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Abstract

Over the past few years, we have seen some novel presentations re-introducing the concept of
HTTP request smuggling, to reliably exploit complex landscapes and systems.
With advanced techniques, attackers were able to bypass restrictions and breach the security of
critical web applications.
But, is everything said on HTTP Desync Attacks, or is it just the tip of the iceberg?

This paper will take a new approach, focusing on the HTTP Response Desynchronization, a
rather unexplored attack vector.
By smuggling special requests it is possible to control the response queue, allowing an attacker
to inject crafted messages in the HTTP pipeline. This can be leveraged to hijack victim’s
sessions from login requests, flood the TCP connection for a complete Denial of Service,  and
concatenate responses using a vulnerability called HTTP method confusion.

This research presents a novel technique, known as Response Scripting, to create malicious
outbound messages using static responses as the building blocks.
Finally, by splitting reflected content, this paper will demonstrate how an attacker would be able
to inject arbitrary payloads in the response pipeline. This will be leveraged to write custom
messages and deliver them back to the victims.

This document will also introduce a Desync variant, used to hide arbitrary headers from the
backend. This technique does not abuse discrepancy between HTTP parsers, but instead relies
on a vulnerability in the HTTP protocol definition itself.
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Introduction

HTTP Request Smuggling
HTTP request Smuggling was first documented back in 2005 by Watchfire1. Is an attack which
abuses the discrepancies between chains of servers (HTTP front-end and back-end servers)
when determining the length and boundaries of consecutive requests.
A discrepancy occurs when two HTTP parsers calculate the length of a request using different
length tokens or algorithms. This can cause a proxy to think it's sending one request when, in
fact, the origin server reads two.

But it was not until 2019, when a state of the art research2, presented by James Kettle,
demonstrated that Request Smuggling could be successfully exploited in the wild.
It proved that this idea could be leveraged to craft a malicious request, which intentionally
causes a discrepancy, in order to affect other messages traveling through the same connection.
By confusing the backend server, an attacker could “smuggle” a hidden request that will be
considered as the prefix of the next request sent through the pipeline.

The HTTP RFC allows messages to contain 2 different length headers, the Content-Length and
Transfer-Encoding. And to ensure that all parsers use the same length in a particular message,
it provides message-length headers hierarchy: “If a message is received with both a
Transfer-Encoding header field and a Content-Length header field, the latter MUST be ignored.”
This should solve the problem, however, if for any reason a proxy or origin server fails to either
interpret one of these headers, or to be RFC-compliant, a discrepancy could occur.

Figure 1. A malicious client performing a request smuggling attack. 1) The attacker and victim both send an HTTP
request. 2) The proxy parses the messages and forwards them as 2 different requests. 3) The backend server

processes the first part (green) of the attacker’s message as one isolated request and returns the response to the
malicious client. The second part of the message (red) is concatenated to the beginning of the victim’s request. The

response generated is delivered to the victim.

2 https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
1 https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf

https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf


It is not the purpose of this paper to discuss the different techniques to cause discrepancy
between proxies and the origin server, nor the methodology for successful exploitation of classic
HTTP request smuggling vulnerabilities.
If the reader wants to know more about this, please refer to James Kettle’s and Amit Klein’s3

previous works.

HTTP Desync Variant
The Connection header field provides a declarative way of distinguishing header fields that are
only intended for the immediate recipient ("hop-by-hop") from those fields that are intended for
all recipients on the chain ("end-to-end").
That is, one of the main purposes of Connection Option is to “hide” hop-by-hop headers from
any other than the next proxy/origin-server in the communication chain.

At first, setting an end-to-end header as a Connection Option might look harmless. Doing so will
cause the same effect as not sending the header at all. Most end-to-end headers are not
processed by proxies and do not affect the forwarded message.
However, looking at the nature of most HTTP Desync techniques, it seems obvious that the
issue being abused is the inability of one or more proxies/servers to properly handle, or “see”, a
message-length header. And this same condition can be met if one of those headers is handled
by one proxy, but is not forwarded to the following one (or origin server).

This technique can be used to exploit the same HTTP Smuggling flaws as any other Desync
variant. The main difference is that this method relies on a vulnerability in the implementation of
the protocol itself, meaning that it is likely to find it in RFC-compliant servers and proxies.

3

https://i.blackhat.com/USA-20/Wednesday/us-20-Klein-HTTP-Request-Smuggling-In-2020-New-Variants-New-Defens
es-And-New-Challenges.pdf

https://i.blackhat.com/USA-20/Wednesday/us-20-Klein-HTTP-Request-Smuggling-In-2020-New-Variants-New-Defenses-And-New-Challenges.pdf
https://i.blackhat.com/USA-20/Wednesday/us-20-Klein-HTTP-Request-Smuggling-In-2020-New-Variants-New-Defenses-And-New-Challenges.pdf


HTTP Response Smuggling

Response Injection
Request smuggling vulnerabilities can be leveraged to cause critical damage to a web
application. By injecting an HTTP prefix into a victim’s request, a malicious user would be able
to chain low scoring vulnerabilities and craft attacks such as XSS and CSRF without user
interaction, partial Denial of Service, open redirects, WEB cache poisoning/deception and
others.
But, in all these examples, another vulnerability is required to compromise the application/user.

This paper focuses on another exploitation vector, the desynchronization of the response
pipeline. All following examples use Request Smuggling vulnerabilities, but the same concepts
could apply if a Response Splitting vulnerability was found.

After processing the last message, the backend, which will treat it as two separate requests, will
produce two isolated responses and deliver them back to the proxy. If another victim’s request is
sent by the proxy, right after the attacker’s one, the response pipeline will be desynchronized
and the injected response will be sent to the victim as shown in figure 3 and 4.

Figure 2. 1) The attacker sends a crafted request right before the victim’s one. 2) The proxy forwards each message
to the backend server. 3) The backend processes the packages as 3 isolated requests and produces 3 different

responses.



Figure 3. 4) The backend server returns 3 responses, including the one for the smuggled request (red). 5) Responses
are delivered using a FIFO scheme, causing the attacker to receive the response to his first request, and the victim to

obtain the response to the injected request.

Response Hijacking
Still, this scenario does not add anything new to the attack. But what’s interesting about this
technique is not the fact that the victim received an incorrect response, as it would in classic
request smuggling. The goal of the malicious request was instead to desynchronize the
responses, leaving an “orphan” response in the queue.
If the attacker issues another request after the previous attack, it would receive the response of
the victim, which could contain sensitive information. Some responses could even contain
session cookies, if they were associated with a login request.

Figure 4. 6) The attacker sends another request, expecting to receive the victim’s response (blue). 7) The proxy
forwards the request and receives (or had stored depending on the implementation) the victim’s response.

Figure 5. 8) The attacker receives the victim’s response. 9) The connection is closed for any reason  and the new
orphan message is discarded (close response, timeout, max requests per connection).



Although this technique seems quite simple, there are some important considerations to
successfully hijack responses:

1. The persistent connection between the Proxy and the Backend must be kept alive until
the response is hijacked. This means that no request or response can contain the close
connection directive.

2. Some proxies will not allow pipelining (store responses), so a request must be issued
right after the victim's. In most cases this can be solved if the attacker sends a high
number of requests in a small period of time.

3. Bad Requests (malformed or invalid messages) and other response status codes (4XX,
5XX) will cause the connection to be closed. For this reason response hijacking is not
observed in some classic request smuggling examples.

This attack does not require to chain any extra vulnerability, and could easily lead to session
hijacking if the victim’s response contains session cookies (a login response).

Request Chaining
Using response smuggling is possible to inject an extra message to desynchronize the
response pipeline. However, there is nothing that stops the attacker from sending an arbitrary
amount of smuggled messages.

Figure 6. 4) The backend server generates 5 isolated responses and returns them in order to the Proxy. malicious
responses (red) contain a reflected XSS payload. 5) The XSS exploit is delivered to the victim’s without any extra

interaction.

Using this technique not only improves the reliability of HTTP smuggling, but can also be used
to consume the resources of the backend server (TCP connections, Memory buffers,
Processing time). If the amount of injected payloads is big enough, a single message could
contain thousands of hidden requests which will be processed by the backend thread.



When pipelining is enabled (network buffers are not discarded), the requests and responses will
be stored in memory until all messages are handled. This could easily lead to memory and CPU
time consumption, which will end up in a complete denial of service of the backend server, and
in some cases, crashing the web application.
Also, if requests take time to be resolved (the backend requires some seconds to generate the
response), TCP connections can be hung without being closed by a time out. This will
eventually consume all available proxy connections, as proxies can only handle a finite amount
of concurrent connections. When this condition is met, all following client’s requests will be
either discarded or placed in a message queue that won't be able to forward them before a time
out. Both cases will be observed as a denial of service of the proxy/origin server.

Request Hijacking
By desynchronizing the response queue, an attacker could inject a request which will be
completed with the victim’s message (just as in old HTTP Smuggling techniques). However, as
the pipeline order is lost after adding extra responses, the attacker could obtain the client
response, only this time the associated victim’s request was also affected by a smuggled
message.

In order to perform this attack, it is necessary to find a resource that provides content reflection.
Most (or almost all) web applications will have some web page reflecting parameters, which is
not a vulnerability if the content is escaped correctly.



Figure 7. 1) An attacker sends two smuggled requests in the same message, one of them (red) to the content
reflecting resource. 2) The proxy forwards two requests through the same connection. 3) The last smuggled request

is prepended to the victim’s message.

Figure 8. 4) The 3 responses are returned to the proxy. The last one includes the original victim’s request in the body.
5) Both clients receive responses for the requests issued by the attacker, which is also sending a new message to

hijack the orphan response.

Figure 9. The attacker receives the malicious desynced response, which contains the original victim’s request as
reflected content.



HTTP Response Concatenation

HEAD Response Length
Until now, HTTP smuggling attacks leveraged discrepancies between proxies/servers, when
determining the length and boundaries of an incoming request.
However, it should also be possible to leverage discrepancies in the response lengths, in order
to split or concatenate messages going back to the client. If that would be the case, the attacker
would have further control over the response pipeline and the messages delivered to the
victims.

Any response which is generated after a HEAD request is expected not to have a
message-body. For this reason, any proxy/client receiving a response to a HEAD request must
ignore any length headers and consider the body to be empty (0 length).
The RFC states that a response to a HEAD request must be the same as one intended for a
GET request of the same resource. Also, if the message-length header is present, it indicates
only what would have been the length of the equivalent GET request.

RFC7231: “Responses to the HEAD request method never include a message body because
the associated response header fields (e.g., Transfer-Encoding, Content-Length, etc.), if
present, indicate only what their values would have been if the request method had been GET”

In most Web Applications, it is rather common to see HEAD responses with content-length
header in static resources (such as HTML static documents). This is also true when Web
Caches store a resource which is then requested through a HEAD message.

HTTP Method Confusion
As the length of a HEAD response is determined by the request associated, it is important for
proxies to match ingoing and outgoing messages correctly. If this fails, the response
content-length would be considered, which might contain a non-zero value.

As already explained in the previous section, using HTTP Smuggling, it is possible to inject
extra messages in the response queue. This can desynchronize the response pipeline, causing
proxies to mismatch the relationship between inbound and outbound messages.
If the attacker would smuggle a HEAD request, the pipeline desynchronization could cause the
response to be associated with another method request. And as any other method uses length
headers to determine the bounds of messages, the proxy would think that the response body is
the first N bytes of the next response, where N is the value of the Content-Length.



Response Concatenation
HTTP Method Confusion technique can be leveraged to obtain a new set of response payloads
and vulnerabilities. As the HEAD response will consume the first bytes of the following
message, the attacker can smuggle multiple responses and build the body using them.

Notice the close connection directive in the last smuggled request. This is not accidental, and
will be useful to discard any left-over suffix bytes of a request/response that will produce a Bad
Request message.

Figure 10. 1) The attacker sends 2 smuggled requests, the first being a HEAD message. The Proxy forwards 2 “GET
'' requests. The victim’s message is not processed as the previous request contained a close directive.

Figure 11. The client receives the smuggled responses concatenated, using the first (HEAD) response as headers,
and the second response message as the body.



As the second smuggled response full length (headers+body) might be greater than the HEAD
response Content-Length, only the first N bytes will be used as the body. The rest will be
discarded because of the close directive which will also be included in the second response (a
close connection request must always produce a close connection response).

Notice that the amount of bytes that will be concatenated to the HEAD response depends on the
Content-Length header of the message.
An attacker needs to concatenate enough responses so that the total size of all injected
payloads (headers+body) match the value of the HEAD Content-Length.

HTTP Response Scripting

Reflected Header Scripting
Response concatenation technique allows attackers to send multiple concatenated responses
to the victim. These responses can be chosen arbitrarily, and the headers will be used as part of
the body, formatted with the media-type specified by the HEAD response.
If the first HEAD response has the Content-Type directive set to HTML, the headers of the next
concatenated messages will be parsed as part of an HTML document. So, if any of these
headers is vulnerable to unescaped content reflection, an attacker could use it to build an XSS
payload which will be parsed as javascript and executed at the victim’s browser.

As an example, suppose there is an endpoint which redirects users to any resource in the Web
Application domain. To do so, the value of a parameter is reflected, without escaping any other
character than the line break, in the response Location header.
If the location’s domain is fixed this does not present a vulnerability. Open redirections and
response splitting are not possible.
This scenario can be found in most Web Applications in the wild.



An attacker could leverage this feature to build a malicious response containing an XSS using
the Location header as part of an HTML body:

If a victim request is pipelined by the proxy after the malicious payload, the client will receive the
following response, which will pop an XSS alert box:

The same attack could be performed if the XSS occurs in the body of the redirect response,
which, in other cases, would not be exploitable.



Content-Type confusion & Security bypass
Some media types, like text/plain or application/json, could be considered protected against
cross site scripting attacks, as scripts are not executed by the browser. Because of this, many
Web Applications allow users to reflect unescaped data in responses with “safe” Content-Type
header.
Until now, there was not much to do to successfully exploit this kind of data reflection, apart from
MIME type sniffing attacks which are not very effective in practice.
However, using response concatenation, the Content-Type of a smuggled message could be
ignored if its headers are part of the response body. This can be achieved the same way as the
previous example, where a HEAD response is used to set the Content-Type to “text/html”.

Notice that response concatenation can also be used to bypass security related headers, such
as Content-Security-Policy or the old X-XSS-Protection. These headers are also part of the
body, so the browser ignores the directives.

Session Hijack: stealing HttpOnly Cookies
It should be clear by now that, if the Content-Length value from the HEAD response is large
enough, multiple requests could be concatenated into one. This technique can be leveraged to
build a new set of payloads to exploit known vulnerabilities that were not available before.

Even though response desync allows an attacker to hijack victim responses, in practice this
technique might not be reliable enough. Most proxy-server connections are quite sensitive,
meaning that they might be close for a number of reasons. In particular, many proxies do not
store responses, and close the connection if a complete response is received when no request
was issued. This can be solved by sending multiple requests in a small period of time, expecting
that the request is received just before an orphan response is received.
Still, it is unlikely to receive a hijacked request in a congested network, as the probability of
obtaining a particular response will be divided by the amount of HTTP clients.



For this reason, it was useful to find a malicious request that could be reliable enough to hijack
victim requests, which would include HttpOnly headers not accessible through javascript.
The only thing required to perform this attack is an endpoint with unescaped reflected content
and a HEAD response with a non-zero Content-Length header. As mentioned before, these are
easy to meet conditions that can be found on most Web Applications.

The attack consists of 3 smuggled requests.

1. A HEAD request whose response contains a non-zero Content-Length and an HTML
media type header.

2. A request whose response contains unescaped reflected data, in order to build the XSS.
3. A request (can be the previous one) whose response contains reflected content,

unescaped or not.

The idea is to obtain a response containing a reflected XSS (red), but also a reflection of the
victim’s request (blue).
After being concatenated, the last smuggled request will look as follows:



Figure 12. The attacker smuggles 3 requests. The proxy will see them as one isolated message, but the server will
split them in 4, concatenating the last with the victim’s message.

Figure 13. The backend server returns 4 isolated responses. The proxy forwards the first to the attacker, but
concatenates the others using the content-length header from the HEAD response.

The resulting responses will contain both a javascript, which will be executed by the client’s
browser, and the victim’s original request, including HttpOnly session cookies.

As the victim’s request is part of the response body, the javascript could easily be used to hijack
user’s sessions, by sending the cookies to an attacker’s controlled server.
Notice that the Content-Length value of the HEAD response is 310.



Arbitrary Cache Poisoning
Apart from the Content-Length and Content-Type headers, an attacker can leverage another
HTTP directive contained in a HEAD response: the Cache-Control.
As defined in the HTTP/1.1 Caching RFC-7234, the Cache-Control header is used to specify
directives that MUST be used by web caches to determine whether a response should be
stored for a specific key (in most cases an endpoint and some other headers such as the host
and user-agent).

This means that, if a response contains a Cache-Control header with a max-age value greater
than zero, this message should be stored for the specified time and all subsequent requests to
the same resource must obtain the same response.

Using this knowledge, and combining it with a Response Scripting attack using a HEAD
response, an attacker could be able to find a response containing this mentioned header. If the
response to the HEAD request also contains a content-length value greater than zero (as
indicated by the RFC), then the resulting concatenated response will be stored for the next
request arriving to the Proxy.
And, as the attacker can also send pipelined requests recognized by the proxy, it is possible to
control the poisoned endpoint, and therefore modify the response behaviour for any arbitrary
URL selected by the malicious user.

Figure 14. The attacker sends two pipelined requests to the Proxy. The first will contain the smuggled HEAD request
and the second will be used to select the poisoned endpoint.

When both requests arrive at the Proxy, they will be splitted in two and forwarded to the
backend. In that moment, the smuggled requests will also get splitted and 4 isolated responses
will be generated.



Figure 15. The proxy believes that only two GET requests were issued. The backend will instead see 4 isolated
requests and will generate 4 responses, including one (red) to a HEAD request.

When the responses arrive to the proxy, the first not smuggled response (blue) will be sent back
to the attacker for the first GET request.
However, the HEAD response will be concatenated with the following smuggled one, as the
proxy will think that this message corresponds again to a GET request. But in this case, the
response will also be stored in the Web Cache, as it contains a Cache-Control header indicating
that this message should be cached.

Figure 16. The proxy will forward the malicious response to the attacker, but will also store it in the web cache for the
selected endpoint.

And finally, when a victim sends a request for the same resource, the proxy will not forward the
message to the backend. Instead, it will look for the response in the cache and retrieve the
stored malicious payload.

Figure 17. The proxy will respond with the stored response to the victim’s request.

Using this technique, an attacker will be able to poison any application endpoint, even those that
do not exist and would in other cases return a 404 status code.



And this can be done by sending a single request, and without depending on any client’s
interaction or limitations.
The same concepts can be used to produce Web Cache Deception, but in this case the victim’s
response with sensitive data will be stored in the cache.

HTTP Splitting: Arbitrary Response Injection
Previous sections explained how HEAD responses allow an attacker to concatenate multiple
responses using response smuggling. But, even though concatenation can produce useful
attacks, it is also possible to use HEAD messages to split malicious responses.

Instead of looking for responses that could fit inside the HEAD body, an attacker could also use
a request which response can be splitted by the proxy.
Consider a response reflecting a parameter in its body. If the break-line character is not
escaped, the reflected data could be used to build the headers of a response.

If a HEAD response contains a fixed Content-Length, any response coming after it will be sliced
at the Nth byte, where N is the value of the length header. The first N bytes will be concatenated
to the response, but the rest of the message will be considered another isolated response.
As the attacker knows the value of N in advance, by observing the response to the HEAD
request, the slicing position is also predictable.

Figure 14. The smuggled response is splitted by the Proxy, as the Content-Length header is smaller than the
message body. The extra bytes are controlled by the attacker and build a new malicious response.



Considering an imaginary HEAD response with a Content-Length value equal to 50, the
following payload would cause the victim to receive an attacker-controlled response.



Conclusions
Until today, HTTP Smuggling was seen as a hard to solve issue present in many proxies and
backend servers. Almost no HTTP parser proved to be immune to this vulnerability.
Still, when assigning a criticity to the flaw, most vendors determined that HTTP Desync is not as
severe as it might look. Even if researchers were able to prove to have control over the request
pipeline, it was not possible to demonstrate that this issue could compromise any Web
Application just by itself. As other WEB vulnerabilities were required to successfully exploit a
system, it was not easy to argue about low/medium CVSS scores assigned to Desync
advisories.
This caused researchers to focus their attention on bug bounty programs, instead of reporting
directly to the HTTP proxy/server vendor.

However, the techniques described in this paper can be used to fully compromise the Integrity,
Confidentiality and Availability of any Web Application vulnerable to HTTP Desynchronization
(HTTP Smuggling or HTTP Splitting).
What's more, all these attacks can be performed without the need of extra vulnerabilities being
chained, simplifying the exploitation and increasing the reliability of known attacks.
For this reason, this research concludes that a review of the HTTP Desyn CVSS v3.1 general
scoring should be applied to most Smuggling advisories, reflecting the criticality of real possible
attacks.
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