»‘ @DEFCON 'fr e

When scanners do more than just scanning

& T @ H ok T

Head of Marketplace @ Cider Security

Bug Bounty Researcher

Cyber Paladin

Api1 — Ay = On

Target Audience

Security Engineers I DevOpS
LD
A person that tells others where ~ Engineers who are in charge
they h blems, and helps them fl le deployments.
Ry ey have problems, and helps the 2 of large scale deploy
fix them.
s SAST Builders Bad GuysS
U Developers who have decided People who have decided to
to automate their efforts for harm other people for a living.
N\ N

finding security bugs.

%%%% Table of Contents o

01 02 03
SAST 101 How Scanners Work PreviousS ReSearch
OL 05 06

Hacking Time what is the Impact ConclusSions

SAST 101

Static Application Security Testing

H
H e ==
C‘a(g
O il
H

Static program analysis is the
analysis of computer software that is

performed actually
programs

~wikipedia

https://en.wikipedia.org/wiki/Static_program_analysis

Why do we Run SAST?

1. Stop bad security practices
2. Prevent infrastructure mistakes

3. Assess code security

4. Create Standardization and

consistency

SAST ProS VS ConsS

FAST O
Can run on source code without
any need to compile _O False POSiﬁV@S
Cannot validate findings
SAFE O

Does not execute code

(O Hard to track flow control

Some languages are almost

EASY O— impossible to track statically

Can be run on code, without the
LI need for more resources

0O2.
How Scanners
Work

High Level Overview

o Ll

0l 02 03

Code AST Processing Results
Parses files in folder Converts code Runs predefined Creates results
and searches for into AST rules on AST based on user
matching structures with flow control configuration
extensions analysis

- ExpressionStatement ({
- expression: CallExpression {
- callee: Identifier {
name: "log"

}

= arguments: [
= BinaryExpression {
- left: Literal ({
value: 1

Sample AST

raws 1"
}
operator: "+"
= right: BinaryExpression {
= left: Literal ({
value: 2

raw: "2"

}

Log(l + 273} _

= right: Literal = $node {
value: 3

raw: "3"

]
optional: false

BASIC Rule

if
typeof expression = CallExpression
and
expression.callee.name = log
and

expression.arguments.length > 0

Then

“Found a log function with more than one
argument”

D1d triangle(int a, int b, int c)

(3) int type, t:

(4) if (a>=b)

®) {

(6) t=aa=b b=t
@}

(8) if (ad>=c)

© {

(10) t=aa=cic=t:
ant

(12) if (b >= o)

a3 {

(14) t=b:b=cic=1t:
@1s) }

(16) if (a+b<=0¢)

an type = 4:

(18) else

a9 {

(20) if (a==b)

3%} {

(22) if (b==c)
(23) type = 1;
(24) else

(25) type = 2;
(26)

@n

(28)

(29)

(30)

31

(32)

33

(33)}

5) retumn type:

Can Get Complex

if
typeof expression = CallExpression
and
expression.callee.name = log
and
expression.arguments.length > O
Then

SOURCE = express.arguments[0]

if
typeof expression = CallExpression
and
expression.callee.name = eval
and

Expression.arguments.length > 0
SINK = express.arguments[O]

If path between SINK and SOURCE then

Report findings

Static program analysis is the
analysis of computer software that is

performed

OH ? _\.1504.\

~wikipedia

https://en.wikipedia.org/wiki/Static_program_analysis

what If7?

| could write code that will
a SAST scanner’s behavior when
being scanned

O2.
PreviousS
ReSearch

H
H

CHECKOV RCE

Description

An unsafe deserialization vulnerability in Bridgecrew Checkov by Prisma Cloud allows arbitrary code execution when
processing a malicious terraform file.

This issue impacts Checkov 2.0 versions earlier than Checkov 2.0.26. Checkov 1.0 versions are not impacted.

Workarounds and Mitigations

Do not run Checkov on terraform files from untrusted sources or pull requests.

https://security.paloaltonetworks.com/CVE-2021-3035

KIBIT

Kibit evaluates and runs code it parses with no option to disable it #235

irotem opened this issue on Sep 23, 2019 - 1 comment

Terraform?

terraform plan —-out=tfplan.binary

terraform show —-json tfplan.binary > tf-plan.json

To scan Terraform Plan output:

ith the release of +.0, Terrascan has the ability to scan these Terraform plan JSON
Provide the path to your Terraform Plan output which must be stored as a valid JSON file.

ve its findings.

ted that

snyk iac test tf-plan.json

TERRASCAN

Terraform Plan

https://qithub.com/rung/terraform-provider-cndexec

terraform-provider-cmdexec provides command execution from Terraform Configuration.

Terraform has local-exec provisioner by default. but provisioner is executed when terraform apply. On the
other hand, terraform-provider-cmdexec execute a command when terraform plan.

This provider was originally created for
penetration testing of CI/CD pipeline.

By Hiroki Suezawa

See also for detailed execution => https://alex.kaskaso.li/post/terraform-plan-rce

https://github.com/rung/terraform-provider-cmdexec

Disclaimer
Open source is awesome
| believe in building and using open source software.

Open source software has made, and continues to make, our lives much easier and
our world much more secure.

We need to use it responsibly
When we expose OSS to our sensitive code and environments, we are obligated to
do it responsibly;

We should not expect OSS to provide the same level of security as their commercial
alternatives.

We should assume the OSS could potentially contain security flaws and make sure it
is properly configured and running in a safe environment.

Execute
Scanner

Working
Directory

X

Clone Repo

A

Add "evil" fileS

ObServe Outcome

Experiment #1

Checkov is a static code analysis tool for infrastructure-as-code.

Configuration using a config file

Checkov can be configured using a YAML configuration file. By default, checkov looks fora .checkov.yaml or
.checkov.yml filein the following places in order of precedence:

¢ Directory against which checkov is run. (——directory)
e Current working directory where checkov is called.
e User's home directory.

Attention: it is a best practice for checkov configuration file to be loaded from a trusted source composed by a
verified identity, so that scanned files, check ids and loaded custom checks are as desired.

Users can also pass in the path to a config file via the command line. In this case, the other config files will be
ignored. For example:

checkov —--config-file path/to/config.yaml

Ch= CH—CH—on— CH,

CI Configuration Hijacking

Does
.checkov.ymi
exist?

Load
configuration

Repo Clone

https://docs.google.com/file/d/1LlcTra17clvVzQsOlJJhTS-Qgzzegco-/preview

H
| #°
H—C— c< -H e @ o
2 ScannersS Config Hijack Table #,
Scanner Config
PHPSTAN 10k phpstan.neon
TFSEC v 29K | tfsec/config.json
KICS Y 0.6K kics.config '
BANDIT Y 33K | bandit i
BRAKEMAN ¥ 6.2k config/brakeman.yml
CHECKOV Y 29k , checkov.yaml
SEMGREP S 9k | .semgrep.yml 5

Scanner

source code in a manner that is
intended to and the
scanner behavior

Experiment #2

CLI Command Reference

Parameter

o &
L Y —version’

-d DIRECTORY M --directory DIRECTORY
-f FILE M --file FILE

--external-checks-dir
EXTERNAL CHECKS_DIR

Description
Show this help message and exit.
Version.

laC root directory. Cannot be used
together with —file.

laC file. Cannot be used together
Y ieccors

Directory for custom checks to be
loaded. Can be repeated.

List checks.

CH.= CH- CH,— CH— CH,

CI Configuration Execution

O
S
oo
Does g
.checkov.ymi : ,
: configuration
exist?
Repo Clone

Does
checks/__init__.py
exist?

Load all files
in checks and
execute them

https://docs.google.com/file/d/1CrsVoIASRqm3rizdSr39Rn11v2uXjqUq/preview

Experiment
#3

(defn read-file
"Generate a lazy sequence of top level forms from a
LineNumberingPushbackReader"
[ALineNumberingPushbackReader r init-ns]
(let [ns (careful-refer (create-ns init-ns))
do-read (fn do-read [ns alias-map]
(lazy-seq
(let [form (binding [*ns* ns
reader/xalias-mapx (merge (ns—aliases ns)
(alias-map ns))]
(reader/read r false eof))
[ns? new-ns k] (when (sequential? form) form)

new-ns (unquote-if-quoted new-ns)

WARNING: You SHOULD NOT use clojure.core/read or

;3 clojure.core/read-string to read data from untrusted sources. They
;3 were designed only for reading Clojure code and data from trusted
;3 sources (e.g. files that you know you wrote yourself, and no one
else has permission to modify them).

(when-not (= form eof)
(cons form (do-read ns alias-map))))))]
(do-read ns {ns {}})))

- =+ fuzz lein kibit test.clj
+ fuzz cat test.clj At test.clj:1:

(if (some test) Consider using:

(some action) (when (some test) (some action))

instead of:

ni‘l) (if (some test) (some action) nil)

https://github.com/lynaghk/cljx
https://github.com/clojure/core.logic

will it Execute?

7. CNADCHAT"
7-SNAPSHOT

(defproject test "6.60.
:source-paths ["."]) [S)

%

#=(println "Running code")

#=(use [clojure.java.shell :only [sh]])
#=(eval (println (clojure.java.shell/sh "./rce.sh" "KIBIT")))
#=(shutdown-agents)

o git:(main) x lein kibit
Running code
{:exit 1, :out SUCCESS, :err }_

w~
\)\>\\N)v0 CH, = CH-CHI-CH]_*CH}

Experiment #4 Experiment #5

O
O

Pre-processmg Note that CPD is pretty memory-hungry; you may need to give Java more memory to run it, like this:

Configuration files are pre-processed using the ERB templating mechanism. This makes it possible to
add dynamic content that will be evaluated when the configuation file is read. For example, you could
let RuboCop ignore all files ignored by Git.

$ export PMD_JAVA_OPTS=-Xmx512m
$./run.sh cpd --minimum-tokens 100 --files /usr/local/java/src/java

AllCops:
Exclude:
<% "git status --ignored --porcelain’.lines.grep(/*!! /).each do |path| %>
- <%= path.sub(/*!'! /, "') %>
<% end %>

PMD_JAVA_OPTS="-jar Evillar.jar”

<¥= sh rce.sh RUBOCOP = %>

<%= exit! %>

\ 0 CHi = CH—Ch,— ch— o,

H

\ 40
v ScannersS Config Execution Table #.,
Scanner Config ENV Code |
aecow Pt 20 AT T
e gl | o s
Cnsocor yellik VST
P . i A

And growing...

Static program analysis is the

analysis of computer software that s
performed actually -+
programs

~wikipedia

https://en.wikipedia.org/wiki/Static_program_analysis

L)
©) s
NH

Your Code will @ {}
robably be

able to execut

other program

@
C H,

@
wha‘t is the

SAST Tool Environments

: o}

v
Developer Security
Machines ReSearchers Cl/CD
v j\\ ~NR

\,\>\\N)§0 Ch = CH*CHI—CHFC%

SAST Tool Environments

: o}

v
Developer Security
Machines ReSearchers Cl/CD
v j\\ ~NR

\,\>\\N)§0 Ch = CH*CHI—CHFC%

CI/CD whole Flow e
Master Branch
Commit & Pushto | —— Pull Request \ Merge into
Dev Branch Created Production

CL C.hecks
CI Checks Cl C‘heCkS CD Deployments

C1/CD Implications O O

BypasSsS
Protections

Configure ourselves
the “Policy” for

X Infiltrate the
Network

Command

security Exacuﬁon By executing code we can
insert ourselves into
restricted environments
Extract

Sensitive Data Deploy Assets to

Production

We can extract data which
resides in our CI/CD
Environment

H
H

L)
CH,

ASSume Code will E Execute
X I

)
L__l

L\\ ()

Sample Attack Flow

Commit & Push to
Master Branch

1 Add code execution Script to Scanner

config file when repo will be Scanned by Scanner,
2. Push new commit into branch script will execute
3. Create a PR Request

Merge into

Pull Request
Production

Commit & Push to
Dev Branch

Created

®) ; J

CI Checks CI Checks

Script will override CI Checks, Tell Scanner all is
good and will attempt to steal credentials

u

CI Checks
CD Deployments

High Level Possible ReSolutions

Network:

e |solate all activities to needed resources only
e Ensure egress filters are blocking traffic

HosSt:

e Ensure scan runs in unprivileged
containers/systems
e Verify pods are deleted after scanning finishes

Monitor:
e Log abnormal behavior:
o Tool output
o Running time
o File system
o Network access

Education:

e Understand the risks when running unverified code
in your CI/CD environments or development
laptops

Execution:

e Verify tool is executed with wanted configuration

e (reate a clean environment where the tool would
be executed

e Ensure to cap processing power and activity time

Configuration:

e Ensure tool is not picking up or executing code

ConcluSions

The security needs of this world are getting bigger every day.
This generated growing amounts of security automation

We need to be proactive and start thinking about how the next
generation of attackers can abuse the automations we are building to

attack our infrastructure.
(N
CHz

what's next”

@ en.wikipedia.org/wiki/Lint_(software)

WIKIPEDIA

The Free Encyclopedia

Main page
Contents
Current events
Random article

Article Talk

Lint (software)

From Wikipedia, the free encyclopedia

Lint, or a linter, is a static code analysis [ool used to
flag programming errors, bugs, stylistic errors and
suspicious constructs.'*! The term originates from a
Unix utility that examined C language source code.")

what's Next?

The research has just begun!

e Understand and deep dive into additional SAST scanners

e Assess additional automation tools out there - Linters, Code
Coverage, Testing Frameworks,

e Analyze Wrappers for tools - GitHub Actions, Orbs, ...

e (reate standard for securely working with code analysis ®CHZ
tools of any kind

Thanks

| want to thank all of the
open source developers out

there for creating these

awesome security tools.

POC => https://qithub.com/cider-rnd/cicd-lamb

Community => https://rebrand.ly/security-tools-defcon

