-L432KC

dieharder version 3.31.1 Copyright 2003 Robert G. Brown

rgb_minimum_distance| 0] 10000 | 1000|0.00000000| FAILED

23

CONCLUSIONS

YOU’RE DOING IOT RNG

CONCLUSIONS

™M

This affects the whole loT industry

* Not a single vendor or device

The loT needs a CSPRNG subsystem

e This can’t be fixed by changing documentation and blaming users

RNG code should be considered dangerous to write on your own

e Just like crypto code

Never use entropy directly from the hardware

* You don’t know how strong or weak it may be

25

WHAT YOU CAN DO ABOUT IT

CONCLUSIONS

™M

M

M

Device Owners

* Keep an eye out for updates

loT Device Developers

e Use one of the emerging loT Operating Systems

loT Device Manufacturers / loT OS Developers

* Implement CSPRNG subsystems, deprecate / disallow users from reading directly from the hardware

Pen Testers

* This will probably be a perennial finding for years to come

26

THANK q -
YOU

e Dan “AltF4” Petro

* Allan Cecil (dwangoAC)

