
Abusing
Sast Tools

@DEFCON
When scanners do more than just scanning

Who am I?

Rotem Bar

Head of Marketplace @ Cider Security
-

Bug Bounty Researcher
-

Cyber Paladin

@rotembar

Security Engineers
A person that tells others where
they have problems, and helps them
fix them.

DevOps
Engineers who are in charge
of large scale deployments.

SAST Builders
Developers who have decided
to automate their efforts for
finding security bugs.

Bad Guys
People who have decided to
harm other people for a living.

Target Audience

SAST 101
01

How Scanners Work

02

Hacking Time
04

What is the Impact
05

Previous Research
03

Conclusions
06

Table of Contents

SAST 101
01.
Static Application Security Testing

Static program analysis is the
analysis of computer software that is
performed without actually
executing programs

—Wikipedia

https://en.wikipedia.org/wiki/Static_program_analysis

Why do we Run SAST?

1. Stop bad security practices

2. Prevent infrastructure mistakes

3. Assess code security

4. Create Standardization and

consistency

SAST Pros VS Cons
FAST

Can run on source code without
any need to compile False Positives

Cannot validate findings

SAFE
Does not execute code

Hard to track flow control
Some languages are almost
impossible to track staticallyEASY

Can be run on code, without the
need for more resources

How Scanners
Work

02.

High Level Overview

Code
Parses files in folder

and searches for
matching

extensions

AST
Converts code

into AST
structures

Processing
Runs predefined

rules on AST
with flow control

analysis

Results
Creates results
based on user
configuration

01 02 03 04

Log(1 + 2* 3)

Sample AST

BASIC Rule

if
typeof expression = CallExpression

and
expression.callee.name = log

and
expression.arguments.length > 0

Then

“Found a log function with more than one
argument”

Can Get Complex
if

typeof expression = CallExpression
and

expression.callee.name = log
and

expression.arguments.length > 0
Then

SOURCE = express.arguments[0]

if
typeof expression = CallExpression

and
expression.callee.name = eval

and
Expression.arguments.length > 0

SINK = express.arguments[0]

If path between SINK and SOURCE then

Report findings

Static program analysis is the
analysis of computer software that is
performed without actually
executing programs

—Wikipedia

https://en.wikipedia.org/wiki/Static_program_analysis

What If?
I could write code that will intentionally
abuse a SAST scanner’s behavior when

being statically scanned

Previous
Research

03.

CHECKOV RCE

https://security.paloaltonetworks.com/CVE-2021-3035

KIBIT

Terraform?

SNYK TERRASCAN

Terraform Plan

https://github.com/rung/terraform-provider-cmdexec

terraform-provider-cmdexec provides command execution from Terraform Configuration.

Terraform has local-exec provisioner by default. but provisioner is executed when terraform apply. On the
other hand, terraform-provider-cmdexec execute a command when terraform plan.

This provider was originally created for
penetration testing of CI/CD pipeline.

By Hiroki Suezawa

See also for detailed execution => https://alex.kaskaso.li/post/terraform-plan-rce

https://github.com/rung/terraform-provider-cmdexec

Hacking Time
04.

Disclaimer
Open source is awesome
I believe in building and using open source software.

Open source software has made, and continues to make, our lives much easier and
our world much more secure.

We need to use it responsibly
When we expose OSS to our sensitive code and environments, we are obligated to
do it responsibly;

We should not expect OSS to provide the same level of security as their commercial
alternatives.

We should assume the OSS could potentially contain security flaws and make sure it
is properly configured and running in a safe environment.

Setting up the Experiment

Working
Directory

Observe Outcome

Execute
Scanner

Clone Repo

Add “evil” files

Experiment #1

Checkov is a static code analysis tool for infrastructure-as-code.

CI Configuration Hijacking

Repo Clone

Scan
Does

.checkov.yml
exist?

Load
configuration

check:
- NONE

Demo

https://docs.google.com/file/d/1LlcTra17clvVzQsOlJJhTS-Qgzzegco-/preview

Scanner Config

PHPSTAN phpstan.neon

TFSEC .tfsec/config.json

KICS kics.config

BANDIT .bandit

BRAKEMAN config/brakeman.yml

CHECKOV .checkov.yaml

SEMGREP .semgrep.yml

Scanners Config Hijack Table

4.9k

2.9k

6.2k

3.3K

0.6K

2.9k

10k

Scanner
Hijacking

Altering source code in a manner that is
intended to manipulate and abuse the

scanner behavior

Experiment #2

CI Configuration Execution

Repo Clone

Scan
Does

.checkov.yml
exist?

Load
configuration

external-checks:
- checks

Does
checks/__init__.py

exist?

Load all files
in checks and
execute them

Demo

https://docs.google.com/file/d/1CrsVoIASRqm3rizdSr39Rn11v2uXjqUq/preview

Experiment
 #3

KIBIT

kibit is a static code analyzer for Clojure, ClojureScript, cljx and other
Clojure variants. It uses core.logic to search for patterns of code that could

be rewritten with a more idiomatic function or macro.

https://github.com/lynaghk/cljx
https://github.com/clojure/core.logic

Will it Execute?

Experiment #4 Experiment #5

PMD_JAVA_OPTS="-jar EvilJar.jar"

Scanner Config ENV Code

Checkov

PHPSTAN

RUBOCOP

KIBIT

PMD

CDXGEN

DEP-SCAN

Scanners Config Execution Table

And growing...

16

1.7k

11.4k

3.5k

10k

2.9k

74

Static program analysis is the
analysis of computer software that is
performed without actually
executing programs

—Wikipedia

https://en.wikipedia.org/wiki/Static_program_analysis

Your Code will
probably be

able to execute
other programs

What is the
Impact?

05.

SAST Tool Environments

Developer
Machines

Security
Researchers CI/CD

Developer
Machines

Security
Researchers CI/CD

SAST Tool Environments

CI/CD Whole Flow

Commit & Push to
Dev Branch

CI Checks

Pull Request
Created

Merge into
Production

Commit & Push to
Master Branch

CI Checks
CD DeploymentsCI Checks

CI/CD Implications

Bypass
Protections
Configure ourselves

the “Policy” for
security

Extract
Sensitive Data

We can extract data which
resides in our CI/CD

Environment

Deploy Assets to
Production

Infiltrate the
Network

By executing code we can
insert ourselves into

restricted environments

Command
Execution

Conclusions

06.

Assume Code will Execute

When repo will be scanned by scanner,
script will execute

Sample Attack Flow

Commit & Push to
Dev Branch

CI Checks

Pull Request
Created

Merge into
Production

Commit & Push to
Master Branch

CI Checks
CD Deployments

1. Add code execution script to scanner
config file

2. Push new commit into branch
3. Create a PR Request

Script will override CI Checks, Tell scanner all is
good and will attempt to steal credentials

CI Checks

High Level Possible Resolutions

Network:
● Isolate all activities to needed resources only
● Ensure egress filters are blocking traffic

Host:
● Ensure scan runs in unprivileged

containers/systems
● Verify pods are deleted after scanning finishes

Monitor:
● Log abnormal behavior:

○ Tool output
○ Running time
○ File system
○ Network access

Education:
● Understand the risks when running unverified code

in your CI/CD environments or development
laptops

Execution:
● Verify tool is executed with wanted configuration
● Create a clean environment where the tool would

be executed
● Ensure to cap processing power and activity time

Configuration:
● Ensure tool is not picking up or executing code

Conclusions
The security needs of this world are getting bigger every day.

This generated growing amounts of security automation

We need to be proactive and start thinking about how the next
generation of attackers can abuse the automations we are building to

attack our infrastructure.

What’s next?

What’s Next?
The research has just begun!

● Understand and deep dive into additional SAST scanners

● Assess additional automation tools out there - Linters, Code
Coverage, Testing Frameworks,

● Analyze Wrappers for tools - GitHub Actions, Orbs, ...

● Create standard for securely working with code analysis
tools of any kind

Thanks
@rotembar

Community => https://rebrand.ly/security-tools-defcon

POC => https://github.com/cider-rnd/cicd-lamb

I want to thank all of the
open source developers out

there for creating these
awesome security tools.

