
© NCC Group 2021. All rights reserved

Instrument and Find Out
Writing Parasitic Tracers for High(-Level) Languages

Jeff Dileo

@chaosdatumz

DEF CON 29



call_usermodehelper("/bin/sh",(char*[]){"/bin/sh","-c","whoami",NULL},NULL,5)

© NCC Group 2021. All rights reserved

• @chaosdatumz

• Agent of chaos

• Unix aficionado

• Technical Director / Research Director @ NCC Group

• I like to do terrible things to/with/in:

• programs

• languages

• runtimes

• memory

• kernels

• packets

• bytes

• ...



NOTICE
By viewing this presentation you agree to indemnify and hold harmless the presenter in

the event that you decide to take any of his advice and find yourself unable to sleep at

4am in the morning due to “language demons.”



Outline

© NCC Group 2021. All rights reserved

• Background

• Parasitic Tracers

• Designing Parasitic Tracers (for high-level languages)

• Case Study: Ruby

• Conclusion



Background — Tracing and Me

© NCC Group 2021. All rights reserved

• I’ve done a lot of work with dynamic instrumentation and tracing

• Java Bytecode

• Android (Frida, Xposed)

• Linux (eBPF, Frida)

• Ruby (Frida)

• Generally, to aid in reversing (e.g. dump process state) or to util-ize existing things

• ”Dynamic Instrumentation”

• Function hooking

• Instruction instrumentation (assembly, bytecode, etc.)

• ”Dynamic Tracing”

• Dynamically enabling/disabling existing logging functionality

• Dynamically adding enhanced logging functionality that wasn’t there before



Background — Tracing and Me

© NCC Group 2021. All rights reserved

• I’ve done a lot of work with dynamic instrumentation and tracing

• Java Bytecode

• Android (Frida, Xposed)

• Linux (eBPF, Frida)

• Ruby (Frida)

• Generally, to aid in reversing (e.g. dump process state) or to util-ize existing things

• ”Dynamic Instrumentation”

• Function hooking

• Instruction instrumentation (assembly, bytecode, etc.)

• ”Dynamic Tracing”

• Dynamically enabling/disabling existing logging functionality

• Dynamically adding enhanced logging functionality that wasn’t there before



Background — Tracing and Me

© NCC Group 2021. All rights reserved

• I’ve done a lot of work with dynamic instrumentation and tracing

• Java Bytecode

• Android (Frida, Xposed)

• Linux (eBPF, Frida)

• Ruby (Frida)

• Generally, to aid in reversing (e.g. dump process state) or to util-ize existing things

• ”Dynamic Instrumentation”

• Function hooking

• Instruction instrumentation (assembly, bytecode, etc.)

• ”Dynamic Tracing”

• Dynamically enabling/disabling existing logging functionality

• Dynamically adding enhanced logging functionality that wasn’t there before



Background — Ruby and Me

© NCC Group 2021. All rights reserved

1 https://research.nccgroup.com/2020/12/15/an-adventure

-in-contingency-debugging-ruby-ioread-iowrite-considered-harmful/

• Ruby bytecode transformation

• I was doing blackbox testing of a Rails web app

• That loaded from pre-compiled Ruby bytecode, which I was able to extract

• Unfortunately, it used a current-ish Ruby and the bytecode format was

incompatible with exiting Ruby bytecode decompilers.

• So I diff’d the instruction listings between versions and de-optimized the new

opcodes into equivalent versions supported by the decompiler

• Socket Adventure 2 Battle1

• A colleague and I were looking into Ruby’s dRuby protocol

• We were writing a scanner for it in Ruby

• ”when I run it in a Docker container it hangs on read ...in a VM it works”

• I then spent an obscene amount of time delving into Ruby’s internals to

ultimately discover that you should never use IO#read on a Socket object

• This led me to start writing a (parasitic) low-level tracer for Ruby

https://research.nccgroup.com/2020/12/15/an-adventure-in-contingency-debugging-ruby-ioread-iowrite-considered-harmful/
https://research.nccgroup.com/2020/12/15/an-adventure-in-contingency-debugging-ruby-ioread-iowrite-considered-harmful/


Background — Ruby and Me

© NCC Group 2021. All rights reserved

1 https://research.nccgroup.com/2020/12/15/an-adventure

-in-contingency-debugging-ruby-ioread-iowrite-considered-harmful/

• Ruby bytecode transformation

• I was doing blackbox testing of a Rails web app

• That loaded from pre-compiled Ruby bytecode, which I was able to extract

• Unfortunately, it used a current-ish Ruby and the bytecode format was

incompatible with exiting Ruby bytecode decompilers.

• So I diff’d the instruction listings between versions and de-optimized the new

opcodes into equivalent versions supported by the decompiler

• Socket Adventure 2 Battle1

• A colleague and I were looking into Ruby’s dRuby protocol

• We were writing a scanner for it in Ruby

• ”when I run it in a Docker container it hangs on read ...in a VM it works”

• I then spent an obscene amount of time delving into Ruby’s internals to

ultimately discover that you should never use IO#read on a Socket object

• This led me to start writing a (parasitic) low-level tracer for Ruby

https://research.nccgroup.com/2020/12/15/an-adventure-in-contingency-debugging-ruby-ioread-iowrite-considered-harmful/
https://research.nccgroup.com/2020/12/15/an-adventure-in-contingency-debugging-ruby-ioread-iowrite-considered-harmful/


Background — Ruby and Me

© NCC Group 2021. All rights reserved

1 https://research.nccgroup.com/2020/12/15/an-adventure

-in-contingency-debugging-ruby-ioread-iowrite-considered-harmful/

• Ruby bytecode transformation

• I was doing blackbox testing of a Rails web app

• That loaded from pre-compiled Ruby bytecode, which I was able to extract

• Unfortunately, it used a current-ish Ruby and the bytecode format was

incompatible with exiting Ruby bytecode decompilers.

• So I diff’d the instruction listings between versions and de-optimized the new

opcodes into equivalent versions supported by the decompiler

• Socket Adventure 2 Battle1

• A colleague and I were looking into Ruby’s dRuby protocol

• We were writing a scanner for it in Ruby

• ”when I run it in a Docker container it hangs on read ...in a VM it works”

• I then spent an obscene amount of time delving into Ruby’s internals to

ultimately discover that you should never use IO#read on a Socket object

• This led me to start writing a (parasitic) low-level tracer for Ruby

https://research.nccgroup.com/2020/12/15/an-adventure-in-contingency-debugging-ruby-ioread-iowrite-considered-harmful/
https://research.nccgroup.com/2020/12/15/an-adventure-in-contingency-debugging-ruby-ioread-iowrite-considered-harmful/


Parasitic Tracers — What?

© NCC Group 2021. All rights reserved

• A ”tracer” is basically an enhanced logger that dumps everything you might want

about program state

• A ”parasite” is a highly-specialized (unwanted) organism that symbiotically lives on

or inside another organism that it is completely adapted to

• So a ”parasitic tracer” is tracer specially adapted to a target process that it attaches

to and injects itself into and makes use of internal functionality that is not intended

to be exposed

• The tracing is the ”goal” (one of many); the parasitism is an implementation detail

• Have you ever injected code via LD_PRELOAD



Parasitic Tracers — What?

© NCC Group 2021. All rights reserved

• A ”tracer” is basically an enhanced logger that dumps everything you might want

about program state

• A ”parasite” is a highly-specialized (unwanted) organism that symbiotically lives on

or inside another organism that it is completely adapted to

• So a ”parasitic tracer” is tracer specially adapted to a target process that it attaches

to and injects itself into and makes use of internal functionality that is not intended

to be exposed

• The tracing is the ”goal” (one of many); the parasitism is an implementation detail

• Have you ever injected code via LD_PRELOAD



Parasitic Tracers — What?

© NCC Group 2021. All rights reserved

• A ”tracer” is basically an enhanced logger that dumps everything you might want

about program state

• A ”parasite” is a highly-specialized (unwanted) organism that symbiotically lives on

or inside another organism that it is completely adapted to

• So a ”parasitic tracer” is tracer specially adapted to a target process that it attaches

to and injects itself into and makes use of internal functionality that is not intended

to be exposed

• The tracing is the ”goal” (one of many); the parasitism is an implementation detail

• Have you ever injected code via LD_PRELOAD



Parasitic Tracers — What?

© NCC Group 2021. All rights reserved

• A ”tracer” is basically an enhanced logger that dumps everything you might want

about program state

• A ”parasite” is a highly-specialized (unwanted) organism that symbiotically lives on

or inside another organism that it is completely adapted to

• So a ”parasitic tracer” is tracer specially adapted to a target process that it attaches

to and injects itself into and makes use of internal functionality that is not intended

to be exposed

• The tracing is the ”goal” (one of many); the parasitism is an implementation detail

• Have you ever injected code via LD_PRELOAD



Parasitic Tracers — Why?

© NCC Group 2021. All rights reserved

• Bridging the gap between high-level abstractions and low-level implementations

aids:

• Reversing

• Performance analysis

• Debugging

• To prototype tracing infrastructure that could be implemented within the target itself



Parasitic Tracers — Examples

© NCC Group 2021. All rights reserved

• Frida’s Java bridge is arguably two parasitic tracers

• One for Android

• One for the JVM (HotSpot/JVMTI)

• Both provide anchor points for tapping functionality with hooks targeting

higher-level Java operations in ways that are not intended by either platform

• However, a vanilla Java agent (java.lang.instrument/JVMTI) would not qualify as

those are public instrumentation APIs

• If you’re just crawling around the memory of a process or intercepting its syscalls,

you may have a tracer

• But if you’re hooking functions inside the process, or, more importantly, calling

functions from inside the process, then you probably are doing some parasitic

tracing



Designing Parasitic Tracers
(for high-level languages)



Designing Parasitic Tracers — Prerequisites

© NCC Group 2021. All rights reserved

• Some means to hook code or instrument it

• Ideally, one that supports dynamically adding/removing such

hooks/instrumentation at runtime

• E.g. with a debugger or an instrumentation toolkit like Frida

• A way to invoke existing functionality

• Ideally with ”stable” native APIs

1. Public APIs (preferred)

2. Internal APIs with symbols

3. Internal APIs without symbols for which handles can be reliably obtained

4. Reimplementation

5. ...

∞. Gadgets (last resort)



Designing Parasitic Tracers— Concepts— Reconnaissance

© NCC Group 2021. All rights reserved

• Reverse engineering

• To understand the internals

• You may even have source, but you need to understand what happens at the

native level (or the level your modifications run at/apply to)

• Optimizations can elide out functions or even result uncleared registers

being passed to calls since they are never (normally) used

• Often, programming language runtimes will be written in very

implementation-defined C or C++

• Identifying relevant target functionality

• To extract information from

• To wrap with hooks

• To get whatever you might need by snatching it out of function calls

• Sometimes it makes sense to hook lower-level/smaller operations to spy

on or mess with higher-level ones that they form or themselves invoke



Designing Parasitic Tracers— Concepts— Instrumentation

© NCC Group 2021. All rights reserved

• Hook the relevant functionality

• Extract program state at runtime

• Invoke internal operations as needed to obtain more information or configure

program state



Designing Parasitic Tracers—Concepts— Puppeteering

© NCC Group 2021. All rights reserved

• Take control from your hooks or injected threads/tasks/etc.

• Build interfaces to invoke functionality and translate inputs and outputs between

the target and the instrumentation

• Enhance those interfaces to enable first-class interop



Designing Parasitic Tracers—Concepts—Composition

© NCC Group 2021. All rights reserved

• Start small, build big

• You’re essentially starting with a fully functioning program

• So focus on making your footholds strong to build a foundation for deeper

hooking/instrumentation/analysis/etc.

• This is more or less how Frida itself is designed

• The Java instrumentation APIs are implemented using lower-level hooks into

the inner machinery of the target

• Layer abstractions such that lower-level version-specific logic can be swapped in or

out as needed to support multiple versions of the target

• Two primary methods, per-version implementations and version-based

switches/ifdefs



Let’s talk about Ruby



Ruby—A high-level language for the high-minded

• Ruby is an ”interpreted, high-level, general-purpose,” dynamically typed

programming language that ”supports multiple programming paradigms, including

procedural, object-oriented, and functional programming”

• tl;dr Ruby is a scripting language

• It’s notable features are:

• Everything is an object

• Everything else is a method, which are also objects

• Optional parentheses, so every ”field access” is a method call

• Internally, methods get called by sending messages, but you can

__send__ messages too

• Method swizzling

• Object-centric programming

• Duck hunt typing

• Perl-inspired super globals

• Having at least 3 ways to do everything



Ruby—A high-level language for the high-minded

• Ruby is an ”interpreted, high-level, general-purpose,” dynamically typed

programming language that ”supports multiple programming paradigms, including

procedural, object-oriented, and functional programming”

• tl;dr Ruby is a scripting language

• It’s notable features are:

• Everything is an object

• Everything else is a method, which are also objects

• Optional parentheses, so every ”field access” is a method call

• Internally, methods get called by sending messages, but you can

__send__ messages too

• Method swizzling

• Object-centric programming

• Duck hunt typing

• Perl-inspired super globals

• Having at least 3 ways to do everything



Ruby — For want of a tracer

© NCC Group 2021. All rights reserved

• Ruby has 3 kitchen sinks

• But it doesn’t have good low-level introspection/tracing capabilities

• Its TracePoint API leaves much to be desired

• It can’t intercept Ruby method arguments or native function parameters

• It can’t provide information on bytecode execution

• It provides limited information on Ruby-to-native transitions

• This potentially stems from Ruby’s nature as a multi-implementation language.

• The reference implementation is ”CRuby” (AKA YARV, formerly MRI)

• The current CRuby implements a custom bytecode virtual machine, but this is

an implementation detail

• In essence, Ruby (language) on CRuby (interpreter) is similar to Java on the

JVM, except that it has none of the analysis and tooling support around its

bytecode ISA, which changes slightly from version to version



ruby-trace — A tracer, for Ruby

© NCC Group 2021. All rights reserved

• A Frida-based CLI tool for instrumenting and dumping execution information from

Ruby programs running on Linux

• Node.js CLI interface

• frida-compile (webpack for Frida) used to support modular design of injected

agent JS payload



ruby-trace — Features

© NCC Group 2021. All rights reserved

• Hooks the following (among other things):

• All Ruby VM opcode implementations through the opcode instruction table

• The common build pattern on Linux is a goto-based state machine, where

each label is stored in an array (insns_address_table)

• Ruby method call and Ruby’s dynamic C function execution mechanisms

• send, opt_send_without_block, invokesuper opcodes
• rb_vm_call_cfunc

• vm_call_cfunc(_with_frame)

• rb_vm_call0

• vm_search_method_fastpath

• vm_sendish

• rb_iterate0

• rb_define_method

• rb_define_module_function

• Ruby exception handling mechanisms

• throw opcode

• rb_throw_obj

• related methods and native implementations



ruby-trace — Features

© NCC Group 2021. All rights reserved

• Extracts (among other things):

• Opcode arguments, both ”register”-based and ”stack”-based

• Will also inspect most values, falling back to several alternate

stringification mechanisms when it is unsafe to invoke method sending or

even directly inspect an object

• Will disassemble bytecode (”ISEQ”/instruction sequence) objects, like

methods and blocks

• Opcode and native function return values

• Relevant arguments

• Method call metadata

• e.g. branches, other control flow changes

• Bytecode metadata

• To make certain runtime values human-readable



ruby-trace — Features

© NCC Group 2021. All rights reserved

• Ruby 2.6-3.0+ support

• Uses generic shared implementations of hooks with version-specific overrides

• Reuses C structs from each supported version of Ruby to generically extract

struct fields from the correct offsets



ruby-trace — Other coolTM things

© NCC Group 2021. All rights reserved

• Supports using the TracePoint API as an execution context to enable tracing. This

enables fine-grained tracing of Ruby execution.

• Extensive series of test cases mapping to bytecode sequences

• Arguably covers more than Ruby’s own internal VM opcode test suite

• Implements support for dead Ruby opcodes that can’t even be compiled

• i.e. reput, a cursed instruction dating back to a 1995 paper on ”Prolog, Forth

and APL”

• ruby-trace is essentially a CRuby bytecode interpreter as it re-implements a large

portion of the bytecode handler logic itself to determine how a given opcode will

execute



© NCC Group 2021. All rights reserved

DEMOs

DEMOs


ruby-trace — Future Work

© NCC Group 2021. All rights reserved

• Support for Ractors (Ruby’s new actor model concurrency feature) is upcoming

• Keeping ruby-trace up-to-date with new Ruby versions as they come out (or as I

need to support them)



ruby-trace — Where?

© NCC Group 2021. All rights reserved

https://github.com/nccgroup/ruby-trace
(shortly after this presentation airs)

https://github.com/nccgroup/ruby-trace


Conclusion

© NCC Group 2021. All rights reserved

• This has been a pretty fun exercise in reversing

• It was also maddening between Ruby’s more ”magical” opcodes and darker

facets

• I think it’s pretty reasonable to apply these techniques to getting deeper insights

into code running on higher level language interpreters/runtimes

• There are a lot of applicable languages lacking good tooling (other than Ruby):

• Python

• Node/V8

• Golang

• Haskell

• More people should try building these things



Conclusion—Go Forth andWrite Parasitic Tracers

© NCC Group 2021. All rights reserved

You know, if one person, just one person does it, they may think he’s really sick.

And three people do it, three, can you imagine three people writing parasitic tracers?

They may think it’s an organization.

And can you, can you imagine fifty people, I said fifty people, writing these tracers?

Friends, they may think it’s a movement.

~Arlo Guthrie



Greetz

© NCC Group 2021. All rights reserved

• Addison Amiri



© NCC Group 2021. All rights reserved

You can’t hide secrets

from the future using math



© NCC Group 2021. All rights reserved

Questions?
jeff.dileo@nccgroup.com

@ChaosDatumz



© NCC Group 2021. All rights reserved

Instrument and Find Out
Writing Parasitic Tracers for High(-Level) Languages

Jeff Dileo

@chaosdatumz

DEF CON 29


	Title
	Introduction
	Conclusion
	Questions
	Title

