Reza Soosahabi, Chuck McAuley Application & Threat Intelligence Research Center

SPARROW: A Novel Covert Communication Scheme Exploiting Broadcast Signals in LTE, 5G & Beyond

MOTIVATION

Motivation

WHAT MADE ME DO IT!

- Past research experience in wireless security
- Worked with US operators before joining Keysight in 2018.
- Researched data exfiltration techniques at <u>ATI</u> that are lesser known in wireless community.
- Trying to impress a cool boss who drops a big money Base-Station emulator equipment on your lap to do open field research!
- The satellite talk in DEFCON 28
- Whispers Among the Stars: Perpetrating (and Preventing) Satellite Eavesdropping Attacks – James Pavur

Motivation

FINDING MISSING PIECE

- Covert Communication: a potential threat
- Hacker Mentality: Exploit [Software]
- Tunnelling via 3-7 protos: ICMP, DNS, etc
- Challenged by Security Boxes: IPS, IDS, LI
- Engineer Mentality: Build [Hardware]
 - Building L1 (radios): Spread Spectrum, Ham Radios, etc
 - Signal blocking e.g. indoor to outdoor
 - Avoiding spectrum monitoring

Exploi

MAC

KEYSIGHT

Motivation

EXPLOITING ACCESS RADIOS

- Exploit MAC standard weakness in cellular & satellite, ...
- Radio height makes RF signals unstoppable.
- What if: Trudy bounces a broadcast signal of from ANY powerful Wireless Access Node to Ricky!?

This Photo by Unknown Author is licensed under CC BY-SA

This Photo by Unknown Author is licensed under CC BY-SA-NC

This Photo by Unknown Author is licensed under CC BY-SA

EXPLOITING LTE & 5G STANDARD WEAKNESS

What is the MAC layer?

MEDIUM ACCESS CONTROL

This Photo by Unknown Author is licensed under CC BY-SA

This Photo by Valancia Author to Commend under <u>OC BY-SA</u>

LTE/5G Big MAC Layers!

Terminology Quick Start: UE (User Equipment)

• Phone, Tablet, Laptop, Things with SIM!

eNodeB / gNodeB

- Cell Tower for LTE/5G
- No one knows what happened to fNodeB!
- So, I like using fNodeB to refer to both LTE & 5G cells!!

Crati, CC BY-SA 3.0 via Wikimedia Commons

Exploiting CRI Broadcast

Exploiting CRI Broadcast successive ATTEMPTS

- A SPARROW UE can send successive 40-bits messages
- Successive RACH attempts do not impact other users much.
- Picking low backoff time: like every <u>40 ms</u> => 1 kbps tput.
- This vulnerability can be traced back to LTE Rel. 8 and still exists in 5G-NR.
- Although less-relevant FR2 (above 6 GHz) due to beamforming it can be easily exploited in LTE lower-bands and FR1 to achieve around 5 miles range.
- Higher ranges achievable in upcoming 5G-NTN (satellite gNBs).
- if in this Random Access procedure, the Random Access Preamble was selected by MAC:
 - based on the backoff parameter in the UE, select a random backoff time according to a uniform distribution between 0 and the Backoff Parameter Value;
 - delay the subsequent Random Access transmission by the backoff time;
- proceed to the selection of a Random Access Resource (see subclause 5.1.2).

Source: 3GPP TS 36.321, sec 5.1.4

WHY SPARROW?

- No Network or Spectrum Footprint
- Low Hardware Complexity
- More Miles per Watt
- Unstoppable

Sparrow UE

0.2 W / 5 mi

1 W / 5 mi

2 W / 1 mi

Walkie Talkie

KEYSIGHT

Demo & Use Cases

SPARROW Testbed Setup

DEMO

Application Scenarios

Data Exfiltration: Extract sensitive data out of secure locations

Command & Control (CnC): trigger or monitor events remotely

Supply Chain: Remote access baked into firmware of modem

This Photo by Unknown Author is licensed under CC BY

This Photo by Unknown Author is licensed under CC BY-NC

Application Scenarios

Disaster Recovery: In case of natural disasters, the cellular infrastructure could be operational without backhaul links.

Failover Broadcast: Can utilize this as an alternative for emergency notifications. Connect parties in case of emergency.

This Photo by Unknown Author is licensed under CC BY-SA

This Photo by Unknown Author is licensed under CC BY-SA

Application Scenarios

Extended Network: Make a lightweight IoT network using someone else's fNodeB

Pager Network: Let everyone know it's dinner time, create a localized medium distance pager network

Geographical Enhancements

Reliability / Rate enhancement via parallel PTP links

Range Increase By Relay Nodes

Ũ

Geographical Enhancements

GENERAL REMEDIATION

Weakness Model

A wireless MAC layer protocol is deemed vulnerable to SPARROW technique, if any of its procedures allows forming two sets of uplink messages (**M**) and the downlink broadcast messages (**B**) satisfying all the following conditions:

- Passive Reception: any signal in (B) are anonymously decodable.
- 2) Bijectivity: one-to-one correlation between (M) & (B).
- 3) Anonymous Uplink: no need to attach to the network.
- Stateless Uplink: Trudy can successively send any message from (M) without protocol violation.

Understanding CRI Purpose

- The value is arbitrary by UE
- Think of it as a ping-pong or selective ack
- Rebroadcast in Msg4 is universally decodable (QPSK) by both UE and non-UE devices

• UE identities remain hidden

Solutions that don't work

CRYPTO HASH WITH SALT | BLOCKING

- No preset CRI for privacy
- No Shared secret UE & fNB

Salt must be sent to UE

Ricky can still map (**B**) to (**M**) by computing hash (rainbow)

fNB cannot distinguish
between Trudy and other
users so cannot risk blocking
RACH

Solution That Works: ELISHA

 Extensible Loss-Induced Security Hashing Algo

 New Salting to reduce Short-String hash collision

 Infeasible to construct rainbow table or forwarderror correction code books

Could have other applications other than secure RACH

WRAP UP

Disclosure Timeline

Concluding Bit

- Utilize lateral thinking and your peers!
- There's a nice sweet spot between building your own wireless protocol or piggy backing on top of the application layer for hidden communication. Just because it's layer 2 doesn't mean it's a short distance.
- We don't think LTE and 5G are the only radio accessible systems with this kind of problem. Start researching other MAC layer negotiation protocols, notably for wireless systems, like satellites.

LATERAL THINKING This Photo by Unknown Author is licensed under <u>CC BY-SA-NC</u>

Thank You's and Contact

• Many thanks to Keysight Engineering Team in Millan:

- Befekadu Mengesha
- Luca Mapelli
- Thanks to ATI management staff:
 - Chuck McAuley
 - Chris Moore
 - Steve McGregory
- Thanks to Keysight IP program coordinator:
 - Pete Marsico
- Thanks DEFCON!

Reza

- <u>https://twitter.com/darthsohos</u>
- <u>https://www.linkedin.com/in/sohos</u>

Chuck

• <u>https://twitter.com/nobletrout</u>

