
YOU’RE DOING IOT RNG

• Random numbers are very important to security

• Encryption keys

• Authentication tokens

• Business logic

• Computers are notoriously bad at making random numbers

• They inherently only do deterministic functions

• Hardware RNG

• Makes entropy

• Solves the problem… right?

RANDOM NUMBERS
DOING RNG

2

Input
Computer

Magic
Output

• PRNG (Pseudo RNG)

• Cryptographically Secure

• “Regular”

RANDOM NUMBERS
DOING RNG

3

• “True” RNG (TRNG)

• Terrible name

• Hardware RNG

• Black boxes

• Very little information

• Except the STM32, great info!

• Two common implementations:

• Analog circuit

• Clock timings

• Issues that come up

• Running too fast

• Accidental syncing

HARDWARE RNG DESIGN
DOING RNG

4

Analog
Circuit

Method
Output

Clock A Clock B

Clock Timings Method

Measured Delta

Normal
Distribution

• Most new IoT SoCs have a hardware RNG as of 2021

• An entire hardware peripheral devoted to doing just this one thing

• Surely it must be super secure

• No operating systems

• IoT devices run C/C++ on bare metal

• Call it like this:

• u8 hal_get_random_number(u32 *out_number);

• Two parts we care about here:

• Output variable (our random number)

• Return code

HOW IOT DOES RNG
DOING IOT RNG

5

FREERTOS

MEDIATEK 7697

NOBODY

6

CHECKS
ERROR
CODES
(Two Examples)

• What happens when the RNG call fails?

WHAT’S THE WORST THAT COULD HAPPEN?
PETRO’S LAW FORESHADOWING

7

Undefined
Behavior

• Typically one of:

• Partial entropy

• The number 0

WHAT’S THE WORST THAT COULD HAPPEN?
FORESHADOWING

8

u8 hal_get_random_number(u32 *out_number);

Call #1 Call #2

Call #3 Call #4

https://imgs.xkcd.com/comics/random_number.png

IT CAN ALWAYS BE WORSE
PETRO’S LAW:

• Uninitialized memory

WHAT’S THE WORST THAT COULD HAPPEN?
IT’S WORSE

10

u32 random_number;

hal_get_random_number(&random_number);

// Sends over the network

packet_send(random_number);
Arbitrary bytes from RAM!

• RSA Certificate Vulnerability Factoring RSA Keys in the IoT Era

• https://www.keyfactor.com/resources/factoring-rsa-keys-in-the-iot-era/

“435,000 weak certificates – 1 in 172 of the certificate we found on the Internet – are vulnerable to attack.”

• Rationale:

REAL WORLD INSTANCES?
THE IOT CRYPTO-POCALYPSE

11

RANDOM NUMBERS ARE CRITICAL

You can’t just “handle” the error and move forward without it

YOU’RE GIVEN TWO OPTIONS:

Spin-loop (using 100% CPU) indefinitely

Quit out and kill the entire process

BOTH ARE UNACCEPTABLE

Will lead to buggy, broken, and useless devices

DEVELOPERS GO FOR OPTION THREE:

YOLO

DON’T BLAME
THE USER

12

if(HAL_TRNG_STATUS_OK !=
hal_trng_get_generated_random_number(&random_number)) {

//error handle

}

RNG IN IOT IS FUNDAMENTALLY BROKEN
IT IS NOT THE FAULT OF THE USER

BISHOPFOX PROPRIETARY | 2019 13

• Cryptographically Secure Pseudorandom Number Generator (CSPRNG)

• Never blocks execution

• API calls never fail

• Pools from many entropy sources

• Always returns crypto-quality results

• This is how every major operating system works

• Linux, MacOS, Windows, BSD, etc…

• This is how IoT should work too

THE RIGHT WAY TO RNG
DOING CSPRNG

14

HW RNG

Network

Int Timing

…

Entropy Pool API AppsEntropy Sources

C
S
P
R
N
G

WHY YOU REALLY DO NEED A
CSPRNG SUBSYSTEM

• Nobody codes from scratch

• In IoT, there’s lots of reference and example code

• When the reference code has vulnerabilities it propagates out

• Some IoT devices / Operating Systems use the hardware

• But only to seed the insecure libc PRNG

USING HARDWARE RNG TO SEED AN INSECURE PRNG
DOING IOT RNG WITHOUT KNOWING IT

16

Contiki-NG: The OS for Next
Generation IoT Devices

https://github.com/MediaTek-Labs/Arduino-Add-On-for-LinkIt-

SDK/blob/53acd43fbee57b034141068969fa643465dfd743/project/linkit7697_hdk/apps/wifi_demo/src/sys_init.c#L198

Mediatek Linkit7697

https://contiki-ng.readthedocs.io/en/release-v4.6/_api/arch_2cpu_2nrf52840_2dev_2random_8c_source.html

https://github.com/MediaTek-Labs/Arduino-Add-On-for-LinkIt-SDK/blob/53acd43fbee57b034141068969fa643465dfd743/project/linkit7697_hdk/apps/wifi_demo/src/sys_init.c#L198
https://contiki-ng.readthedocs.io/en/release-v4.6/_api/arch_2cpu_2nrf52840_2dev_2random_8c_source.html

• You’re not really using the hardware

• Even though you think you are

USING HARDWARE RNG TO SEED AN INSECURE PRNG
DOING IOT RNG WITHOUT KNOWING IT

17

Contiki-NG: The OS for Next
Generation IoT Devices

https://github.com/MediaTek-Labs/Arduino-Add-On-for-LinkIt-

SDK/blob/53acd43fbee57b034141068969fa643465dfd743/project/linkit7697_hdk/apps/wifi_demo/src/sys_init.c#L198

Mediatek Linkit7697

https://contiki-ng.readthedocs.io/en/release-v4.6/_api/arch_2cpu_2nrf52840_2dev_2random_8c_source.html

HW RNG

Seed libc rand()

Apps

https://github.com/MediaTek-Labs/Arduino-Add-On-for-LinkIt-SDK/blob/53acd43fbee57b034141068969fa643465dfd743/project/linkit7697_hdk/apps/wifi_demo/src/sys_init.c#L198
https://contiki-ng.readthedocs.io/en/release-v4.6/_api/arch_2cpu_2nrf52840_2dev_2random_8c_source.html

DEMO

• Often very context-dependent

• Not a simple CVE with exploit to apply

• But still very exploitable

• Just not canned

• Look at crypto keys, especially asymmetric keys

• Very long (2048 bits or more)

• Sensitive to low entropy

• Check out “The Mechanics of Compromising Low Entropy RSA Keys”

• At this DEF CON

• (we did not plan this)

EXPLOITABILITY
SORRY, BUG BOUNTY HUNTERS

19

• Never write your own code that interfaces with a hardware RNG

• It’s no different than crypto code

• You WILL do it wrong

• Example: LPC 54628

• Warning on page 1,106 (of 1,152)

• Throw out 32 results, then use again

USAGE QUIRKS
EVEN WHEN IOT RNG FEELS RIGHT, YOU’RE STILL DOING IOT RNG

20

• Mediatek 7697

STATISTICAL ANALYSIS
THAT'S NOT SO RANDOM

21

Histogram of the frequency of each byte 0 to 255
That’s not very random…

• Nordic nrf52840

STATISTICAL ANALYSIS
NULL HYPOTHESIS

22

Repeating 0x000 pattern
Every 0x50 bytes

• STM32-L432KC

STATISTICAL ANALYSIS
GB OF CONFIDENCE

23

#===#

dieharder version 3.31.1 Copyright 2003 Robert G. Brown

#===#

rng_name|filename rands/second|file_input_raw|STM32L432randData.bin|1.72e+07 |

#===#

test_name |ntup| tsamples |psamples| p-value |Assessment

#===#

rgb_minimum_distance| 0| 10000| 1000|0.00000000| FAILED

CONCLUSIONS

This affects the whole IoT industry

• Not a single vendor or device

The IoT needs a CSPRNG subsystem

• This can’t be fixed by changing documentation and blaming users

RNG code should be considered dangerous to write on your own

• Just like crypto code

Never use entropy directly from the hardware

• You don’t know how strong or weak it may be

CONCLUSIONS
YOU’RE DOING IOT RNG

25

Device Owners

• Keep an eye out for updates

IoT Device Developers

• Use one of the emerging IoT Operating Systems

IoT Device Manufacturers / IoT OS Developers

• Implement CSPRNG subsystems, deprecate / disallow users from reading directly from the hardware

Pen Testers

• This will probably be a perennial finding for years to come

CONCLUSIONS
WHAT YOU CAN DO ABOUT IT

26

THANK
YOU

• Dan “AltF4” Petro

• Allan Cecil (dwangoAC)

