
eBPF, I thought we were
friends !

Guillaume Fournier
Sylvain Afchain

August 2021

Defcon 2021

2

About us

Guillaume Fournier
Security Engineer

guillaume.fournier@datadoghq.com

Sylvain Afchain
Staff Engineer

sylvain.afchain@datadoghq.com

Sylvain Baubeau
Staff Engineer & Team lead

sylvain.baubeau@datadoghq.com

● Cloud Workload Security Team

● Leverage eBPF to detect attacks at runtime

● Integrated in the Datadog Agent

3

Agenda

● Introduction to eBPF

● Abusing eBPF to build a rootkit

○ Obfuscation

○ Persistent access

○ Command and Control

○ Data exfiltration

○ Network discovery

○ RASP evasion

● Detection and mitigation strategies

Defcon 2021

4

Introduction to eBPF

Defcon 2021

5
Introduction to eBPF

● Extended Berkeley Packet Filter

● Sandboxed programs in the Linux kernel

● Initially designed for fast packet processing

● Use cases:

○ Kernel performance tracing

○ Network security and observability

○ Runtime security

○ etc

What is eBPF ?

Falco Tracee

Defcon 2021

6
Introduction to eBPF
Step 1: Loading eBPF programs

Defcon 2021

7
Introduction to eBPF
Step 2: Attaching eBPF programs

● Defines how a program should be triggered

● ~ 30 program types (Kernel 5.13+)

● Depends on the program type

○ BPF_PROG_TYPE_KPROBE
○ BPF_PROG_TYPE_TRACEPOINT
○ BPF_PROG_TYPE_SCHED_CLS
○ BPF_PROG_TYPE_XDP
○ etc

● Programs of different types can share the same eBPF maps

“perf_event_open” syscall

Dedicated Netlink command

Defcon 2021

8
Introduction to eBPF
eBPF internals: the verifier

The eBPF verifier ensures that eBPF programs will finish and won’t crash.

❏ Directed Acyclic Graph

❏ No unchecked dereferences

❏ No unreachable code

❏ Limited stack size (512 bytes)

❏ Program size limit (1 million on 5.2+ kernels)

❏ Bounded loops (5.2+ kernels)

❏ … and cryptic output ...

Defcon 2021

9
Introduction to eBPF
eBPF internals: eBPF helpers

● Context helpers

○ bpf_get_current_task

○ bpf_get_current_pid_tgid

○ bpf_ktime_get_ns

○ etc

● Map helpers

○ bpf_map_lookup_elem

○ bpf_map_delete_elem

○ etc

● Program type specific helpers

○ bpf_xdp_adjust_tail

○ bpf_csum_diff

○ bpf_l3_csum_replace

○ etc

● Memory related helpers

○ bpf_probe_read

○ bpf_probe_write_user

○ etc

… ~160 helpers (kernel 5.13+)

Defcon 2021

10

Abusing eBPF to build a rootkit

Defcon 2021

11
Abusing eBPF to build a rootkit

● Cannot crash the host

● Minimal performance impact

● Fun technical challenge

● A growing number of vendors use eBPF

● eBPF “safety” should not blind Security Administrators

Why ?

Falco Tracee

Defcon 2021

12
Abusing eBPF to build a rootkit

● Trade off between latest BPF features / availability

=> Latest Ubuntu LTS, RHEL/CentOS

● KRSI and helpers such bpf_dpath may help

Goals

Defcon 2021

13
Abusing eBPF to build a rootkit

● Hide the rootkit process

○ eBPF programs are attached to a running process

Our userspace rootkit has to stay resident

○ Detection through syscalls that accept pids as arguments : kill, waitpid, pidfd_open, ...

● Hide our BPF components:

○ programs

○ maps

Obfuscation

Defcon 2021

14
Abusing eBPF to build a rootkit

Demo

Program obfuscation

Defcon 2021

15
Abusing eBPF to build a rootkit

● bpf_probe_write_user

○ Corrupt syscall output

○ Minor and major page faults

● bpf_override_return

○ Block syscall

○ Alter syscall return value

■ But syscall was really executed by the kernel !

Program obfuscation - Techniques

Defcon 2021

16
Abusing eBPF to build a rootkit
File obfuscation - stat /proc/<rootkit-pid>/cmdline (1)

Defcon 2021

17
Abusing eBPF to build a rootkit
Program obfuscation - stat /proc/<rootkit-pid>/exe (2)

Defcon 2021

18
Abusing eBPF to build a rootkit

● Block signals

○ Hook on the kill syscall entry

○ Override the return value with ESRCH

● Block kernel modules

Program obfuscation

Defcon 2021

19
Abusing eBPF to build a rootkit

Demo

BPF program obfuscation

Defcon 2021

20
Abusing eBPF to build a rootkit
BPF program obfuscation

● bpf syscall

○ Programs:

■ BPF_PROG_GET_NEXT_ID

■ BPF_PROG_GET_FD_BY_ID

○ Maps:

■ BPF_MAP_GET_NEXT_ID

■ BPF_MAP_GET_FD_BY_ID

○ Hook on new prog / map to get the allocated ID

● Hook on read syscall and override the content

Defcon 2021

21
Abusing eBPF to build a rootkit
BPF program obfuscation

● bpf_probe_write_user

○ message in kernel ring buffer

“...is installing a program with bpf_probe_write_user helper that may corrupt user memory!”

○ dmesg

○ journalctl -f

○ syscall syslog

Defcon 2021

22
Abusing eBPF to build a rootkit

Demo

BPF program obfuscation

Defcon 2021

23
Abusing eBPF to build a rootkit
BPF program obfuscation

Defcon 2021

24
Abusing eBPF to build a rootkit
Persistent access

● Self copy

○ Generate random name

○ Copy into /etc/rcS.d

○ Hide file

● Override content of sensitive files

○ SSH authorized_keys

○ passwd

○ crontab

Defcon 2021

25
Abusing eBPF to build a rootkit
Persistent access - ssh/authorized_keys

● Append our ssh keys to authorized_keys files

● Only for sshd

● Available through the command and control...

Defcon 2021

26
Abusing eBPF to build a rootkit

Demo

Persistent access - ssh/authorized_keys

Defcon 2021

Defcon 2021

27
Abusing eBPF to build a rootkit
Persistent access - uprobe

● eBPF on exported user space functions

● Alter a userspace daemon to introduce a backdoor

● Compared to ptrace

○ Works on all instances of the program

○ Safer

○ Easier to write

Defcon 2021

28
Abusing eBPF to build a rootkit

Demo

Persistent access - postgresql

Defcon 2021

29
Abusing eBPF to build a rootkit
Persistent access - postgresql

int md5_crypt_verify(const char *role, const char *shadow_pass, const char *client_pass,

 const char *md5_salt, int md5_salt_len, char **logdetail)

● md5_salt challenge sent when user connects

shadow_pass MD5(role + password) stored in database

client_pass MD5(shadow_pass + md5_salt) sent by the client

● new_md5_hash = bpf_map_lookup_elem(&postgres_roles, &creds.role);

if (new_md5_hash == NULL) return 0;

// copy db password onto the user input

bpf_probe_write_user(shadow_pass, &new_md5_hash->md5, MD5_LEN);

30
Abusing eBPF to build a rootkit
Command and control: introduction

● Requirements

○ Send commands to the rootkit
○ Exfiltrate data
○ Get remote access to infected hosts

● eBPF related challenges

○ Can’t initiate a connection
○ Can’t open a port

● … but we can hijack an existing connection !

Defcon 2021

31
Abusing eBPF to build a rootkit
Command and control: introduction

● Setup

○ Simple webapp with AWS Classic Load Balancer
○ TLS resolution at the Load Balancer level

● Goal: Implement C&C by hijacking the network traffic to the webapp

Defcon 2021

32
Abusing eBPF to build a rootkit
Command and control: choosing a program type

BPF_PROG_TYPE_XDP BPF_PROG_TYPE_SCHED_CLS

❏ Deep Packet Inspection

❏ Ingress only

❏ Can be offloaded to the NIC / driver

❏ Can drop, allow, modify and retransmit

packets

❏ Usually used for DDOS mitigation

❏ Deep Packet Inspection

❏ Egress and Ingress

❏ Attached to a network interface

❏ Can drop, allow and modify packets

❏ Often used to monitor & secure network

access at the container / pod level on k8s

Defcon 2021

33
Abusing eBPF to build a rootkit
Command and control: choosing a program type

BPF_PROG_TYPE_XDP BPF_PROG_TYPE_SCHED_CLS

❏ Deep Packet Inspection

❏ Ingress only

❏ Can be offloaded to the NIC / driver

❏ Can drop, allow, modify and retransmit

packets

❏ Usually used for DDOS mitigation

❏ Deep Packet Inspection

❏ Egress and Ingress

❏ Attached to a network interface

❏ Can drop, allow and modify packets

❏ Usually used to monitor & secure network

access at the container / pod level on k8s

Network packets can be hidden from the
Kernel entirely !

Defcon 2021

34
Abusing eBPF to build a rootkit
Command and control: choosing a program type

BPF_PROG_TYPE_XDP BPF_PROG_TYPE_SCHED_CLS

❏ Deep Packet Inspection

❏ Ingress only

❏ Can be offloaded to the NIC / driver

❏ Can drop, allow, modify and retransmit

packets

❏ Usually used for DDOS mitigation

❏ Deep Packet Inspection

❏ Egress and Ingress

❏ Attached to a network interface

❏ Can drop, allow and modify packets

❏ Usually used to monitor & secure network

access at the container / pod level on k8s

Network packets can be hidden from the
Kernel entirely !

Data can be exfiltrated with an eBPF TC
classifier !

Defcon 2021

35
Abusing eBPF to build a rootkit
Command and control: hijacking HTTP requests

Defcon 2021

36
Abusing eBPF to build a rootkit

Demo
Sending Postgres credentials over C&C

Command and control: hijacking HTTP requests

Defcon 2021

37
Abusing eBPF to build a rootkit
Data exfiltration

Defcon 2021

38
Abusing eBPF to build a rootkit
Data exfiltration

● Multiple program types can share data through eBPF maps
● Anything accessible to an eBPF program can be exfiltrated:

○ File content
○ Environment variables
○ Database dumps
○ In-memory data
○ etc

Defcon 2021

39
Abusing eBPF to build a rootkit

Demo
Exfiltration over HTTPS

Postgres credentials & /etc/passwd

Data exfiltration

Defcon 2021

40
Abusing eBPF to build a rootkit
DNS spoofing

The same technique applies to any unencrypted
network protocol ...

Defcon 2021

41
Abusing eBPF to build a rootkit
Network discovery

● Discover machines and services on the network
● 2 methods
● Activated through Command and Control

Defcon 2021Passive network discoveryActive network discovery

42
Abusing eBPF to build a rootkit
Network discovery: passive method

Defcon 2021

● Listen for egress and ingress traffic
● TC & XDP
● Discover existing network connections
● TCP & UDP traffic (IPv4)
● No traffic is generated

● Doesn’t work for services which the host
is not communicating with

Passive network discovery

43
Abusing eBPF to build a rootkit
Network discovery: active method

Defcon 2021

● ARP scanner & SYN scanner
● XDP only
● Discover hosts and services which the host

doesn’t necessarily talk to

⇒ XDP can’t generate packets, so we had to figure
out how to make hundreds of SYN requests ...

Active network discovery

44
Abusing eBPF to build a rootkit
Network discovery: active method

Defcon 2021

ARP request

SYN scan

Client answer

45
Abusing eBPF to build a rootkit
Network discovery: active method

Demo
Active network discovery

Defcon 2021

46
Abusing eBPF to build a rootkit
RASP evasion

● Runtime Application Self-Protection (RASP)

● Advanced input monitoring tool

● Textbook example: SQL injection

○ Hook HTTP server library functions
○ Hook SQL library functions
○ Check if user controlled parameters are properly sanitized before executing a query

Defcon 2021

A RASP relies on the assumption that the application runtime has not been compromised

47
Abusing eBPF to build a rootkit
RASP evasion: SQL injection with a golang application

Defcon 2021

48
Abusing eBPF to build a rootkit
RASP evasion: SQL injection with a golang application

Defcon 2021

49
Abusing eBPF to build a rootkit
RASP evasion: SQL injection with a golang application

Demo
Bypass SQL injection protection

Defcon 2021

50

Detection and mitigation

Defcon 2021

51
Detection and mitigation
Step 1: assessing an eBPF based third party vendor

● Audit & assessment

○ Ask to see the code ! (GPL)

○ Look for sensitive eBPF patterns:

■ program types

■ eBPF helpers

■ cross program types communication

● Useful tool: “ebpfkit-monitor”

○ parses ELF files and extract eBPF related information

○ https://github.com/Gui774ume/ebpfkit-monitor

Defcon 2021

52
Detection and mitigation
Step 1: assessing an eBPF based third party vendor

“ebpfkit-monitor” can list eBPF programs with sensitive eBPF helpers
Defcon 2021

53
Detection and mitigation
Step 1: assessing an eBPF based third party vendor

“ebpfkit-monitor” shows suspicious cross program types communications
Defcon 2021

54
Detection and mitigation
Step 2: runtime mitigation

● Monitor accesses to the “bpf” syscall

○ Keep an audit trail

○ “ebpfkit-monitor” can help !

● Protect accesses to the “bpf” syscall:

○ Block bpf syscalls from unknown processes

○ Reject programs with sensitive eBPF helpers or patterns

○ Sign your eBPF programs (https://lwn.net/Articles/853489)

○ “ebpfkit-monitor” can help !

● Prevent unencrypted network communications even within your internal network

Defcon 2021

55
Detection and mitigation
Step 3: Detection & Investigation

● It is technically possible to write a perfect eBPF rootkit *

● But:

○ look for actions that a rootkit would have to block / lie about to protect itself

○ (if you can) load a kernel module to list eBPF programs

○ (if you can) load eBPF programs to detect abnormal kernel behaviors

○ monitor network traffic anomalies at the infrastructure level

● Disclaimer: our rootkit is far from perfect !

* with enough time, motivation, insanity, and absolute hatred for life. Defcon 2021

Thanks !
“ebpfkit” source code: https://github.com/Gui774ume/ebpfkit

“ebpfkit-monitor” source code: https://github.com/Gui774ume/ebpfkit-monitor

