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Introduction

• Seth Kintigh

• Hardware Security Development Lifecycle Engineer a Dell

• Hobbyist programmer since 1987, learned cipher breaking 
from my grandma, mom was meteorologist and COBOL 
programmer, dad is an Electrical Engineer

• WPI graduate
• BS EE with minors in CS and Physics
• MS EE with concentration in crypto and infosec

• Started career as an EE, but shifted to network security in 
2004

• At home at low levels and layers



Near Field Magnetic Inductance (NFMI)

• Short range wireless physical layer that communicates by coupling a tight, low-
power, non-propagating magnetic field between devices. 
• The concept is for a transmitter coil in one device to modulate a magnetic field which is 

measured by means of a receiver coil in another device. [1]

• Not radio!
• Radio waves (electromagnetic waves) decay at 1/r2

• Magnetic fields decay at 1/r6

• Very short range, 2m tops, 10s of cm badge to badge, a 1-2 cm in my experiments.

• Short range makes it more secure

• Low absorption by body tissue, unlike radio, good for a “Body Area Network”
• More efficient than radio over short distances

• Used in some hearing aids and some proximity cards as part of the NFC protocol

1: https://en.wikipedia.org/wiki/Near-field_magnetic_induction_communication

2: https://www.nxp.com/products/wireless/miglo/nfmi-radio-for-wireless-audio-and-data-
streaming:NXH2261UK

https://en.wikipedia.org/wiki/Near-field_magnetic_induction_communication
https://www.nxp.com/products/wireless/miglo/nfmi-radio-for-wireless-audio-and-data-streaming:NXH2261UK


Almost No Information Available

• Weird levels of secrecy for hearing aid tech (dreams of Apple earbuds?)
• No data sheet (very weird)

• No protocol info at all

• No development kits

• No samples

• NDA required with minimum orders in the 100,000s of units



Software Defined Radio (SDR)

• Functions that were once performed in specialized hardware can now 
be done in software, hence Software Defined Radio
• I used GNURadio to modulate and demodulate signals

• I use HackRF to tune and receive/transmit signals

• Instead of an antenna I use a coil, basically an electromagnet (or half 
of a transformer), to send and receive signals

• I used Python for everything else
• Pulling clean packets out of noise, unmasking/unobfuscating packets, 

convolution and deconvolution of symbols, converting symbols to/from data, 
computing their bizarre CRC format, writing packets into .wav files for 
transmit



Other Terms You Should Know

• Buffer overflow: write data to a stack variable then keep on writing 
until you overwrite the return address of a function. Rewrite the 
return address to some point at your code or somewhere interesting.

• SWD/J-TAG: low level debugging interface for hardware. Like GDB, for 
hardware – read or write registers, memory and flash, step the clock 
one cycle at a time, good stuff.

• Convolution code: In telecommunication, a convolutional code is a 
type of error-correcting code that generates parity symbols via the 
sliding application of a boolean polynomial function to a data 
stream.[1]

[1] https://en.wikipedia.org/wiki/Convolutional_code



The DEF CON 27 Badge Game

• The badges communicate with each other via 
NFMI, also LEDS and beep depending on activity

• They were part of a game:
• Must communicate with 1 each of “magic” versions of 

the badge types: Speaker, Village, Contest, Artist, Goon

• “Prize” is a piezoelectric rick-roll

• Cut from crystalline stone, see great presentation 
on how they were made[2]

[1] http://www.grandideastudio.com/defcon-27-badge/

[2] https://www.youtube.com/watch?v=gnZQcWIX02A

http://www.grandideastudio.com/defcon-27-badge/
https://www.youtube.com/watch?v=gnZQcWIX02A


DEF CON 27 Badge Hardware

• Badge has an MCU, NFMI chip, LEDs, and piezoelectric speaker

• MCU communicates to the NFMI chip via UART

• When the MCU boots up, the MCU 
loads the badge firmware

• Within that firmware is an NFMI 
protocol firmware patch

• The MCU sends that firmware patch 
to the NFMI chip during bootup

www.grandideastudio.com/wp-content/uploads/dc27_bdg_slides.pdf



DEF CON 27 Badge Debug Interfaces
www.reddit.com/r/Defcon/comments/cpmpja/defcon_27_badge_hacking_for_beginners/

• There are pads for serial and SWD 
communication with the MCU
• Solder on leads or use pressure connectors

“Depopulating the connectors stops the
hackers!” 

• Serial port shows a terminal interface for 
the badge MCU

• JTAG/SWD allows rewriting of the MCU 
firmware, and full debugging control over 
the MCU, including stepping the clock, 
reading registers, etc.

https://www.reddit.com/r/Defcon/comments/cpmpja/defcon_27_badge_hacking_for_beginners/


Padding UART for Fun and Profit

• Badge MCU wants to transmit 8 bytes

• MCU pads that to 18 bytes

• Sends via UART to NFMI chip

• NFMI chip un-pads and transmits

NFMI Transmission

• Receiving NFMI re-pads data

• Sends via UART to MCU

• Badge MCU strips padding, puts data
on ring buffer until it’s ready to process it
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Buffer Overflow

• To find game clues I spent the first few hours reverse engineering the firmware
• Then the source code was released… But I’ve never been given the correct answers before

• Found a buffer overflow so obvious I was sure it was a part of the game
• (Narrator: It wasn’t)



Buffer Overflow Proof of Concept
• I Verified it was exploitable by simulating a large packet

• I started by writing a buffer overflow exploit in ARM code

• I used JTAG to write it directly onto the MCU’s ring buffer for receiving NFMI data

• The badge read the data and executed my code injection, proving it was exploitable 

W1 0x1ffffcd6 0x04  // set nxhTxIndex
w1 20002f00 42  d0 d0 d0 d0 d0 d0 d0 d0 d0 d0 d0 d0 d0 d0 d0 d0 // “B”, 16 bytes of padded nibbles
w1 20002f11 00 00 00 00  11 11 11 11  44 44 44 44  55 55 55 55 // Overwrite other stack vars, R4, R5
w1 20002f21 33 4c 00 00 e5 f1 ff 1f  11 11 11 11  22 22 22 22 // LR→[POP R0-R2,R3,R4,PC], R0→str addr, R1, R2
w1 20002f31 33 33 33 33  44 44 44 44 2d 04 00 00 48 61 63 6b // R3, R4, LR->printf, then my string
w1 20002f41 20 74 68 65 20 70 6c 61 6e 65 74 0d 0a 00 45    // end of string, “E”
w1 0x1ffffcd4 0x51 // set nxhRxIndex

• Demo!

• Now I just needed to do that with a real NFMI transmission



NFMI Specs are Tough to Find

• Some NXP NXH2261UK info in marketing pamphlets, blogs, and FCC filings:
• Center frequency: 10.579 MHz[2][5], 10.6 MHz[1], 10.56 MHz antenna on badge[3]

• 12.288 MHz oscillator?[6]

• Bandwidth: 596 kbps[1][4] and/or 400 kHz[1] or 568.7 kHz[7]
• Supports streaming via I2C?

• D8PSK/8-DPSK modulation[1][7]
• Up to 2 audio Tx, 2 audio Rx[6]

• Firmware suggests it has 8 queues, each 16 bytes (group chat?)
1: https://www.futureelectronics.com/resources/get-connected/2017-06/future-electronics-near-field-magnetic-induction

2: https://www.nxp.com/products/wireless/miglo/nfmi-radio-for-wireless-audio-and-data-streaming:NXH2261UK

3: http://www.grandideastudio.com/wp-content/uploads/dc27_bdg_bom.pdf

4: https://www.nxp.com/docs/en/fact-sheet/MIGLOFS.pdf

5: https://fccid.io/TTUBEOPLAYE8R/RF-Exposure-Info/RFExp-3568435

6: https://www.52audio.com/wp-
content/uploads/2018/06/NXP%E6%81%A9%E6%99%BA%E6%B5%A6%E3%80%8A%E6%81%A9%E6%99%BA%E6%B5%A6%E7%9C%9F%E6%97%A0%E7%BA%BF%E8%80%B3%E6%9C%BA%E5%92
%8C%E4%BD%8E%E5%8A%9F%E8%80%97%E6%B8%B8%E6%88%8F%E8%80%B3%E6%9C%BA%E7%9A%84%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88%E3%80%8B.pdf

7: https://apps.fcc.gov/eas/GetApplicationAttachment.html?id=5049516

https://www.futureelectronics.com/resources/get-connected/2017-06/future-electronics-near-field-magnetic-induction
https://www.nxp.com/products/wireless/miglo/nfmi-radio-for-wireless-audio-and-data-streaming:NXH2261UK
http://www.grandideastudio.com/wp-content/uploads/dc27_bdg_bom.pdf
https://www.nxp.com/docs/en/fact-sheet/MIGLOFS.pdf
https://fccid.io/TTUBEOPLAYE8R/RF-Exposure-Info/RFExp-3568435
https://apps.fcc.gov/eas/GetApplicationAttachment.html?id=5049516


Start by Analyzing the Analog Signal

• Pattern of 8 bursts every 4.8 seconds (16 bursts shown):

• Each burst has 4 sections (1 burst shown):

1   23    4

Section 1 2 3 Section 4

Raw signal capture, no down-conversion

Sections:



Section 1

• Section 1 is 21 pulses of 3 frequencies then a pause/null
• Appears to be timing signal using/mimicking trinary FSK modulation (TFSK?)

• Center of frequency plot is 10.569MHz, other pulses shifted +/- 150MHz
• Probably to tell the receiver the signal strength and timing, possible frequency info
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Graphs made with: Baudline, Audacity



Quick Note on Down-Conversion

• This is the raw signal, most energy at 10.569MHz +/- 200KHz:

• Below is the signal when the HackRF is tuned to 10.569MHz, and it 
down-converts the signal by 10.569MHz
• Most energy is now centered at 0Hz +/-200KHz 

• Signals that were at 10.569MHz are now at almost 0Hz (sections 1 and 3)

• Data is more visually obvious (sections 2 and 4)

• It’s the process of shifting a signal to an Intermediate Frequency

frequency

frequency



Section 2: Preambles

• Section 2 held one of a few patterns, often repeated twice, or 
inverted, or with magnitude and phase swapped

Demodulated by 10.56MHz so center appears at 0Hz



Section 3: More Timing?

• Seems to be more timing(/strength/freq) data, communicated with 4 
bursts of the center frequency followed by a pause/null

Mag and phase down-converted

Magnitude with no down-converting

Mag down-converted by 10.569MHz to almost 0Hz

Frequency drift happens



Section 4: Data!

• 271(?!) copies of the data packet
• Each starts with one of 8 variations of Section 2 preamble

• Followed by data

• Then a brief null/pause

• Sometimes exact copies, sometimes inverted, sometimes I and Q swap



D8PSK Modulation

• PSK modulations transmit data by 
modulating a carrier frequency using 
carefully timed cosine “I” and sine “Q’ inputs

• If you plot these signals by magnitude of the 
“in-phase” (I) and “quadrature” (Q) 
components the result is a constellation of 8 
points 

• Each phase is a “symbol” 0-7
• Differential means the information is 

transmitted as the difference between 2 
symbols, modulo 8

• Differential, 8-point constellation, Phase Shift Keying



Frequency and Sample Rate

• Center frequency seems to move
• Different badges have different freqs? Temperature? Sample rates? Anger?

• 1.5515MHz worked for a long time, then 1.4MHz, then 1.569MHz

• Sample rate of 2Msps and 1.192Msps (corresponding to 596kHz 
bandwidth) didn’t work as well as 1.19055Msps (595,275Hz 
bandwidth)
• Latter value gave me 4 samples per symbol, 440 samples per packet



Reverse Engineering the Analog Signal

• HackRF to receive the signal

• Used GNURadio to write a D8PSK demodulator to output symbols
• Nightmare of poor docs, broken examples, months of guessing and checking 

• I published working examples here: https://github.com/skintigh/GNURadio_examples

https://github.com/skintigh/GNURadio_examples


Dealing with Noise and Nulls

• The 271 copies of section 4 varied a lot, only some of that due to noise
• Structure seems* to be: 3 null symbols, 1 random symbol, then 106 symbols

• Nulls?!?
• Appeared to be noise at first

• Sort of a 9th symbol in D8PSK, the null forms a 
9th dot at the center of the constellation (D9PSK?)

• Related to NXP’s CoolFlux BSP audio chip?
• Uses nulls in a OFDM-DQPSK signal [1]

• Simple to find timing using a low pass filter[1]

* Or maybe random symbol R, 2 nulls, 7-R? Signals have 11 tiny samples that look like: .I…….I.

[1] DSP-Based Implementation of a Digital Radio Demodulator on the ultra-low power processor CoolFlux BSP 

110 Symbols Plotted by Phase and Delay

https://eprints.ucm.es/id/eprint/11109/1/sistemasinformaticosAlvaroMartinezLopezElenaPerezTorilGracia.pdf


000000000000000000000000000025453535353535353535353535353573544444444444444444444444444170177177764
000000000000000000000000000027362626253535353535353535353552444453535353535353535353537000700000001
000000000000000000000000000036362535352626262626262535353563444444444444444444535353520700000000077
000000000000000000000000000016353535353535353535353535353513445353535354444444444444434000000000070
000000000000000000000000000105444444444444444444444444444424444444444444444444444444430100000000640
000000000000000000000000000363626262535353535353526262626543535353544444444445353535307000000000000
000000000000000000000000000024535353535353535353535444444414435444435353535353535353527000000000715
000000000000000000000000000026353535353535353535353535353563535353535353535353535353535107000000000
000000000000000000000000000025435444444444444444444444444404444444444444444444444444430000007170160
000000000000000000000000000104535353535353535353535444444433535353535353544354444444417000000000076
000000000000000017000100000026353535353535353535353535353673535353535353535353535444436000000000070
000000000000000000000000000114535353535353535444444444444433535353535353535444444444427000000000030
000000000000000000000100071272626262626262626262626262626433535353544444444444444444407000000000040
000000000000000010000000000272626262626262626262626262626635353535353535353535353535370000000000070
000000000000000000000000000015444444444444444444444444444424444444444444444444444444432000000000010
000000000000000000107010070203626262626262626263535353544433535353535353535353535353517000000000060
000000000000000000000000000103626262626262535354444444444524444444444444444444444444407000000007111
000000000000000000000000100013617265353535353526262626262602626262626253535353535353526000000000002
000000000000000000001000000111717007171626262626262626262673625353535353535353535353527700000000005

Section 1-3 Symbols

• Section 1: 21 x 99 symbols 
• Timing?

• Section 2: 2 copies of 44 symbols 
• Preamble!

• Section 3: 4 x 56 symbols 
• Timing?

44404040246000006420004000000000210000000005
44404040246000006420004000000000210000700000

4000000000000000300000000000
2100000000000000300000000000
1100000000000000300000000000
02000000000000002100000000000



Section 4 Symbols

• Section 4: 271 copies of 110 symbols
• Not all identical copies dues to noise

• Wrote a Python tool to count packet variations
• Outputs 1 copy of the most common packet in this section

00735350305015510000552000442775576644063173443234570742120043137542513031530202076616413144077352775447244044
51714440404024600000642000442774675644063173443233670732120043137542513031530202076616413144077352775447244044
61704440404024600000642000442774675644063173443233670732120043137542513031530202076616413144077352775447244044
50724440404024600000642000442774675644063173443233670732120043137542513031530202076616413144077352775447244044
62004440404024600000642000442774675644063173443233670732120043137542513031530202076616413144077352775447244044
50724440404024600000642000442774675644063173443233670732120043137542513031530202076616413144077352775447244044
61704440404024600000642000442774675644063173443233670732120043137542513031530202076616413144077352775447244044
50014440404024600000642000442774675644063173443233670732120043137542513031530202076616413144077352775447244044
61704440404024600000642000442774675644063173443233670732120043137542513031530202076616413144077352775447244044
50724440404024600000642000442774675644063173443233670732120043137542513031530202076616413144077352775447244044
51004440404024600000642000442774675644063173443233670732120043137542513031530202076616413144077352775447244044
50104440404024600000642000442774675644063173443233670732120043137542513031530202076616413144077352775447244044
61164440404024600000642000442774675644063173443233670732120043137542513031530202076616413144077352775447244044



Preambles

• 20 fixed symbols, then 12 that form 1 of 3 patterns

• Section 2: alternates randomly between 2 sequences <with 12 nulls 
in-between?>
• 4440 4040 2460 0000 6420 0040 0000 0000

• 4440 4040 2460 0000 6420 0042 3133 4224

• Section 4: All 271 copies start (after null junk) with:
• 4440 4040 2460 0000 6420 0044 2774 6756



Structure of Section 4 Data Symbols

Header:

• 4 bytes null/primer

• Preamble 8x4 symbols
• 20 fixed, 12 variable

Counter Size 8 Bytes of User Data Unused Data
4277235742232167  0732  12004313754251303153020207661641  31440773527

Packet Data

Null Preamble Packet Data Checksum
5001 44404040246000006420004427746756 4406317344323367073212004313754251303153020207661641314407735277 5447244044

Packet Data 16x4 symbols:

• 16 symbol counter
• Changes every burst, seems to increment

• 4 symbols for user data size
• Learned this by modifying badge firmware

• 44 symbols for 11 bytes of user data
• 12 symbols/3 bytes unused by badge

Packet Footer

• 10 symbols



Finding the Mask Symbols for Data 5-11

• So now we have a stream of differential symbols, do we have data?
• Not even close

• Every symbol after the preamble* are masked.
• Setting the badge to transmit 8 bytes of 0x00 confirmed this

• This gave me 32 symbols of the mask

• Modified badge firmware to send 11 bytes of 0x00
• That gives us the mask for those 11 user bytes (packet data bytes 5 though 15):

5 4 3 5 7 0 3 6 4 0 7 3 0 4 1 4 4 2 7 4 6 2 0 2 0 7 6 6 1 6 4 1 5 2 3 4 4 7 5 1 1 2 5 5
• I don’t see a pattern.

* and maybe the last 12 symbols of the preamble are masked, too.



Finding the Mask Symbols for Data 0-4

• The symbols changed with every burst -- alternated between changing 1 
symbol and (usually) 7 
• Every 8 packets: 8 symbols changed. Every 32: 9 changed. Every 128: 10 changed

• Conclusion: it’s a counter, 2 bits per symbol, with convolution on half(?!) of the bits

• After some reboots, the first symbol alternated between 0 and 4, on others 
between 2 and 6
• Every other location could be any symbol 0-7

• The first group of 4 symbols had 128 patterns, the next group of 4 had 256 patterns

• Conclusion: the counter increments by 2, and sometimes starts odd, sometimes even
• I didn’t know which was odd or even, so I guessed 0/4 was even. I guessed… poorly.

• Tail of 6 changed symbols obfuscates other symbols
• Even if I assume byte3 == 0 and know byte 4, I can only compute the last 2 of 8 symbols

0000 1111 2222 XXXX XX44



Finding Mask Symbols for Data 0-4

• I Recorded the counter for a week, observed transitions
• This gave me a mask for the first 10 symbols

• Confirmed the count doesn’t start at zero

• Took 19.1 hours to get 9th symbol, 76.5 hours get 10th

• At this rate it will take 51 days for 12 symbols
• 36 years for 16
• 9139 years for 20

• Didn’t understand well enough to brute force them

• Needed a smarter method

4 2 1 0  7 0 6 1  3 2 2 3  4 4 7 6  6 3 3 2

Last symbol to increment 
plus its tail of 6 changes

Confirmed mask

1
M
2
5
6
k

6
4
k

1
6
k

4
k
1
k
2
5
6

6
4
1
6
4......2

Last changed symbol indicates:



Finding the Mask Symbols for Data 0-4

• Then I got lucky by getting unlucky – I broke a badge

• Badge became very angry
• Instead of 271 x 110 symbol packets, it transmitted a pattern of 

108-symbols followed by 108 nulls

• Counter moved over 16 symbols!?!

• Transmitted around 1.4 MHz?

• Conclusions:
• Mask is 4210 7061 3242 2275 0332

• Assuming my 0/1 guess was right…

• It’s better to be lucky than smart



Finishing up the Data Mask

• Discovered counter moves at ludicrous speed when updating Tx packet
• That’s why counter starts at 346,637

• Wrote a script to update the Tx packet repeatedly then capture packets
• Got mask and proved counter is 4 bytes

• In case you want to send 2 billion packets over 41 years

• Data mask resulted in some erratic values when decoding sequential 
counts
• Wrong guess about what 1 and 0 

• The broken badge locked the first (unused!) byte at 1 just to screw with me?
• Mask for 1: 4210 7061 3242 2275 0332

• Mask for 0: 2336 7701 3203 2275 0332



Checksum Mask

• That left only the mask for the Checksum/CRC
• No way to get that until I know the algorithm and all data values

• To get the values I had to understand the convolution

• So I guessed and moved on



• As the counter increments, it either changes:
• 1 symbol for odd bits
• 6 of the next 7 symbols for even bits

• This means a 1-bit change is being spread out over 7 symbols
• They are using convolution, possibly like the one used on the 

Voyager space probe
• Voyager shift registers[1]:

• 1111001
• 1011011

• But only for half of the bits…?!?

[1] https://en.wikipedia.org/wiki/Convolutional_code

Counter Indicates Values are Convolved

Counter
427723574223
027723574223
446543654223
046543654223
467723574223
067723574223
406543654223
006543654223
421413701423 
021413701423
444233061423
044233061423



Reverse Engineering Convolution Code

• Started by changing 1 bit at a time

• Any 1 odd bit always changed 1 symbol, and always by 4

• Any 1 even bit changed 6 of the next 7 symbols
• Amount of change depended on mask and distance from the 

set bit

• Even bit change (show in code and mask-bit logic)
• Symbol positions 0, 2, 3, 6: mask in [1,2,5,6]) * 4 + 2; 

• [bit0^bit1, 1, 0]

• Symbol position 1: (mask mod 4) * 2 + 3 
• [bit0^bit1, ~bit0, 1]

• Symbol position 5: mask in [1,3,5,7]) * 6 + 1
• [bit0, bit0, 1]

0 1 2 3 4 5 6

0 2 3 2 2 0 1 2

1 6 5 6 6 0 7 6

2 6 7 6 6 0 1 6

3 2 1 2 2 0 7 2

4 2 3 2 2 0 1 2

5 6 5 6 6 0 7 6

6 6 7 6 6 0 1 6

7 2 1 2 2 0 7 2

Symbol position after even bit
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Reversing Convolution Code, Multiple Bits

• That math worked for decoding 1 even bit set in any position

• But multiple even bits were a mess

• After a lot of ugly math and dead ends, I realized the math that 
worked for a mask worked for any precious value



Reversing Convolution Code, Even Bits

• We can now convolve (or de-convolve) any number of even bits
0x00    0x00 0x01    0x00 0x05    0x00Value of each byte:

Even bits of that byte:
Mask of 0:

Convolved value:

All math is
modulo 8

Even bits Even bits Even bits



Convoluted Convolution

• Now I could decode the counter and it was sequential… mostly

• Sometimes multiple odd bits convolved
• I looked for patterns, added rules until it worked right

• All the rules don’t care what the current bit is, only look at previous 
bits
• Up to 2 bytes ago!
• Some rules are triggered by 0 bits, not just 1s
• Rules are:

• xxx011x
• xxx101x
• 1xxxx1x
• 11xxxxx

 Time →



Convolution

• Convolution of even bits might be Trellis 
Code Modulation TCM*
• I ended up figuring it out in a spreadsheet and 

writing some ugly python code, but it works
• Easier than deciphering GNURadio documentation

• Convolution of odd bits is… odd
• xxx011x
• xxx101x
• 1xxxx1x
• 11xxxxx

Rate = 2/3, m = 7?

*Can TCM convolve 1 bit into a pattern like 2322012? Is that middle 0 possible?



CRC Reverse Engineering

• Each packet ended with 10 unknown symbols, equivalent of 20 bits
• 220 possible combinations, yet only 212 patterns were common/real

• 12 bits stored in 20 bits?!?

• Changing 1 symbol can alter the next 6, won’t that overwrite the nulls and primer?

• All 10 symbols, “20 bits,” had to be correct
• Altering any in a packet replay attack caused it to be rejected by the NFMI chip

• Must reverse engineer this in order to craft custom packets
• Tried the tool “CRC Reveng” but it didn’t seem to work

• Wrote Python programs to try all possible 12-bit algorithms, didn’t work?!?



CRC Reverse Engineering, Continued

• Observed 1-bit difference in counter resulted in predictable checksum 
change

• Checksum values were built up by XORing values from a table, just like a 
CRC!
• I used counter values to get the CRC table values for the low bits

• Noticed that updating a TX packet would fast-forward the counter by ~300,000 ticks
• Wrote a program to speed the counter through more bits

• Wrote another program to “bit walk” every byte I could control
• Set 1 bit per packet

• Wrote a program to ingest all this data and compute almost the entire CRC table



CRC Reverse Engineering, Continued

• I eyeballed a pattern in the 10 symbols that revealed a how the 12-bit CRC was 
stored
• First 2 symbols store 4 bits of CRC data
• Next 2 symbols store 3 bits
• Next 2: 2 – only in odd bits
• Next 2: 2 – only in odd bits
• Next 2: 1 – only in odd bits

• Only the first 4 symbols can cause a tail of 6 symbol changes
• Odd bits only changes 1 symbol
• CRC is stored in 10 symbols total, including the 6-symbol tail of changes from convolution!

• Wicked smaht

• Bits are shuffled around, for reasons
• This is what thwarted CRC Reveng, and my brute force attempts
• Later tried CRC Reveng with the bits rearranged, and it worked!



CRC Reverse Engineering, Continued

• Now I can compute a CRC for the 16 data bytes, but I need the mask

• Originally I guessed randomly at the mask and based all the math off that
• I think this worked since CRC is built by XOR, with a non-zero base value for an empty 

packet, and I was effectively XORing that base again that with my mask symbols
• 9 of the bits change one symbol by 4, so that works like XOR

• 3 bits can cause a trail of 6 changed symbols, which made some packets with those CRC 
values unreliable?

• I think the CRC doesn’t protect the Preamble 
• Tried making packets with a ton of preamble variations, none worked

• I assumed 16 0s in the data would have a CRC of 0 based the mask off that 
• It worked! Reliably!



Crafted Packets at Last!

• With the CRC and mask I can now craft my own 16-byte packet!!!
• Will release my tools on github

• But I need a 36 byte packet to overflow the badge…

• I knew this from the start, hoped I would figure it along the way
• No field for that in the packet

• Preamble tinkering was a bust

• Time to reverse engineer the NFMI firmware



Extracting the NFMI firmware 

• To use SWD on the NFMI chip, first I had to find the reset line
• Knew it was on a middle layer

• Found out which ball it was from

• Scoured slides to find the line to that ball, then Joe Grand sent me confirmation



Extracting the NFMI firmware 

• Scratched a layer off the badge circuit board to 
expose a reset line on the middle layer 

• Cut it and soldered on a wire
• The trace is about the size of a hair
• Used a stereo microscope at Artisan’s Asylum

• Connecting SWD to an undocumented chip
• Added pull-ups, pull downs, resoldered everything
• Then tried settings for random chips until one worked

• Extracted NFMI memory space 0-0x18000… 
without the NFMI protocol code



Reversing the NFMI Firmware

• I extracted the NFMI protocol code from a section of the badge’s 
firmware, assembled the pieces together and dropped it into Ida Pro
• Nothing in there indicated a packet length field

• Coded to drop packets with more than 11 bytes
• (Later I removed that, but I still don’t know how to craft a longer packet, and faking the 

length resulted in uninitialized data)

• But I had seen (and logged) oversize packets occurring spontaneously 
and crashing the badge, what was going on?

B df df df df df df df df df df df df df df df df dd dd dd dd dd dd E -- length = 22
0xFFFFFFFFFFFFFFFF
-> Unique ID: 0xFFFFFFFF
-> Badge Type: Unknown
-> Magic Token: Yes
-> Game Flags: 11111111

B df df df df df df 42 df df df df df df df df df df df df df df df df dd dd dd dd dd dd 42 df df df df df df df df df df df df df df df df dd dd dd dd dd dd E -- length = 52

Welcome to the DEFCON 27 Official Badge



Off By One Bug to the Rescue

• NFMI sends packet to badge via UART,
• Badge checks for 2 bytes of space before copying 1 byte at a time to the ring buffer 

• One-by-one copying allows partial packets, off-by-one allows odd-sized packets

• If I send the right pattern of packets, I can leave a buffer with 18 free bytes
• NFMI chip sends ‘B’, 16 padded bytes and ‘E’ to badge MCU via UART
• Badge writes ‘B’ and 16 bytes of padded data, sees only 1 byte free so it drops the ‘E’

0 1 2 3 4 5 6 7 8 9 a b c d e fB

0 1 2 3 4 5 6 7 8 9 a b c d e fB

0 1 2 3 4 5 6 7 8 9 a b c d e fB E

Occupied Receive Ring Buffer End free Occupied Ring Buffer Start

0 1 2 3 4 5 6 7 8 9 a b c d e fBOccupied Receive Buffer freeeeeeeeeeeeeeeeeeeeeeeeeeeeee

free

• The badge reads packets from the beginning of the ring buffer, freeing more space

• Write a second packet before the badge empties ring buffer

• The badge firmware finds the first ‘B’ then copies the next 33 bytes before finding ‘E’
• B16B16E ≈ B33E



Off By One Bug, Continued

• But wait, there’s more!
• Keep hammering with the largest size packet, B22E (11 user bytes):

• Fill the ring buffer so the last entry is:
• B22

• 24 bytes read from the front allows 24 added to the end: 
• B22B22

• Badge reads faster than we can transmit, so there is lots of space when the next packet 
arrives:
• B22B22B22E

• Badge reads that “B”, then copies 68 bytes to dataBlog buffer before finding the ‘E’
• The dataBlog buffer is only 18-byte long…

• Might be able to do even more
• Fill the buffer with tiny packets to make reads take as long as possible

• Then write larger packets that get truncated and keep the pain train going



Demo: Crash a Def CON 27 Badge via NFMI

• Now we can crash a stock badge at will!
• It just takes a while with a 2048-byte buffer

• 2048 / (a maximum of 24 bytes x 8 bursts / 4.8 seconds) x 2 = a boring demo
• So I cheated and set the buffer to 72 bytes

• Process:
• Initialize the buffer 

• Might not know where nxhTxIndex and nxhRxIndex are pointing, so completely fill the buffer by blasting it for a 
while 

• Ring buffer may have unread packets, indexes might be moved by “RO” or “RC” after reboot.

• Stop transmitting
• Have the badge read packets and completely drain the buffer (Often see B20 for a 72-byte buffer after a reboot)
• Indexes are now equal

• Attack the buffer
• Send 1 packet of total length = LPUART0_RING_BUFFER_SIZE % 24

• Length 8 or B6E for a 2048 byte buffer, nothing for a 72 byte buffer

• Blast the buffer full, last entry is B22
• Have the badge start reading, keep blasting, last entry will grow to B22B22B22E

• Splat



Can We Do Something More Interesting?

• dataBlob is 18 bytes but takes up 20 bytes of the stack, then there are 3 
registers on the stack for 12 more bytes, then the LR register
• We need to overwrite 32 bytes of junk, then up to 4 bytes of the LR
• LR can only contain 000024CB* when the ring buffer is full

• 25D7 after 1 packet read failure, 20xx-23xx when updating game state in non-interactive mode

• Little endian lets us recycle the top bytes

• One problem: all data is padded with Dx
• Send 36 bytes: LR = DxDxDxDx: Invalid
• Send 35 bytes: LR = 00DxDxDx: Invalid
• Send 34 bytes: LR = 0000DxDx: Data and a BXLR, not helpful
• Send 33 bytes: LR = 000024Dx: 000024DD may return to waiting for a packet

• Send 33 bytes: LR = 000025Dx: 000025DF might display ascii art

• I can crash a stock badge but not run arbitrary code 

* +1 for thumb 👍



Fixing the NFMI Protocol

• The only way around that was to cheat 
• Modify the victim badge’s firmware to modify 

the NFMI firmware at boot up

• Found code that padded output with 0xDn
• Removed that padding code 

• Removed the stupid ‘B’ and ‘E’ crap too

• Original game still works
• Use 10 user data bytes to send “B”, data, “E”

“Before”

“After”



NFMI Proprietary Firmware Format

• Lastly I had to figure out the bizarre NFMI firmware format
• 3 sections, each consists of

• Data Segment
• CAFEBABE (what is this, Java?)
• Length
• Base address
• CRC-32/POSIX of header
• Data (Length x 2 bytes)
• Padding 0xFFFF, if Length is odd
• Checksum/mixed-up-CRC

• Additional data segments (optional)
• End

• 0 (Length)
• 0 (Base)
• Checksum/mixed-up-CRC

• Put that into the original firmware, time for some fun
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• Live Demos of over-the-air remote code execution of arbitrary code
• Demos that exist so far:

• I can write an arbitrary string to the debug console, currently “Seth was here!!”
• I can write a string from the badge memory to the console, like “Goon” or “Speaker”

• Demos in progress
• Play the RickRoll music
• Play arbitrary sounds, perhaps SOS
• Do something with the LEDs on the badge.
• Trigger the ASCII art function in the badge

• Demo of POC
• Demo of oversized packet
• Demo of CRC table?



Oddities

• First packet data always contains the following in ASCII: “0403E045”
• 0x45E00304 stored in NXH memory at 17DFC and 17E20 but not referenced by code
• Might be a output buffer address computed by the NFMI…?

• Also got error packets with “0D047039”
• 0x3970040D = ???? 

• NFMI firmware has the entries:
00C0: 2281A100, “rev53481M”
43E2: 2281A100, “rev53481MS”

• 2281A100 ≡ 0x00A18122 = 1058435410 ≟ 10.584354Mhz? 
• Or is it the rev values backwards? 1 05 8435 4 backwards?



Remaining Mysteries: Preambles

• Preamble bytes 0-4 suggest signal could actually be a DD8PSK (DD9PSK?) because 
the differences between the first 20 symbols 4440 4040 2460 0000 6420 are:
• ?000 4444 2222 0000 6666

• Preamble bytes 5-7 – what do they mean? 
• Assuming the mask is 0040 0000 0000 (20 00 00), preamble values are:

• 0040 0000 0000 = 00 00 00

• 0042 3133 4224 = C0 FF 55

• 0044 2774 6756 = 80 87 00  the one used in packets

• Unknown if CRC protects any preamble bytes, or just the data

• I made packet with the section 2 preambles and all possible CRCs, none worked
• Tried a lot of versions of the last 3 preambles bytes, 
• Occasionally one that was close to the original would work, sporadically

• Probably because noise turned it back into the original preamble



Remaining Mysteries

• Where does the mask come from?
• Tried all the first 20 or so PRBS, nada

• Tried changing endianness, reversing the bits, splitting odd and even bits
• Haven’t tried double-diffing or un-diffing the bits

• Must be an easy way to stream or send longer packets
• Throughput right now is about 22 bytes per second…

• What the heck is that convolution?


