
Phantom Attack: 

Evading System Call Monitoring
Rex Guo, Ph.D. 

Junyuan Zeng, Ph.D.

@Xiaofei_Rex

jzeng04 *NOSPAM* gmail DOT com



web app RCE on 

joe-box and 

executed a reverse 

shell

An Incident - An Attacker’s View



web app RCE on 

joe-box and 

executed a reverse 

shell

An Incident - An Attacker’s View

Privilege escalation 

using sudo

CVE-2021-3156 



web app RCE on 

joe-box and 

executed a reverse 

shell

read /etc/shadow

An Incident - An Attacker’s View

Privilege escalation 

using sudo

CVE-2021-3156 



web app RCE on 

joe-box and 

executed a reverse 

shell

read /etc/shadow

Read ssh process 

environment 

variable

An Incident - An Attacker’s View

Privilege escalation 

using sudo

CVE-2021-3156 



web app RCE on 

joe-box and 

executed a reverse 

shell

read /etc/shadow

Read ssh process 

environment 

variable

Lateral movement 

to alice-box with 

ssh hijacking

An Incident - An Attacker’s View

Privilege escalation 

using sudo

CVE-2021-3156 



web app RCE on 

joe-box and 

executed a reverse 

shell

read /etc/shadow

Read ssh process 

environment 

variable

Lateral movement 

to alice-box with 

ssh hijacking

An Incident - An Attacker’s View

Privilege escalation 

using sudo

CVE-2021-3156 



web app RCE on 

joe-box and 

executed a reverse 

shell

Privilege escalation 

using sudo

CVE-2021-3156 

read /etc/shadow

Read ssh process 

environment 

variable

Lateral movement 

to alice-box with 

ssh hijacking

An Incident … A Defender’s View

connect

etc.

execve(at) open(at) open(at) connect, 

etc.
Incident 

Response



Detection Rule Example

rule: untrusted program reads /etc/shadow

condition:

syscall == open(at)

and read permission

and filename == /etc/shadow

and program is not in allowlist



Agenda

• Introduction to System Call Monitoring

•Open Source System Call Monitoring Projects

• TOCTOU - Phantom v1 Attack

• Semantic confusion - Phantom v2 Attack

• Takeaways



System Call Monitoring (1)

User Space Kernel Space

Programs

Applications
Syscall

Code Path

Hooks

syscall

eventsMonitoring
Agent



System Call Monitoring – Syscall Interception (1)

• tracepoint/raw_tracepoint
• Kernel static hook

• tracepoint vs raw_tracepoint

• Linux Kernel provides raw tracepoints: sys_enter and sys_exit
• trace_sys_enter(struct pt_regs *regs, long id)

• trace_sys_exit(struct pt_regs *regs, long id)

• Low overhead but only static system call interceptions

System Call Code Path
trace_sys_enter(regs, id)

.

.

.

trace_sys_exit(regs, id)

Programs-1 (regs, id)

Programs-2 (regs, id)



System Call Monitoring – Syscall Interception (2)

• kprobe/kretprobe
• Dynamic hook in the kernel

• kprobe vs kretprobe
• Dynamic but slow compared to tracepoints and need to know exactly how data is 

placed on the stack and register

• LD_PRELOAD: not working in all cases

• Ptrace: performance overhead is high

System Call Code Path
Inst. 1

Inst. 2

.

.

.

Inst. n

Programs-1

Programs-2



System Call Monitoring – Syscall Data Collection

• Tracing programs collect system call data, e.g., arguments

• Tracing programs can “attach” to different hooks. When the hooks fire,
tracing programs are executed
● tracepoints/raw_tracepoints

● kprobe/kretprobe

• Tracing programs implementations
• Linux native mechanisms: ftrace, perf_events etc.

• Kernel modules

• eBPF programs: allow the execution of user code in the kernel



Open Source Projects (as of 07/15/2021)

• Falco (created by Sysdig)
● One of the two security and compliance projects in CNCF incubating projects

● The only endpoint security monitoring project in CNCF incubating projects

● 3.9K github stars

● It consumes kernel events and enriches them with information from the cloud 
native stack (e.g. Linux, containers, etc.)

● Falco supports both kernel module and eBPF programs for tracing program 
implementation

• Tracee (created by Aqua Security)
● 1.1K github stars

● A runtime security and forensics tool based on eBPF



Vulnerabilities

• Time-of-check time-of-use (TOCTOU)
● Time-of-check: tracing programs collect system call data (e.g. arguments)

● Time-of-use: system call data used by kernel is different from what tracing programs 
check

● e.g. sys_openat(int dfd, const char __user * filename, int flags, umode_t mode)

● Phantom v1 attack exploits TOCTOU

• Semantic confusion
● Kernel interprets data differently from the tracing programs

● e.g. symbolic link is interpreted differently by the kernel and tracing programs

● Phantom v2 attack exploits semantic confusion

• Falco is vulnerable to both Phantom v1 and v2

• Tracee is vulnerable to Phantom v1
https://dl.packetstormsecurity.net/1005-advisories/khobe-earthquake.pdf



TOCTOU - openat

…
trace_sys_enter(regs, regs->orig_ax)

…

Syscall Table (x86_64)
…
257 sys_openat
258 sys_mkdirat
259 sys_mknodat
…

long do_sys_open(int dfd, 

const char __user *filename, 

int flags, umode_t mode)

{

…

struct filename *tmp;

tmp = getname(filename);

…

fd = get_unused_fd_flags(flags);

if (fd >= 0) {

struct file *f = 

do_filp_open(dfd, tmp, &op);

…

}

syscall exit

…
trace_sys_exit(regs, regs->ax)

…

U
se

r 
Sp

ac
e

K
er

n
el

5
.4

.0

syscall enter



TOCTOU - openat

…
trace_sys_enter(regs, regs->orig_ax)

…

Syscall Table (x86_64)
…
257 sys_openat
258 sys_mkdirat
259 sys_mknodat
…

long do_sys_open(int dfd, 

const char __user *filename, 

int flags, umode_t mode)

{

…

struct filename *tmp;

tmp = getname(filename);

…

fd = get_unused_fd_flags(flags);

if (fd >= 0) {

struct file *f = 

do_filp_open(dfd, tmp, &op);

…

}

syscall exit

…
trace_sys_exit(regs, regs->ax)

…

U
se

r 
Sp

ac
e

K
er

n
el

5
.4

.0

TOU by
Linux Kernel

syscall enter



TOCTOU - openat

…
trace_sys_enter(regs, regs->orig_ax)

…

Syscall Table (x86_64)
…
257 sys_openat
258 sys_mkdirat
259 sys_mknodat
…

long do_sys_open(int dfd, 

const char __user *filename, 

int flags, umode_t mode)

{

…

struct filename *tmp;

tmp = getname(filename);

…

fd = get_unused_fd_flags(flags);

if (fd >= 0) {

struct file *f = 

do_filp_open(dfd, tmp, &op);

…

}

syscall exit

…
trace_sys_exit(regs, regs->ax)

…

C
P

-1
C

P
-2

U
se

r 
Sp

ac
e

K
er

n
el

5
.4

.0

TOU by
Linux Kernel

syscall enter



TOCTOU - openat

…
trace_sys_enter(regs, regs->orig_ax)

…

Syscall Table (x86_64)
…
257 sys_openat
258 sys_mkdirat
259 sys_mknodat
…

long do_sys_open(int dfd, 

const char __user *filename, 

int flags, umode_t mode)

{

…

struct filename *tmp;

tmp = getname(filename);

…

fd = get_unused_fd_flags(flags);

if (fd >= 0) {

struct file *f = 

do_filp_open(dfd, tmp, &op);

…

}

syscall enter

syscall exit

…
trace_sys_exit(regs, regs->ax)

…

TOC: Tracing
Programs

TOU by
Linux Kernel

U
se

r 
Sp

ac
e

K
er

n
el

5
.4

.0

C
P

-1
C

P
-2



TOCTOU - openat

…
trace_sys_enter(regs, regs->orig_ax)

…

Syscall Table (x86_64)
…
257 sys_openat
258 sys_mkdirat
259 sys_mknodat
…

long do_sys_open(int dfd, 

const char __user *filename, 

int flags, umode_t mode)

{

…

struct filename *tmp;

tmp = getname(filename);

…

fd = get_unused_fd_flags(flags);

if (fd >= 0) {

struct file *f = 

do_filp_open(dfd, tmp, &op);

…

}

syscall exit

…
trace_sys_exit(regs, regs->ax)

…

TOU by
Linux Kernel

TOC: Tracing
Programs

U
se

r 
Sp

ac
e

K
er

n
el

5
.4

.0

C
P

-1
C

P
-2

syscall enter



TOCTOU - openat

…
trace_sys_enter(regs, regs->orig_ax)

…

Syscall Table (x86_64)
…
257 sys_openat
258 sys_mkdirat
259 sys_mknodat
…

long do_sys_open(int dfd, 

const char __user *filename, 

int flags, umode_t mode)

{

…

struct filename *tmp;

tmp = getname(filename);

…

fd = get_unused_fd_flags(flags);

if (fd >= 0) {

struct file *f = 

do_filp_open(dfd, tmp, &op);

…

}

syscall exit

…
trace_sys_exit(regs, regs->ax)

…

TOU by
Linux Kernel

TOC: Tracing
Programs

U
se

r 
Sp

ac
e

K
er

n
el

5
.4

.0

C
P

-1
C

P
-2

syscall enter



TOCTOU – Falco

• CVE-2021-33505 – CVSS v3.0 score 7.3

• Falco older than v0.29.1 (or open source sysdig)
• Commercial versions based on the open source agent are also affected (confirmed 

by the open source maintainer)

• It uses raw tracepoints (sys_enter and sys_exit) to intercept syscalls

• User space pointers are read directly by its tracing programs
• In the implementations of both kernel module and eBPF programs

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33505


TOCTOU – Falco

• We evaluated the important syscalls in Falco rules.
Syscall Category TOCTOU?

connect Network Y

sendto/sendmsg Network Y

open/openat File Y

execve File N

rename File Y

renameat/renameat2 File Y

mkdir File Y

mkdirat File Y

rmdir File Y

unlink/unlinkat File Y

symlink/symlinkat File Y

chmod/fchmod/fchmodat File Y

creat File Y

https://github.com/falcosecurity/falco/blob/master/rules/falco_rules.yaml


TOCTOU – Tracee

• Tracee (v0.4.0) is vulnerable to TOCTOU for many system calls, e.g., connect
syscall, etc.

• No CVE given. Here are some quotes from the maintainers:
• “As you probably know, TOCTTOU attacks on system calls wrappers(/tracers) is a well 

known issue, and Tracee is no exception.”

• “And yes we agree on the fact that there’s no CVE or novel finding and therefore you 
could talk about it publicly.”

• Interpret yourself ☺



Phantom v1 Exploit Plan (Sys_exit is Monitored)

• Triggers the target system call with malicious arguments

• Let kernel reads the malicious arguments and performs the intended 
malicious action

• Overwrites the data structure pointed by the user space argument pointer 
with benign data

• At sys_exit, tracing program reads the data structure pointed by the user 
space pointer and checks against the rules

• Challenges:
• When does the kernel thread reads it?

• How can we synchronize the overwrite with the kernel thread read?

• Are the racing windows big enough for each syscalls?

• How to ensure the tracing program get the overwritten copy?



Userfaultfd Syscall

• Normally page faults are a kernel internal thing…
• Why offload page faults to userland? 

• Memory externalization: running programs with memory residing on a remote node
• Memory is transferred from the memory node to the compute node on access

• Memory can be transferred from the compute node to the memory node if it’s not frequently used 
during memory pressure

• Once userfaultfd triggers, kernel thread is paused and waits for user space response
• Helps exploitation on kernel race condition bugs



Interrupts and Scheduling

• An interrupt notifies the processor with an event that requires immediate 
attention

• An interrupt diverts the program control flow to an interrupt handler

• Interrupt can be triggered indirectly from system calls
• Hardware interrupts (networking, e.g., connect)

• Interprocessor interrupts (IPIs) (e.g., mprotect)

• sched_setscheduler()
• set SCHED_NORMAL / SCHED_IDLE

• Realtime policies require CAP_SYS_NICE 

or Realtimekit]

• sched_setaffinity(): pin task to CPU bitmask

https://www.usenix.org/system/files/sec21fall-lee-yoochan.pdf
https://www.youtube.com/watch?v=MIJL5wLUtKE



Phantom v1 Attack – An Openat Example



Phantom v1 Attack – An Openat Example



Phantom v1 Attack – An Openat Example



Phantom v1 Attack – An Openat Example



Semantic Confusion – File Link

• Semantic confusion indicates the different interpretations of data (e.g.
system call arguments) between the kernel and tracing programs

• In particular for file link interpretation, kernel trails symbolic link to actual
file while tracing programs read the link without any interpretations

• Falco is vulnerable to semantic confusion
• It reads symbolic link without any interpretation

• No CVE because symlink(at) and link(at) are monitored

• But practically the detection team need to track all symlink(at)/link(at) to any file 
based rules 

• Tracee is not vulnerable to openat
• security_file_open LSM hook: filename has been interpreted by the kernel



Phantom v2 – An File Link Example

• Steps to bypass the Falco rule
• Create a symlink /tmp/shadow -> /etc/shadow

• Tracing programs read the symlink /tmp/shadow 

• Syscall openat monitoring reports /tmp/shadow is opened

• Rule is bypassed

rule: untrusted program reads /etc/shadow

condition:

syscall == open(at)

and read permission is used

and filename == /etc/shadow

and not program is not in allowlist



Mitigation

• Detection (Falco team)
• Detect (unprivileged) usage of the `userfaultfd` syscall (Implemented)
• Detect a user registering a memory address range
• Detect a user copying a continuous memory chunk into the userfaultfd registered range and 

(optionally) wake up the blocked thread (kernel)

• Read the data used by system calls
• LSM hook: a list of check points

• Kernel data structure: read arguments of execve from mm->arg_start

LSM hook used by Tracee v0.4.0 Protected syscall

security_bprm_check execve, execveat

security_file_open open, openat

security_inode_unlink unlink, unlinkat

security_mmap_addr mmap, mmap_pgoff

security_file_mprotect mprotect



Takeaways

• Phantom attack is generic and exploits the fact that kernel and tracing 
programs
• Can read data at different times (Phantom v1)
• Can interpret data differently (Phantom v2)

• Kernel raw tracepoints on system calls are not ideal for secure tracing

• Other tracing implementations can be vulnerable. E.g., kprobe

• Mitigation: 
• Detect abnormal usages of userfaultfd
• Ensure kernel and secure tracing programs (1) Read the same data (2) Interpret data 

in the same way

• If you are interested in discussing further:
• @Xiaofei_REX (OpenDM)
• https://github.com/rexguowork/phantom-attack (will be released during Defcon)

https://github.com/rexguowork/phantom-attack


Acknowledgement

• Chris Arges (ebpf, kernel tracing)
• https://www.linkedin.com/in/carges/

• Joel Schopp (kernel tracing, TOCTOU)
• https://www.linkedin.com/in/schopp/

• Yu Wang (TOCTOU)
• https://www.linkedin.com/in/yu-wang-88056b99/

• Falco open source team (Leonardo Di Donato, etc.)


