Phantom Attack:

Evading System Call Monitoring

Rex Guo, Ph.D.
Junyuan Zeng, Ph.D.

@Xiaofei_Rex
jzeng04 *NOSPAM* gmail DOT com

An Incident - An Attacker’s View

web app RCE on
joe-box and
executed areverse
shell

An Incident - An Attacker’s View

web app RCE on
joe-box and
executed areverse
shell

Privilege escalation
using sudo
CVE-2021-3156

»

@ ®

An Incident - An Attacker’s View

web app RCE on
joe-box and
executed areverse
shell

read /efc/shadow

Privilege escalation
using sudo
CVE-2021-3156

»

® ® ®

An Incident - An Attacker’s View

web app RCE on
joe-box and
executed areverse
shell

Privilege escalation
using sudo
CVE-2021-3156

»

@ ®

read /efc/shadow

®

Read ssh process
environment
variable

@

An Incident - An Attacker’s View

web app RCE on

. read /efc/shadow Lateral movement
joe-box and to alice-box with
executed areverse ssh hijacking
shell

® ® ®

Privilege escalation
using sudo
CVE-2021-3156

»

Read ssh process
environment
variable

@ ® ® ® ®

An Incident - An Attacker’s View

web app RCE on
joe-box and
executed areverse
shell

Privilege escalation
using sudo
CVE-2021-3156

»

@ ®

read /efc/shadow

®

Read ssh process
environment
variable

@

Lateral movement
to alice-box with
ssh hijacking

®

?

®

An Incident ... A Defender’s View

web app RCE on
joe-box and

executed areverse

shell
®

®

connect
etc.

Privilege escalation
using sudo

CVE-2021-3156
®

@

execve(at)

read /etc/shadow

®

open(at)

Read ssh process
environment
variable

O

O,

open(at)

Lateral movement
to alice-box with
ssh hijacking

v/

@ ®

CONNect, Incident
etc. Response

Detection Rule Example

rule: untrusted program reads /etc/shadow
condition:

syscall == open(at)

and read permission

and filename == /etc/shadow

and program is not in allowlist

Agenda

* Introduction to System Call Monitoring

* Open Source System Call Monitoring Projects
* TOCTOU - Phantom v1 Attack

* Semantic confusion - Phantom v2 Attack

* Takeaways

System Call Monitoring (1)

User Space

sysca Sysca"
Code Path

Applications

Hooks

event

Programs

Agent

System Call Monitoring — Syscall Interception (1)

* tracepoint/raw_tracepoint
* Kernel static hook
* tracepoint vs raw_tracepoint

* Linux Kernel provides raw tracepoints: sys _enter and sys_exit
* trace _sys enter(struct pt_regs *regs, long id)
* trace_sys_exit(struct pt_regs *regs, long id)

System Call Code Path
trace sys enter (regs, id)

» Programs-1 (regs, id)

» Programs-2 (regs, id)

trace sys exit(regs, id)

* Low overhead but only static system call interceptions

System Call Monitoring — Syscall Interception (2)

* kprobe/kretprobe

e Dynamic hook in the kernel

System Call Code Path
Inst. 1 > Programs-1
Inst. 2
. > Programs-2
Inst. n

* kprobe vs kretprobe

* Dynamic but slow compared to tracepoints and need to know exactly how data is
placed on the stack and register

 LD_PRELOAD: not working in all cases
* Ptrace: performance overhead is high

System Call Monitoring — Syscall Data Collection

* Tracing programs collect system call data, e.g., arguments

* Tracing programs can “attach” to different hooks. When the hooks fire,
tracing programs are executed
e tracepoints/raw_tracepoints
o kprobe/kretprobe

* Tracing programs implementations
* Linux native mechanisms: ftrace, perf _events etc.
* Kernel modules
* eBPF programs: allow the execution of user code in the kernel

Open Source Projects (as of 07/15/2021)

* Falco (created by Sysdig)

e One of the two security and compliance projects in CNCF incubating projects
e The only endpoint security monitoring project in CNCF incubating projects
e 3.9K github stars

e It consumes kernel events and enriches them with information from the cloud
native stack (e.g. Linux, containers, etc.)

e Falco supports both kernel module and eBPF programs for tracing program
implementation
* Tracee (created by Aqua Security)
o 1.1K github stars
e A runtime security and forensics tool based on eBPF

Vulnerabilities

* Time-of-check time-of-use (TOCTOU)

o Time-of-check: tracing programs collect system call data (e.g. arguments)

o Time-of-use: system call data used by kernel is different from what tracing programs
check

e e.g.sys openat(int dfd, const char __user * filename, int flags, umode _t mode)
e Phantom v1 attack exploits TOCTOU

* Semantic confusion
e Kernel interprets data differently from the tracing programs

e e.g. symboliclink is interpreted differently by the kernel and tracing programs
e Phantom v2 attack exploits semantic confusion

e Falco is vulnerable to both Phantom v1 and v2
* Tracee is vulnerable to Phantom v1

https://dl.packetstormsecurity.net/1005-advisories/khobe-earthquake.pdf

TOCTOU - openat

syscall enter

A——

I
— I
I
I LN]
: trace sys enter(regs, regs->orig ax)
I
I L N
: Syscall Table (x86_64)
I
: 257 sys_openat - - - - - »long do sys open(int dfd,
| 258 sys_mkdirat const char user *filename,
! 259 sys_mknodat int flags, umode t mode)
I {
I
|
: struct filename *tmp;
Y tmp = getname (filename) ;
§ 9 o
S i fd = get unused fd flags(flags);
Q : N if (f£d >= 0) {
> | struct file *f =
: do filp open(dfd, tmp, &op);
I
I
| t
I
I
I
I LN N
I
I trace sys exit (regs, regs->ax)
I
syscall exit | oo
I

TOCTOU - openat

syscall enter

A——

|
— I
|
I LN]
: trace sys enter(regs, regs->orig ax)
|
I L N
: Syscall Table (x86_64)
I
: 257 sys_openat - - - - - »long do sys open(int dfd,
| 258 sys_mkdirat const char user *filename,
! 259 sys_mknodat int flags, umode t mode)
! {
|
|
: struct filename *tmp;
L, = getname (filename) ;
§ 9 o
S i fd = get unused fd flags(flags);
Q : N if (f£d >= 0) {
> | struct file *f =
: do filp open (dfd, , &op);
|
|
| t
|
|
|
I LN N
|
| trace sys exit (regs, regs->ax)
|
syscall exit | oo
|

TOCTOU - openat

syscall enter
—

User Space

syscall exit
_

Kernel

trace sys enter(regs, regs->orig ax)

Syscall Table (x86_64)

257 sys_openat
258 sys_mkdirat
259 sys_mknodat

5.4.0

trace sys exit (regs,

------ »long do sys open(int dfd,

const char user *filename,
int flags, umode t mode)

struct filename *tmp;
= getname (filename) ;

fd = get unused fd flags(flags);
if (£d >= 0) {
struct file *f =

do filp open (dfd, , &op);

regs—->ax)

CP-1

TOCTOU - openat

syscall enter

CP-1

|
~ I
ey
I LN
: trace sys enter(regs, regs—>0rig_ax) |--eemmmmmmmm oo e :
| i
I L N ‘
|
| Syscall Table (x86_64) TOC: Tracing
: Programs
| 257 sys_openat * - ----- »long do sys open (int difd, Y
I 258 sys_mkdirat const char user *filename, f----oomcommommemmeo i
! 259 sys_mknodat int flags, umode t mode)
! {
|
"
: struct filename *tmp;
L, = getname (filename),
§ 9 o
S ; fd = get unused fd flags(flags);
Q : N if (£d >= 0) |
> | struct file *f =
: do filp open (dfd, , &op);
|
|
| t
|
|
|
I LN]
|
I trace sys exit (regs, regs->ax)
|
syscall exit | oo
|

_

TOCTOU - openat

syscall enter
—

User Space

syscall exit
_

Kernel

trace sys enter (regs,

Syscall Table (x86_64)

257 sys_openat
258 sys_mkdirat
259 sys_mknodat

5.4.0

trace sys exit (regs,

regs->orig ax)

------ »long do sys open(int dfd,

const char user *filename,
int flags, umode t mode)

struct filename *tmp;
= getname (filename) ;

fd = get unused fd flags(flags);
if (£d >= 0) {

struct file *f =

do filp open (dfd, , &op);

regs—->ax)

CP-1

TOCTOU - openat

syscall enter
—

User Space

syscall exit
_

trace sys enter (regs,

Syscall Table (x86_64)

257 sys_openat
258 sys_mkdirat
259 sys_mknodat

Kernel
5.4.0

regs->orig ax)

R »long do sys open(int dfd,

const char user *filename,
int flags, umode t mode)

struct filename *tmp;
= getname (filename) ;

fd

= get unused fd flags(flags);
if (fd >= 0) {
struct file *f =
do filp open (dfd, , &op);

trace sys exit (regs,

regs—->ax)

TOC: Tracing
Programs

CP-1

TOCTOU — Falco

e CVE-2021-33505 — CVSS v3.0 score 7.3

* Falco older than v0.29.1 (or open source sysdig)

 Commercial versions based on the open source agent are also affected (confirmed
by the open source maintainer)

* It uses raw tracepoints (sys _enter and sys_exit) to intercept syscalls

* User space pointers are read directly by its tracing programs
* In the implementations of both kernel module and eBPF programs

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33505

TOCTOU — Falco

* We evaluated the important syscalls in Falco rules.

Syscall Category TOCTOU?
connect Network Y
sendto/sendmsg Network Y
open/openat File Y
execve File N
rename File Y
renameat/renameat2 File Y
mkdir File Y
mkdirat File Y
rmdir File Y
unlink/unlinkat File Y
symlink/symlinkat File Y
chmod/fchmod/fchmodat File Y
creat File Y

https://github.com/falcosecurity/falco/blob/master/rules/falco_rules.yaml

TOCTOU — Tracee

* Tracee (v0.4.0) is vulnerable to TOCTOU for many system calls, e.g., connect
syscall, etc.

* No CVE given. Here are some quotes from the maintainers:

* “As you probably know, TOCTTOU attacks on system calls wrappers(/tracers) is a well
known issue, and Tracee is no exception.”

e “And yes we agree on the fact that there’s no CVE or novel finding and therefore you
could talk about it publicly.”

* Interpret yourself ©

Phantom v1 Exploit Plan (Sys_exit is Monitored)

* Triggers the target system call with malicious arguments

* Let kernel reads the malicious arguments and performs the intended
malicious action

* Overwrites the data structure pointed by the user space argument pointer
with benign data

e At sys_exit, tracing program reads the data structure pointed by the user
space pointer and checks against the rules

* Challenges:
* When does the kernel thread reads it?
* How can we synchronize the overwrite with the kernel thread read?
* Are the racing windows big enough for each syscalls?
* How to ensure the tracing program get the overwritten copy?

Userfaultfd Syscall

* Normally page faults are a kernel internal thing...
* Why offload page faults to userland?

* Memory externalization: running programs with memory residing on a remote node
 Memory is transferred from the memory node to the compute node on access

compute node userfault memory node

—
-

local memory J remote memoryJ

 Memory can be transferred from the compute node to the memory node if it’s not frequently used
during memory pressure

memory
compute node pressue >| memory node ‘

[local memory

remote memory]

* Once userfaultfd triggers, kernel thread is paused and waits for user space response
* Helps exploitation on kernel race condition bugs

Interrupts and Scheduling

* An interrupt notifies the processor with an event that requires immediate
attention

* An interrupt diverts the program control flow to an interrupt handler

* Interrupt can be triggered indirectly from system calls
* Hardware interrupts (networking, e.g., connect)

* Interprocessor interrupts (IPIs) (e.g., mprotect) | Core 0 | | Core 1
User thr for Task_A User thr for
* sched_setscheduler() | sysala Tkt
* set SCHED _NORMAL / SCHED_IDLE , :
Kernel thr for Task_A kernel thr for

* Realtime policies require CAP_SYS NICE L : Task_Interrupt sends
HW interrupt
or Realtimekit] p

interrupt handler |-=

or
IPI interrupts

° SChEd_Setafﬁnity(): pln taSk to CPU b|tmaSk [Kerneltlf;)Lc;-rTask_A | to core 0

https://www.usenix.org/system/files/sec21fall-lee-yoochan.pdf
https://www.youtube.com/watch?v=MIJL5wLUtKE

Phantom v1 Attack — An Openat Example

main thread userfaultfd thread overwrite thread

pin CPU 3 any CPU pin CPU 2
mmap page A

register userfaultfd thread block on cond mutex

*filename -> sys_enter openat
page A (not allocated) *filename -> page A

kernel thread triggers page fault

Phantom v1 Attack — An Openat Example

main thread userfaultfd thread overwrite thread

pin CPU 3 any CPU pin CPU 2
mmap page A

register userfaultfd thread block on cond mutex

*filename -> sys_enter openat
page A (not allocated) “filename -> page A

kernel thread triggers page fault
*filename -> T Write page A with
malicious filename malicious filename

release cond mutex

IOCTL return execution write benign name
back to kernel

Phantom v1 Attack — An Openat Example

*filename ->
page A (not allocated)

*fllename ->
malicious filename

*filename ->
benign filename

overwrite thread

main thread userfaultfd thread

any CPU pin CPU 2

pin CPU 3
mmap page A
register userfaultfd thread block on cond mutex

sys_enter openat

*filename -> page A

kernel thread triggers page fault
write page A with
malicious filename

release cond mutex \
IOCTL return execution write benign name

back to kernel

copy_from_user uses /

! memory consistency update
malicious pathname

TOU user mode indirectly
triggers interrupt
interrupt increases
window size

memory consistency applies
tracing program read
register @ sys_exit
TOC

Phantom

vl Attack — An Openat Example

*filename ->
page A (not allocated)

*fllename ->
malicious filename

*fllename ->
benign filename

main thread userfaultfd thread overwrite thread
pin CPU 3 any CPU pin CPU 2
mmap page A CAP SYS NICE

register userfaultfd thread
block on cond mutex
Ssys _enter openat
*filename -> page A

kernel thread triggers page fault
write page A with
malicious filename

release cond mutex

IOCTL return execution write benign name
/ back to kernel
copy___from_user uses memaory consistency update
malicious pathname o
TOU user mode indirectly
triggers interrupt
interrupt increases
window size

memory consistency applies
tracing program read
register @ sys_exit
TOC

Semantic Confusion — File Link

* Semantic confusion indicates the different interpretations of data (e.g.
system call arguments) between the kernel and tracing programs

* In particular for file link interpretation, kernel trails symbolic link to actual
file while tracing programs read the link without any interpretations

* Falco is vulnerable to semantic confusion
* |t reads symbolic link without any interpretation
* No CVE because symlink(at) and link(at) are monitored
* But practically the detection team need to track all symlink(at)/link(at) to any file
based rules ®
* Tracee is not vulnerable to openat
» security file_open LSM hook: filename has been interpreted by the kernel

Phantom v2 — An File Link Example

rule: untrusted program reads /etc/shadow
condition:

syscall == open(at)

and read permission is used

and filename == /etc/shadow

and not program is not in allowlist

* Steps to bypass the Falco rule
* Create a symlink /tmp/shadow-> /etc/shadow
* Tracing programs read the symlink /tmp/shadow

* Syscall openat monitoring reports /tmp/shadow is opened
* Rule is bypassed

Mitigation

e Detection (Falco team)
e Detect (unprivileged) usage of the "userfaultfd™ syscall (Implemented)
* Detect a user registering a memory address range

* Detect a user copying a continuous memory chunk into the userfaultfd registered range and
(optionally) wake up the blocked thread (kernel)

* Read the data used by system calls
e LSM hook: a list of check points

LSM hook used by Tracee v0.4.0 Protected syscall
security_bprm_check execve, execveat
security_file_open open, openat
security_inode_unlink unlink, unlinkat
security_mmap_addr mmap, mmap_pgoff
security_file_mprotect mprotect

* Kernel data structure: read arguments of execve from mm->arg_start

Takeaways

* Phantom attack is generic and exploits the fact that kernel and tracing
programs

e Can read data at different times (Phantom v1)
e Can interpret data differently (Phantom v2)

* Kernel raw tracepoints on system calls are not ideal for secure tracing
* Other tracing implementations can be vulnerable. E.g., kprobe

* Mitigation:
* Detect abnormal usages of userfaultfd
* Ensure kernel and secure tracing programs (1) Read the same data (2) Interpret data
in the same way
* If you are interested in discussing further:
e @Xiaofei_REX (OpenDM)
 https://github.com/rexguowork/phantom-attack (will be released during Defcon)

https://github.com/rexguowork/phantom-attack

Acknowledgement

* Chris Arges (ebpf, kernel tracing)

* https://www.linkedin.com/in/carges/

* Joel Schopp (kernel tracing, TOCTOU)
* https://www.linkedin.com/in/schopp/

* Yu Wang (TOCTOU)
 https://www.linkedin.com/in/yu-wang-88056b99/

* Falco open source team (Leonardo Di Donato, etc.)

