

Contents

PREFACE xvii
A Survey of Computer
Graphics 2

1-1 Computer-Aided Design 4

1-2 Presentation Graphics 11

1-3 Computer Art 13

1-4 Entertainment 18

1-5 Education and Training 21

1-6 Visualization 25

1-7 Image Processing 32

1-8 Graphical User Interfaces 34

2 Overview of Graphics
Systems 35

2-1 Video Display Devices 36
Refresh Cathode-Ray Tubes 37
Raster-Scan Displays 40
Random-Scan Displays 41
Color CRT Monitors 42
Direct-View Storage Tubes 45
Flat-Panel Displays 45
Three-Dimensional Viewing Devices 49

2-4

2-6
2-7

Stereoscopic and Virtual-Reality
Systems

Raster-Scan Systems
Video Controller

Raster-Scan Display Processor
Random-Scan Systems

Graphics Monitors and Workstations

Input Devices
Keyboards

Mouse

Trackball and Spaceball
Joysticks

Data Glove

Digitizers

Image Scanners

Touch Panels

Light Pens

Voice Systems
Hard-Copy Devices
Graphics Software
Coordinate Representations
Graphics Functions
Software Standards
PHIGS Workstations
Summary

References

Exercises

50
53
53
55
56

60
61
61
63

S AR AR

68
70
70
72
75
76
77
78
79
79
81

81

Vil

Contents

3

Output Primitives 83
3-1 Points and Lines 84
3-2 Lline-Drawing Algorithms 86
DDA Algorithm 87
Bresenham'’s Line Algorithm 88
Parallel Line Algorithms 92
3-3 Loading the Frame Buffer 94
3-4 Line Function 95
3.5 Circle-Generating Algorithms 97
Properties of Circles 97
Mid point Circle Algorithm 98
3-6 Ellipse-Generating Algorithms 102
Properties of Ellipses 102
Mid point Ellipse Algorithm 103
3-7 Other Curves 110
Conic Sections 110
Polynomials and Spline Curves 112
3-8 Parallel Curve Algorithms 112
3-9 Curve Functions 113
3-10 Pixel Addressing
and Object Geometry 114
Screen Grid Coordinates 114
Maintaining Geometric Properties
of Displayed Objects 114
3-11 Filled-Area Primitives 117
Scan-Line Polygon Fill Algorithm 117
Inside-Outside Tests 125
Scan-Line Fill of Curved Boundary
Areas 126
Boundary-Fill Algorithm 127
Flood-Fill Algorithm 130
3-12 Fill-Area Functions 131
3-13 Cell Array 131
3-14 Character Generation 131

viii

Summary 134
Applications 136
References 140
Exercises 140

Attributes of Output

Primitives 143
4-1 Line Attributes 144
Line Type 144
Line Width 146
Pen and Brush Options 149
Line Color 149
4-2 Curve Attributes 152
4-3 Color and Grayscale Levels 154
Color Tables 155
Grayscale 157
4-4 Area-Fill Attributes 158
Fill Styles 158
Pattern Fill 159
Soft Fill 162
4-5 Character Attributes 163
Text Attributes 163
Marker Attributes 167
4-6 Bundled Attributes 168
Bundled Line Attributes 168
Bundled Area-Fill Attributes 169
Bundled Text Attributes 169
Bundled Marker Attributes 170
4-7 Inquiry Functions 170
4-8 Antialiasing 171
Supersampling Straight Line
Segments 172
Pixel-Weighting Masks 174

Area Sampling Straight Line
Segments

Filtering Techniques
Pixel Phasing

Compensating for Line Intensity
Differences

Antialiasing Area Boundaries
Summary

References

Exercises

174
174
175

175
176
178
180
180

Two-Dimensional Geometric

Transformations 183
5-1 Basic Transformations 184
Translation 184
Rotation 186
Scaling 187
5-2 Matrix Representations
and Homogeneous Coordinates 188
5-3 Composite Transformations 191
Translations 191
Rotations 191
Scalings 192
General Pivot-Point Rotation 192
General Fixed-Point Scaling 193
General Scaling Directions 193
Concatenation Properties 194
General Composite Transformations
and Computational Efficiency 195
5-4 Other Transformations 201
Reflection 201
Shear 203
5-5 Transformations Between Coordinate
Systems 205

Contents

5-6 Affine Transformations 208
5-7 Transformation Functions 208
5-8 Raster Methods for Transformations 210
Summary 212
References 213
Exercises 213
Two-Dimensional
6 Viewing 216
6-1 The Viewing Pipeline 217
6-2 Viewing Coordinate Reference Frame 219
6-3 Window-to-Viewport Coordinate
Transformation 220
6-4 Two-Dimensional Viewing Functions 222
6-5 Clipping Operations 224
6-6 Point Clipping 225
6-7 Line Clipping 225
Cohen-Sutherland Line Clipping 226
Liang-Barsky Line Clipping 230
Nicholl-Lee-Nicholl Line Clipping 233
Line Clipping Using Nonrectangular
Clip Windows 235
Splitting Concave Polygons 235
6-8 Polygon Clipping 237
Sutherland-Hodgeman Polygon
Clipping 238
Weiler-Atherton Polygon Clipping 242
Other Polygon-Clipping Algorithms 243
6-9 Curve Clipping 244
6-10 Text Clipping 244
6-11 Exterior Clipping 245
Summary 245
References 248
Exercises 248

Contents

Structures and Hierarchical

Modeling 250
7-1 Structure Concepts 250
Basic Structure Functions 250
Setting Structure Attributes 253
7-2 Editing Structures 254
Structure Lists and the Element
Pointer 255
Setting the Edit Mode 256
Inserting Structure Elements 256
Replacing Structure Elements 257
Deleting Structure Elements 257
Labeling Structure Elements 258
Copying Elements from One Structure
to Another 260
7-3 Basic Modeling Concepts 260
Model Representations 261
Symbol Hierarchies 262
Modeling Packages: 263
7-4 Hierarchical Modeling
with Structures 265
Local Coordinates and Modeling
Transformations 265
Modeling Transformations 266
Structure Hierarchies 266
Summary 268
References 269
Exercises 269
Graphical User Interfaces
8 and Interactive Input
Methods 271
8-1 The User Dialogue 272
Windows and Icons 273

8-2

8-3

8-4

8-5

Accommodating Multiple
Skill Levels

Consistency

Minimizing Memorization
Backup and Error Handling
Feedback

Input of Graphical Data

Logical Classification of Input
Devices

Locator Devices
Stroke Devices
String Devices
Valuator Devices
Choice Devices
Pick Devices
Input Functions
Input Modes
Request Mode

Locator and Stroke Input
in Request Mode

String Input in Request Mode
Valuator Input in Request Mode
Choice Input in Request Mode
Pick Input in Request Mode
Sample Mode

Event Mode

Concurrent Use of Input Modes
Initial Values for Input-Device
Parameters

Interactive Picture-Construction
Techniques

Basic Positioning Methods
Constraints

Grids

Gravity Field

Rubber-Band Methods
Dragging

Painting and Drawing

273
274
274
274
275

276

276
277
277
277
277
279
279
281
281
282

282
283
284
284
284
285
285
287

287

288
288

288
289
290
290
291
291

8-6 Virtual-Reality Environments 292
Summary 293
References 294
Exercises 294

9 Three-Dimensional
Concepts 296

9-1 Three-Dimensional Display Methods 297
Parallel Projection 298
Perspective Projection 299
Depth Cueing 299
Visible Line and Surface
Identification 300
Surface Rendering, 300
Exploded and Cutaway Views 300
Three-Dimensional and Stereoscopic
Views 300

9-2 Three-Dimensional Graphics
Packages 302

10

Three-Dimensional
Object
Representations

304

10-1

10-2
10-3

Polygon Surfaces

Polygon Tables

Plane Equations

Polygon Meshes

Curved Lines and Surfaces
Quadric Surfaces

Sphere

Ellipsoid

Torus

305
306
307
309
310
310
311
31
31

Contents

10-4 Superquadrics
Superellipse
Superellipsoid
Blobby Objects

Spline Representations

10-5
10-6

Interpolation and Approximation

Splines
Parametric Continuity
Conditions

Geometric Continuity

Conditions

Spline Specifications
10-7 Cubic Spline Interpolation
Methods
Natural Cubic Splines
Hermite Interpolation
Cardinal Splines
Kochanek-Bartels Splines
10-8 Bézier Curves and Surfaces
Bézier Curves

Properties of Bézier Curves

Design Techniques Using Bézier

Curves
Cubic Bézier Curves
Bézier Surfaces

10-9
B-Spline Curves
Uniform, Periodic B-Splines
Cubic, Periodic B-Splines
Open, Uniform B-Splines
Nonuniform B-Splines
B-Spline Surfaces

10-10 Beta-Splines

Beta-Spline Continuity

Conditions

Cubic, Periodic Beta-Spline

Matrix Representation

10-11 Rational Splines

B-Spline Curves and Surfaces

312
312

313
314
315

316

317

318
319

320
321
322
323
325
327
327
329

330
331
333
334
335

336
339
341

345

345

346
347

Xt

Contents

10-12

10-13

10-14
10-15

10-16
10-17
10-18

10-19

10-20
10-21
10-22

xii

Conversion Between Spline
Representations

Displaying Spline Curves
and Surfaces

Horner’s Rule

Forward-Difference Calculations
Subdivision Methods

Sweep Representations
Constructive Solid-Geometry
Methods

Octrees

BSP Trees

Fractal-Geometry Methods
Fractal-Generation Procedures
Classification of Fractals
Fractal Dimension

Geometric Construction
of Deterministic Self-Similar
Fractals

Geometric Construction
of Statistically Self-Similar
Fractals

Affine Fractal-Construction
Methods

Random Midpoint-Displacement
Methods

Controlling Terrain Topography
Self-Squaring Fractals
Self-inverse Fractals

Shape Grammars and Other
Procedural Methods

Particle Systems

Physically Based Modeling
Visualization of Data Sets

Visual Representations
for Scalar Fields

Visual Representations
for Vector Fields
Visual Representations
for Tensor Fields

349

351
351

351
353

355

356
359
362

362
363

364
364

367

369

372

373
376
378
385

387
390
393
395

395

400

401

11

Visual Representations
for Multivariate Data Fields

Summary
References
Exercises

Three-Dimensional

402
404
404
404

Geometric and Modeling

Transformations 407
111 Translation 408
11-2 Rotation 409
Coordinate-Axes Rotations 409
General Three-Dimensional
Rotations 413
Rotations with Quaternions 419
11-3 Scaling 420
11-4 Other Transformations 422
Reflections 422
Shears 423
11-5 Composite Transformations 423
11-6 Three-Dimensional Transformation
Functions 425
11-7 Modeling and Cocrdinate
Transformations 426
Summary 429
References 429
Exercises 430
12 Three-Dimensional
Viewing 431
12-1 Viewing Pipeline 432
12-2 Viewing Coordinates 433
Specifying the View Plane 433
Transformation from World
to Viewing Coordinates 437

12-3

12-4

12-6
12-7

13

Projections

Parallel Projections
Perspective Projections
View Volumes and General
Projection Transformations
General Parallel-Projection
Transformations

General Perspective-Projection
Transformations

Clipping

Normalized View Volumes
Viewport Clipping
Clipping in Homogeneous
Coordinates

Hardware Implementations

Three-Dimensional Viewing
Functions

Summary
References
Exercises

438
439
443

447

452

454

456
458

460

461
463

464
467
468
468

Visible-Surface Detection

Methods 469
13-1 Classification of Visible-Surface
Detection Algorithms 470
13-2 Back-Face Detection 471
133 Depth-Buffer Method 472
13-4 A-Butfer Method 475
13-5 Scan-Line Method 476
13-6 Depth-Sorting Method 478
13-7 BSP-Tree Method 481
13-8 Area-Subdivision Method 482
13-9 Octree Methods 485
13-10 Ray-Casting Method 487
13-11 Curved Surfaces 488
Curved-Surface Representations 488
Surface Contour Plots 489

13-12
13-13

14

Contents

Wireframe Methods 490
Visibility-Detection Functions 490
Summary 491
References 492
Exercises 492

[llumination Models
and Surface-Rendering

Methods 494
14-1 Light Sources 496
14-2 Basic lllumination Models 497
Ambient Light 497
Diffuse Reflection 497
Specular Reflection
and the Phong Model 500
Combined Diffuse and Specular
Reflections with Multiple Light
Sources 504
Warn Model 504
Intensity Attenuation 505
Color Considerations 507
Transparency 508
Shadows 511
14-3 Displaying Light Intensities 511
Assigning Intensity Levels 512
Gamma Correction and Video
Lookup Tables 513
Displaying Continuous-Tone
Images 515
14-4 Halftone Patterns and Dithering
Techniques 516
Halftone Approximations 516
Dithering Techniques 519
14-5 Polygon-Rendering Methods 522
Constant-Intensity Shading 522
Gouraud Shading 523
Phong Shading 525

Xiii

Contents

14-6

14-7

14-8
14-9

15

Fast Phong Shading 526
Ray-Tracing Methods 527
Basic Ray-Tracing Algorithm 528
Ray-Surface Intersection

Calculations 531
Reducing Object-Intersection
Calculations 535
Space-5Subdivision Methods 535
Antialiased Ray Tracing 538
Distributed Ray Tracing 540
Radiosity Lighting Model 544
Basic Radiosity Model 544
Progressive Refinement

Radiosity Method 549
Environment Mapping 552
Adding Surface Detail 553
Modeling Surface Detail

with Polygons 553
Texture Mapping 554
Procedural Texturing

Methods 556
Bump Mapping 558
Frame Mapping 559
Summary 560
References 561
Exercises 562

Color Models and Color

Applications 564
15-1 Properties of Light 565
15-2 Standard Primaries and the
Chromaticity Diagram 568
XYZ Color Model 569
CIE Chromaticity Diagram 569
15-3 Intuitive Color Concepts 571
15-4 RGB Color Model 572
15-5 Y1Q Color Model 574

Xiv

15-6 CMY Color Model 574
15-7 HSV Color Model 575
15-8 Conversion Between HSV
and RGB Models 578
15-9 HLS Color Model 579
15-10 Color Selection
and Applications 580
Summary 581
References 581
Exercises 582
1 6 Computer
Animation 583
16-1 Design of Animation Sequences 584
16-2 General Computer-Animation
Functions 586
16-3 Raster Animations 586
16-4 Computer-Animation Languages 587
16-5 Key-Frame Systems 588
Morphing 588
Simulating Accelerations 591
16-6 Motion Specifications 594
Direct Motion Specification 594
Goal-Directed Systems 595
Kinematics and Dynamics 595
Summary 596
References 597
Exercises 597
Mathematics for Computer
Graphics 599
A-1 Coordinate-Reference Frames 600
Two-Dimensional Cartesian
Reference Frames 600
Polar Coordinates in the xy Plane 601

A-2

A-3

A-4

Three-Dimensional Cartesian
Reference Frames

Three-Dimensional Curvilinear
Coordinate Systems

Solid Angle

Points and Vectors

Vector Addition and Scalar
Multiplication

Scalar Product of Two Vectors
Vector Product of Two Vectors
Basis Vectors and the Metric Tensor
Orthonormal Basis

Metric Tensor

Matrices

Scalar Multiplication and Matrix
Addition

Matrix Multiplication

602

602
604

605

607
607
608
609
609
610
611

612
612

Contents

Matrix Transpose
Determinant of a Matrix
Matrix Inverse

A-5 Complex Numbers

A-6 Quaternions

A-7 Nonparametric Representations
A-8 Parametric Representations

A-9 Numerical Methods
Solving Sets of Linear Equations

Finding Roots of Nonlinear
Equations

Evaluating Integrals
Fitting Curves to Data Sets

BIBLIOGRAPHY
INDEX

613
613
614
615
617
618
619

620
620

621
622
625

626

639

XV

COmputer

Graphics

C Version

L

‘ omputers have become a powerful tool for the rapid and economical pro-

duction of pictures. There is virtually no area in which graphical displays
cannot be used to some advantage, and so it is not surprising to find the use of
computer graphics so widespread. Although early applications in engineering
and science had to rely on expensive and cumbersome equipment, advances in
computer technology have made interactive computer graphics a practical tool.
Today, we find computer graphics used routinely in such diverse areas as science,
engineering, medicine, business, industry, government, art, entertainment, ad-
vertising, education, and training. Figure 1-1 summarizes the many applications
of graphics in simulations, education, and graph presentations. Before we get
into the details of how to do computer graphics, we first take a short tour
through a gallery of graphics applications.

Frguere 1-1

Examples of computer graphics applications. (Courtesy of DICOMED
Corporation.)

Chapter 1

A Survey of Computer Graphics

1-1
COMPUTER-AIDED DESIGN

A major use of computer graphics is in design processes, particularly for engi-
neering and architectural systems, but almost all products are now computer de-
signed. Generally referred to as CAD, computer-aided design methods are now
routinely used in the design of buildings, automobiles, aircraft, watercraft, space-
craft, computers, textiles, and many, many other products.

For some design applications, objects are first displayed in a wireframe out-
line form that shows the overall shape and internal features of objects. Wireframe
displays also allow designers to quickly see the effects of interactive adjustments
to design shapes. Figures 1-2 and 1-3 give examples of wireframe displays in de-
sign applications.

Software packages for CAD applications typically provide the designer
with a multi-window environment, as in Figs. 1-4 and 1-5. The various displayed
windows can show enlarged sections or different views of objects.

Circuits such as the one shown in Fig. 1-5 and networks for communica-
tions, water supply, or other utilities are constructed with repeated placement of
a few graphical shapes. The shapes used in a design represent the different net-
work or circuit components. Standard shapes for electrical, electronic, and logic
circuits are often supplied by the design package. For other applications, a de-
signer can create personalized symbols that are to be used to construct the net-
work or circuit. The system is then designed by successively placing components
into the layout, with the graphics package automatically providing the connec-
tions between components. This allows the designer to quickly try out alternate
circuit schematics for minimizing the number of components or the space re-
quired for the system.

Figure 1-2

Color-coded wireframe display for
an automobile wheel assembly.
(Courtesy of Evans & Sutherland.)

Figure 1-3
Color-coded wireframe displays of body designs for an aircraft and an automobile.
(Courtesy of (a) Evans & Sutherland and (b) Megatek Corporation.)

Animations are often used in CAD applications. Real-time animations using
wireframe displays on a video monitor are useful for testing performance of a ve-
hicle or system, as demonstrated in Fig. 1-6. When we do not display objects with
rendered surfaces, the calculations for each segment of the animation can be per-
formed quickly to produce a smooth real-time motion on the screen. Also, wire-
frame displays allow the designer to see into the interior of the vehicle and to
watch the behavior of inner components during motion. Animations in virtual-
reality environments are used to determine how vehicle operators are affected by

Figure 1-4
Multiple-window, color-coded CAD workstation displays. (Courtesy of Intergraph
Corporation.)

Figure 1-5

A circuit-design application, using
multiple windows and color-coded
logic components, displayed on a
Sun workstation with attached
speaker and microphone. (Courtesy
of Sun Microsystems.)

Figure 1-6

Simulation of vehicle performance
during lane changes. (Courtesy of
Evans & Sutherland and Mechanical
Dymamics, Inc.)

certain motions. As the tractor operator in Fig. 1-7 manipulates the controls, the
headset presents a stereoscopic view (Fig. 1-8) of the front-loader bucket or the
backhoe, just as if the operator were in the tractor seat. This allows the designer
to explore various positions of the bucket or backhoe that might obstruct the op-
erator’s view, which can then be taken into account in the overall tractor design.
Figure 1-9 shows a composite, wide-angle view from the tractor seat, displayed
on a standard video monitor instead of in a virtual three-dimensional scene. And
Fig. 1-10 shows a view of the tractor that can be displayed in a separate window
or on another monitor.

Figure 1-7

Operating a tractor in a virtual-reality environment. As the controls are
moved, the operator views the front loader, backhoe, and surroundings
through the headset. (Courtesy of the National Center for Supercomputing
Applications, University of lllinois at Urbana-Champaign, and Caterpillar,

Inc))

Figure 1-8 .

A headset view of the backhoe
presented to the tractor operator.
(Courtesy of the National Center for
Supercomputing Applications,
University of Illinois at Urbana-
Champaign, and Caterpillar, Inc.)

Figure 1-9

Operator’s view of the tractor
bucket, composited in several
sections to form a wide-angle view
on a standard monitor. (Courtesy of
the National Center for
Supercomputing Applications,
University of Illinois at Urbana-
Champaign, and Caterpillar, Inc.)

Chapter 1

A Survey of Computer Graphics

Figure 1-10

View of the tractor displayed on a
standard monitor. (Courtesy of the
National Center for Supercomputing
Applications, University of Illinois at
Urbana-Champaign, and Caterpillar,
Inc.)

When object designs are complete, or nearly complete, realistic lighting
models and surface rendering are applied to produce displays that will show the
appearance of the final product. Examples of this are given in Fig. 1-11. Realistic
displays are also generated for advertising of automobiles and other vehicles
using special lighting effects and background scenes (Fig. 1-12).

The manufacturing process is also tied in to the computer description of de-
signed objects to automate the construction of the product. A circuit board lay-
out, for example, can be transformed into a description of the individual
processes needed to construct the layout. Some mechanical parts are manufac-
tured by describing how the surfaces are to be formed with machine tools. Figure
1-13 shows the path to be taken by machine tools over the surfaces of an object
during its construction. Numerically controlled machine tools are then set up to
manufacture the part according to these construction layouts.

1a) i

Figure 1-11
Realistic renderings of design products. (Courtesy of (a) Intergraph
Corporation and (b) Evans & Sutherland.)

Figure 1-12 Figure 1-13

Studio lighting effects and realistic A CAD layout for describing the
surface-rendering techniques are numerically controlled machining,
applied to produce advertising of a part. The part surface is
pieces for finished products. The displayed in one color and the tool
data for this rendering of a Chrysler path in another color. (Courtesy of
Laser was supplied by Chrysler Los Alamos National Laboratory.)

Corporation. (Courtesy of Eric
Haines, 3D/EYE Inc.)

GARAGE

] il
Boggon b 2
P I Py acou i

S s 11 B
e e

Figure 1-14
Architectural CAD layout for a building design. (Courtesy of Precision
Visuals, Inc., Boulder, Colorado.)

Chapter 1

10

A Survey of Computer Graphics

Architects use interactive graphics methods to lay out floor plans, such as
Fig. 1-14, that show the positioning of rooms, doors, windows, stairs, shelves,
counters, and other building features. Working from the display of a building
layout on a video monitor, an electrical designer can try out arrangements for
wiring, electrical outlets, and fire warning systems. Also, facility-layout packages
can be applied to the layout to determine space utilization in an office or on a
manufacturing floor.

Realistic displays of architectural designs, as in Fig. 1-15, permit both archi-
tects and their clients to study the appearance of a single building or a group of
buildings, such as a campus or industrial complex. With virtual-reality systems,
designers can even go for a simulated “walk” through the rooms or around the
outsides of buildings to better appreciate the overall effect of a particular design.
In addition to realistic exterior building displays, architectural CAD packages
also provide facilities for experimenting with three-dimensional interior layouts
and lighting (Fig. 1-16).

Many other kinds of systems and products are designed using either gen-
eral CAD packages or specially deyeloped CAD software. Figure 1-17, for exam-
ple, shows a rug pattern designed with a CAD system.

Figure 1-15

Realistic, three-dimensional renderings of building designs. (a) A street-level perspective
for the World Trade Center project. (Courtesy of Skidmore, Owings & Merrill.)

(b) Architectural visualization of an atrium, created for a computer animation by
Marialine Prieur, Lyon, France. (Courtesy of Thomson Digital Image, Inc.)

Figure 1-16 Figure 1-17

A hotel corridor providing a sense Oriental rug pattern created with
of movement by placing light computer graphics design methods.
fixtures along an undulating path (Courtesy of Lexidata Corporation.)

and creating a sense of entry by
using light towers at each hotel
room. (Courtesy of Skidmore, Owings
& Merrill)

1-2
PRESENTATION GRAPHICS

Another major application area is presentation graphics, used to produce illus-
trations for reports or to generate 35-mm slides or transparencies for use with
projectors. Presentation graphics is commonly used to summarize finandial, sta-
tistical, mathematical, scientific, and economic data for research reports, manage-
rial reports, consumer information bulletins, and other types of reports. Worksta-
tion devices and service bureaus exist for converting screen displays into 35-mm
slides or overhead transparencies for use in presentations. Typical examples of
presentation graphics are bar charts, line graphs, surface graphs, pie charts, and
other displays showing relationships between multiple parameters.

Figure 1-18 gives examples of two-dimensional graphics combined with ge-
ographical information. This illustration shows three color-coded bar charts com-
bined onto one graph and a pie chart with three sections. Similar graphs and
charts can be displayed in three dimensions to provide additional information.
Three-dimensional graphs are sometimes used simply for effect; they can provide
a more dramatic or more attractive presentation of data relationships. The charts
in Fig. 1-19 include a three-dimensional bar graph and an exploded pie chart.

Additional examples of three-dimensional graphs are shown in Figs. 1-20
and 1-21. Figure 1-20 shows one kind of surface plot, and Fig. 1-21 shows a two-
dimensional contour plot with a height surface.

Chapter 1

A Survey of Computer Graphics

12

Figure 1-18
Two-dimensional bar chart and pie

chart linked to a geographical chart.

(Courtesy of Computer Associates,
copyright © 1992. All rights reserved.)

Figure 1-20

Showing relationships with a
surface chart. (Courtesy of Computer
Associates, copyright © 1992, All
rights reserved.)

Figure 1-19
Three-dimensional bar chart,
exploded pie chart, and line graph.
(Courtesy of Computer Associates,
copyright © 1992, All rights reserved.)

Figure 1-21

Plotting two-dimensional contours
in the ground plane, with a height
field plotted as a surface above the
ground plane. (Courtesy of Computer
Associates, copyright © 1992. All
rights reserved.}

Figure 1-22

Time chart displaying relevant
information about project tasks.
(Courtesy of Computer Associates,
copyright © 1992. All rights reserved.)

Figure 1-22 illustrates a time chart used in task planning. Time charts and
task network layouts are used in project management to schedule and monitor
the progress of projects.

1-3
COMPUTER ART

Computer graphics methods are widely used in both fine art and commercial art
applications. Artists use a variety of computer methods, including special-pur-
pose hardware, artist’s paintbrush programs (such as Lumena), other paint pack-
ages (such as PixelPaint and SuperPaint), specially developed software, symbolic
mathematics packages (such as Mathematica), CAD packages, desktop publish-
ing software, and animation packages that provide facilites for designing object
shapes and specifiying object motions.

Figure 1-23 illustrates the basic idea behind a paintbrush program that al-
lows artists to “paint” pictures on the screen of a video monitor. Actually, the pic-
ture is usually painted electronically on a graphics tablet (digitizer) using a sty-
lus, which can simulate different brush strokes, brush widths, and colors. A
paintbrush program was used to create the characters in Fig. 1-24, who seem to
be busy on a creation of their own. .

A paintbrush system, with a Wacom cordless, pressure-sensitive stylus, was
used to produce the electronic painting in Fig. 1-25 that simulates the brush
strokes of Van Gogh. The stylus translates changing hand pressure into variable
line widths, brush sizes, and color gradations. Figure 1-26 shows a watercolor
painting produced with this stylus and with software that allows the artist to cre-
ate watercolor, pastel, or oil brush effects that simulate different drying out times,
wetness, and footprint. Figure 1-27 gives an example of paintbrush methods
combined with scanned images.

Fine artists use a variety of other computer technologies to produce images.
To create pictures such as the one shown in Fig. 1-28, the artist uses a combina-
tion of three-dimensional modeling packages, texture mapping, drawing pro-
grams, and CAD software. In Fig. 1-29, we have a painting produced on a pen

Section 1-3

Computer Art

13

14

Figure 1-23

Cartoon drawing produced with a paintbrush program,
symbolically illustrating an artist at work on a video monitor.
(Courtesy of Gould Inc., Imaging & Graphics Division and Aurora
Imaging.)

plotter with specially designed software that can create “automatic art” without
intervention from the artist.

Figure 1-30 shows an example of “mathematical” art. This artist uses a com-
bination of mathematical functions, fractal procedures, Mathematica software,
ink-jet printers, and other systems to create a variety of three-dimensional and
two-dimensional shapes and stereoscopic image pairs. Another example of elec-

\ 18

Figure 1-24
Cartoon demonstrations of an “artist” creating a picture with a paintbrush system. The picture, drawn ona
graphics tablet, is displayed on the video monitor as the elves look on. In (b), the cartoon is superimposed
on the famous Thomas Nast drawing of Saint Nicholas, which was input to the system with a video
camera, then scaled and positioned. (Courtesy Gould Inc., Imaging & Graphics Division and Aurora Imaging.)

Figure 1-25

A Van Gogh look-alike created by
graphics artist Elizabeth O’'Rourke
with a cordless, pressure-sensitive
stylus. (Courtesy of Wacom
Technology Corporation.)

Figure 1-26

An electronic watercolor, painted
by John Derry of Time Arts, Inc.
using a cordless, pressure-sensitive
stylus and Lumena gouache-brush
software. (Courtesy of Wacom
Technology Corporation.)

Figure 1-27

The artist of this picture, called Electronic Avalanche, makes a statemnent
about our entanglement with technology using a personal computer
with a graphics tablet and Lumena software to combine renderings of
leaves, flower petals, and electronics components with scanned images.
(Courtesy of the Williams Gallery. Copyright © 1991 by Joan Truckenbrod, The

School of the Art Institute of Chicago.)

Figure 1-28

From a series called Spheres of Influence, this electronic painting
(entitled, Whigmalaree) was created with a combination of
methods using a graphics tablet, three-dimensional modeling,
texture mapping, and a series of transformations. (Courtesy of the
Williams Gallery. Copyright © 1992 by Wynne Ragland, Jr.)

Figure 1-29

Electronic art output to a pen
plotter from software specially
designed by the artist to emulate
his style. The pen plotter includes
multiple pens and painting
instruments, including Chinese
brushes. (Courtesy of the Williams
Gallery. Copyright © by Roman
Verostko, Minneapolis College of Art &
Design.)

Figure 1-30

This creation is based on a visualization of Fermat’s Last
Theorem, x" + ¥* = 2%, with n = 5, by Andrew Hanson,
Department of Computer Science, Indiana University. The image
was rendered using Mathematica and Wavefront software.
(Courtesy of the Williams Gallery. Copyright © 1991 by Stewart
Dickson.)

16

Figure 1-31

Using mathematical functions,
fractal procedures, and
supercomputers, this artist-
composer ex periments with various
designs to synthesize form and color
with musical composition. (Courtesy
of Brian Evans, Vanderbilt University.)

tronic art created with the aid of mathematical relationships is shown in Fig. 1-31.
The artwork of this composer is often designed in relation to frequency varia-
tions and other parameters in a musical composition to produce a video that inte-
grates visual and aural patterns.

Although we have spent some time discussing current techniques for gen-
erating electronic images in the fine arts, these methods are also applied in com-
mercial art for logos and other designs, page layouts combining text and graph-
ics, TV advertising spots, and other areas. A workstation for producing page
layouts that combine text and graphics is illustrated in Fig. 1-32.

For many applications of commercial art (and in motion pictures and other
applications), photorealistic techniques are used to render images of a product.
Figure 1-33 shows an example of logo design, and Fig. 1-34 gives three computer
graphics images for product advertising. Animations are also used frequently in
advertising, and television commercials are produced frame by frame, where

Section 1-3

Computer Art

Figure 1-32 Figure 1-33
Page-layout workstation. (Courtesy Three-dimensional rendering for a
of Visual Technology.) logo. (Courtesy of Vertigo Technology,
Inc)
I
fa) b
Figure 1-34 A

Product advertising. (Courtesy of (a) Audrey Fleisher and (b) and (c) SOFTIMAGE, Inc.)

17

Chapter 1

A Survey of Computer Graphics

18

each frame of the motion is rendered and saved as an image file. In each succes-
sive frame, the motion is simulated by moving object positions slightly from their
positions in the previous frame. When all frames in the animation sequence have
been rendered, the frames are transferred to film or stored in a video buffer for
playback. Film animations require 24 frames for each second in the animation se-
quence. If the animation is to be played back on a video monitor, 30 frames per
second are required.

A common graphics method employed in many commercials is morphing,
where one object is transformed (metamorphosed) into another. This method has
been used in TV commercials to turn an oil can into an automobile engine, an au-
tomobile into a tiger, a puddle of water into a tire, and one person’s face into an-
other face. An example of morphing is given in Fig. 1-40.

1-4
ENTERTAINMENT

Computer graphics methods are now commonly used in making motion pic-
tures, music videos, and television shows. Sometimes the graphics scenes are dis-
played by themselves, and sometimes graphics objects are combined with the ac-
tors and live scenes.

A graphics scene generated for the movie Star Trek—The Wrath of Khan is
shown in Fig. 1-35. The planet and spaceship are drawn in wireframe form and
will be shaded with rendering methods to produce solid surfaces. Figure 1-36
shows scenes generated with advanced modeling and surface-rendering meth-
ods for two award-winning short films,

Many TV series regularly employ computer graphics methods. Figure 1-37
shows a scene produced for the series Deep Space Nine. And Fig. 1-38 shows a
wireframe person combined with actors in a live scene for the series Stay Tuned.

Figure 1-35

Graphics developed for the
Paramount Pictures movie Star
Trek—The Wrath of Khan. (Courtesy of
Evans & Sutherland.)

In Fig. 1-39, we have a highly realistic image taken from a reconstruction of thir-
teenth-century Dadu (now Beijing) for a Japanese broadcast.

Music videos use graphics in several ways. Graphics objects can be com-
bined with the live action, as in Fig.1-38, or graphics and image processing tech-
niques can be used to produce a transformation of one person or object into an-
other (morphing). An example of morphing is shown in the sequence of scenes in
Fig. 140, produced for the David Byrne video She’s Mad.

(a) (b)

Figure 1-36

(a) A computer-generated scene from the film Red’s Dream, copyright © Pixar 1987. (b) A
computer-generated scene from the film Knickimack, copyright © Pixar 1989. (Courtesy of
Pixar)

Figure 1-37
A graphics scene in the TV series Deep Space Nine. (Courtesy of Rhythm &
Hues Studios.)

Section 1-4

Entertainment

Chapter 1

20

A Survey of Computer Graphics

Figure 1-38
Graphics combined with a live scene in the TV series Stay Tuned.
(Courtesy of Rhythm & Hues Studios.)

Figure 1-39 .

An image from a reconstruction of
thirteenth-century Dadu (Beifing
today), created by Taisei
Corporation (Tokyo) and rendered
with TDI software. (Courtesy of
Thompson Digital Image, Inc.)

Section 1-5

Education and Training

1-5
EDUCATION AND TRAINING

Computer-generated models of physical, financial, and economic systems are
often used as educational aids. Models of physical systems, physiological sys-
tems, population trends, or equipment, such as the color-coded diagram in Fig, 1-
41, can help trainees to understand the operation of the system.

For some training applications, special systems are designed. Examples of
such specialized systems are the simulators for practice sessions or training of
ship captains, aircraft pilots, heavy-equipment operators, and air traffic-control
personnel. Some simulators have no video screens; for example, a flight simula-
tor with only a control panel for instrument flying. But most simulators provide
graphics screens for visual operation. Two examples of large simulators with in-
ternal viewing systems are shown in Figs. 142 and 1-43. Another type of viewing
system is shown in Fig. 144. Here a viewing screen with multiple panels is
mounted in front of the simulator, and color projectors display the flight scene on
the screen panels. Similar viewing systems are used in simulators for training air-
craft control-tower personnel. Figure 1-45 gives an example of the instructor’s
area in a flight simulator. The keyboard is used to input parameters affecting the
airplane performance or the environment, and the pen plotter is used to chart the
path of the aircraft during a training session.

Scenes generated for various simulators are shown in Figs. 1-46 through 1-
48. An output from an automobile-driving simulator is given in Fig. 1-49. This
simulator is used to investigate the behavior of drivers in critical situations. The
drivers’ reactions are then used as a basis for optimizing vehicle design to maxi-
mize traffic safety.

Figure 1-41

Color-coded diagram used to
explain the operation of a nuclear
reactor. (Courtesy of Los Alamos
National Laboratory.)

Figure 1-43

Figure 1-42

A large, enclosed flight simulator
with a full-color visual system and
six degrees of freedom in its
motion. (Courtesy of Frasca
International.)

A military tank simulator with a visual imagery system. (Courtesy of

Mediatech and GE Aerospace.)

22

Figure 1-44
A flight simulator with an external full-color viewing system. (Courtesy of Frasca

International.)

Figure 1-45

An instructor’s area in a flight simulator. The equipment allows the
instructor to monitor flight conditions and to set airplane and
environment parameters. (Courtesy of Frasca International.)

Section 1-5

Education and Training

23

Chapter 1

24

A Survey of Computer Graphics

Figure 1-46

Flight-simulator imagery. (Courtesy of Evans & Sutherland.)

Figure 1-47
Imagery generated for a naval
simulator. (Courtesy of Evans &
Sutherland.)

Figure 1-48
Space shuttle imagery. (Courtesy of
Mediatech and GE Aerospace.)

Figure 1-49
Imagery from an automobile
simulator used to test driver
reaction. (Courtesy of Evans &
Sutherland.)

1-6
VISUALIZATION

Scientists, engineers, medical personnel, business analysts, and others often need
to analyze large amounts of information or to study the behavior of certain
processes. Numerical simulations carried out on supercomputers frequently pro-
duce data files containing thousands and even millions of data values. Similarly,
satellite cameras and other sources are amassing large data files faster than they
can be interpreted. Scanning these large sets of numbers to determine trends and
relationships is a tedious and ineffective process. But if the data are converted to
a visual form, the trends and patterns are often immediately apparent. Figure 1-
50 shows an example of a large data set that has been converted to a color-coded
display of relative heights above a ground plane. Once we have plotted the den-
sity values in this way, we can see easily the overall pattern of the data. Produc-
ing graphical representations for scientific, engineering, and medical data sets
and processes is generally referred to as scientific visualization. And the term busi-
ness visualization is used in connection with data sets related to commerce, indus-
try, and other nonscientific areas.

There are many different kinds of data sets, and effective visualization
schemes depend on the characteristics of the data. A collection of data can con-
tain scalar values, vectors, higher-order tensors, or any combination of these data
types. And data sets can be two-dimensional or three-dimensional. Color coding
is just one way to visualize a data set. Additional techniques include contour
plots, graphs and charts, surface renderings, and visualizations of volume interi-
ors. In addition, image processing techniques are combined with computer
graphics to produce many of the data visualizations.

Mathematicians, physical scientists, and others use visual techniques to an-
alyze mathematical functions and processes or simply to produce interesting
graphical representations. A color plot of mathematical curve functions is shown
in Fig. 1-51, and a surface plot of a function is shown in Fig. 1-52. Fractal proce-

Section 1-6

Visualization

25

Chapter 1

A Survey of Computer Graphics

26

Figure 1-50

A colorcoded plot with 16 million density points of relative brightness
observed for the Whirlpool Nebula reveals two distinct galaxies.
(Courtesy of Los Alamos National Laboratory.)

Figure 1-51
Mathematical curve functions
plotted in various color

combinations. (Courtesy of Melvin L.

Prueitt, Los Alamos National
Laboratory.)

Figure 1-52

Lighting effects and surface-
rendering techniqnes were applied
to produce this surface
representation for a three-
dimensional function. (Courtesy of
Wolfram Research, Inc, The Maker of
Mathematica.)

dures using quaternions generated the object shown in Fig. 1-53, and a topologi-
cal structure is displayed in Fig. 1-54. Scientists are also developing methods for
visualizing general classes of data. Figure 1-55 shows a general technique for
graphing and modeling data distributed over a spherical surface.

A few of the many other visualization applications are shown in Figs. 1-56
through 1-69. These figures show airflow over the surface of a space shuttle, nu-
merical modeling of thunderstorms, study of crack propagation in metals, a
color-coded plot of fluid density over an airfoil, a cross-sectional slicer for data
sets, protein modeling, stereoscopic viewing of molecular structure, a model of
the ocean floor, a Kuwaiti oil-fire simulation, an air-pollution study, a corn-grow-
ing study, reconstruction of Arizona’s Chaco Canyon ruins, and a graph of auto-
mobile accident statistics.

Figure 1-54

Four views from a real-time,
interactive computer-animation
study of minimal surfaces (“snails”)
in the 3-sphere projected to three-
dimensional Euclidean space.
(Courtesy of George Francis,
Department of Mathematics and the
National Center for Supercomputing
Applications, University of Illinois at
Urbana-Champaign. Copyright ©
1993.)

Section 1-6

Visualization

Figure 1-53

A four-dimensional object
projected into three-
dimensional space, then

projected to a video monitor,
and color coded. The object

was generated using
quaternions and fractal

squaring procedures, with an
octant subtracted to show the
complex Julia set. (Courtesy of

John C. Hart, School of
Electrical Engineering and

Computer Science, Washington

State University.)

Figure 1-55
A method for graphing and

modeling data distributed over a

spherical surface. (Courtesy of Greg

Nielson, Computer Science
Department, Anizona State
University.)

27

Cﬁap(er 1

A Survey of Computer Graphics

Figure 1-56 .

A visualization of stream surfa
flowing past a space shuttle by Jeff
Hultquist and Eric Raible, NASA
Ames. (Courtesy of Sam Uselton,
NASA Ames Research Center.)

Figure 1-58

Numerical model of the surface of a
thunderstorm. (Courtesy of Bob
Wilhelmson, Department of
Atmospheric Sciences and the National
Center for Supercomputing
Applications, University of Minois at
Urbana-Champaign.)

28

Figure 1-57

Numerical model of airflow inside
a thunderstorm. (Courtesy of Bob
Wilhelmson, Department of
Atmospheric Sciences and the National
Center for Supercomputing
Applications, University of llinois at
Urbena-Champaign.)

Figure 1-59

Color-coded visualization of stress
energy density in a crack-
propagation study for metal plates,
modeled by Bob Haber. (Courtesy of
the National Center for
Supercomputing Applications,
University of Nllinois at Urbana-
Champaign.)

Figure 1-61

Commercial slicer-dicer software,
showing color-coded data values
over cross-sectional slices of a data
set. (Courtesy of Spyglass, Inc.)

Section 1-6
Visualization

Figure 160

A fluid dynamic simulation,
showing a color-coded plot of fluid
density over a span of grid planes
around an aircraft wing, developed
by Lee-Hian Quek, John
Eickemeyer, and Jeffery Tan.
(Courtesy of the Information
Technology Institute, Republic of
Singapore.)

Figure 1-62

Visualization of a protein structure
by Jay Siegel and Kim Baldridge,
SDSC. (Courtesy of Stephanie Sides,
San Diego Supercomputer Center.)

29

30

Figure 1-63

Stereoscopic viewing of a molecular structure using a “boom” device.
(Courtesy of the National Center for Supercomputing Applications, University
of Minois at Urbana-Champaign.)

Figure 1-64 Figure 1-65

One image from a stereodcopic pair, A simulation of the effects of the
showing a visualization of the Kuwaiti oil fire, by Gary

ocean floor obtained from satellite Glatzmeier, Chuck Hanson, and
data, by David Sandwell and Chris Paul Hinker. (Courtesy of Mike
Small, Scripps Institution of Ocean- Krogh, Advanced Computing
ography, and Jim Mcleod, SDSC. Laboratory at Los Alamos National
(Courtesy of Stephanie Sides, San Laboratory.)

Diego Supercomputer Center.)

Figure 1-66

A visualization of pollution over
the earth’s surface by Tom Palmer,
Cray Research Inc./NCSC; Chris
Landreth, NCSC; and Dave Bock,
NCSC. Pollutant SO, is plotted as a
blue surface, acid-rain deposition is
a color plane on the map surface,
and rain concentration is shown as
clear cylinders. (Courtesy of the
North Carolina Supercomputing
Center/MCNC))

Figure 1-68

A visualization of the
reconstruction of the ruins at Chaco
Canyon, Arizona. (Courtesy of
Melvin L. Prueitt, Los Alamos
National Laboratory. Data supplied by
Stephen H. Lekson.)

Section 1-6

Visualization

Figure 1-67

One frame of an animation
sequence showing the development
of a corn ear. (Courtesy of the
Nationai Center for Supercomputing
Applications, University of Illinois at
Urbana-Champaign.)

Figure 1-69

A prototype technique, called
WinViz, for visualizing tabular
multidimensional data is used here
to correlate statistical information
on pedestrians involved in
automobile accidents, developed by
a visualization team at ITT.
(Courtesy of Lee-Hian Quek,
Information Technology Institute.
Republic of Singapore.)

31

Chapter 1

1-7

32

A Survey of Computer Graphics

IMAGE PROCESSING

Although methods used in computer graphics and 1mage processing overlap, the
two areas are concerned with fundamentally different operations. In computer
graphics, a computer is used to create a picture. Image processing, on the other
hand, applies techniques to modify or interpret existing pictures, such as pho-
tographs and TV scans. Two principal applications of image processing are (1)
improving picture quality and (2) machine perception of visual information, as
used in robotics.

To apply image-processing methods, we first digitize a photograph or other
picture into an image file. Then digital methods can be applied to rearrange pic-
ture parts, to enhance color separations, or to improve the quality of shading. An
example of the application of image-processing methods to enhance the quality
of a picture is shown in Fig. 1-70. These techniques are used extensively in com-
mercial art applications that involve the retouching and rearranging of sections
of photographs and other artwork. Similar methods are used to analyze satellite
photos of the earth and photos of galaxies.

Medical applications also make extensive use of image-processing tech-
niques for picture enhancements, in tomography and in simulations of opera-
tions. Tomography is a technique of X-ray photography that allows cross-sec-
tional views of physiological systems to be displayed. Both computed X-ray
tomography (CT) and position emission tomography (PET) use projection methods to
reconstruct cross sections from digital data. These techniques are also used to

Figure 1-70

A blurred photograph of a license plate becomes legible after
the application of image-processing techniques. (Courtesy of
Los Alamos National Laboratory.)

monitor internal functions and show cross sections during surgery. Other med- Section 1-7
ical imaging techniques include ultrasonics and nuclear medicine scanners. With image Processing
ultrasonics, high-frequency sound waves, instead of X-rays, are used to generate
digital data. Nuclear medicine scanners collect digital data from radiation emit-
ted from ingested radionuclides and plot color-coded images.
Image processing and computer graphics are typically combined in
many applications. Medicine, for example, uses these techniques to model and
study physical functions, to design artificial limbs, and to plan and practice
surgery. The last application is generally referred to as computer-aided surgery.
Two-dimensional cross sections of the body are obtained using imaging tech-
niques. Then the slices are viewed and manipulated using graphics methods to
simulate actual surgical procedures and to try out different surgical cuts. Exam-
ples of these medical applications are shown in Figs. 1-71 and 1-72.

Figure 1-71

One frame from a computer
animation visualizing cardiac
activation levels within
regions of a semitransparent
volume-rendered dog heart.
Medical data provided by
William Smith, Ed Simpson,
and G. Allan Johnson, Duke
University. Image-rendering
software by Tom Palmer,
Cray Research, Inc./NCSC.
(Courtesy of Dave Bock, North
Carolina Supercomputing
Center/MCNC.)

Figure 1-72

One image from a stereoscopic pair
showing the bones of a human
hand. The images were rendered by
Inmo Yoon, D. E. Thompson, and
W. N. Waggenspack, Jr., LSU, from
a data set obtained with CT scans
by Rehabilitation Research,
GWLNHDC. These images show a
possible tendon path for
reconstructive surgery. (Courtesy of
IMRLAB, Mechanical Engineering,
Louisiana State University.)

33

Chapter 1

A Survey of Computer Graphics

34

'1-8

GRAPHICAL USER INTERFACES

It is common now for software packages to provide a graphical interface. A
major component of a graphical interface is a window manager that allows a user
to display multiple-window areas. Each window can contain a different process
that can contain graphical or nongraphical displays. To make a particular win-
dow active, we simply click in that window using an interactive pointing device.

Interfaces also display menus and icons for fast selection of processing op-
tions or parameter values. An icon is a graphical symbol that is designed to look
like the processing option it represents. The advantages of icons are that they
take up less screen space than corresponding textual descriptions and they can be
understood more quickly if well designed. Menus contain lists of textual descrip-
tions and icons.

Figure 1-73 illustrates a typical graphical interface, containing a window
manager, menu displays, and icons. In this example, the menus allow selection of
processing options, color values, and graphics parameters. The icons represent
options for painting, drawing, zooming, typing text strings, and other operations
connected with picture construction.

Figure 1-73

A graphical user interface, showing
multiple window areas, menus, and
icons. (Courtesy of Image-In
Corporation.)

36

D ue to the widespread recognition of the power and utility of computer
graphics in virtually all fields, a broad range of graphics hardware and
software systems is now available. Graphics capabilities for both two-dimen-
sional and three-dimensional applications are now common on general-purpose
computers, including many hand-held calculators. With personal computers, we
can use a wide variety of interactive input devices and graphics software pack-
ages. For higher-quality applications, we can choose from a number of sophisti-
cated special-purpose graphics hardware systems and technologies. In this chap-
ter, we explore the basic features of graphics hardware components and graphics
software packages.

21

VIDEO DISPLAY DEVICES

Typically, the primary output device in a graphics system is a video monitor (Fig.
2-1). The operation of most video monitors is based on the standard cathode-ray
tube (CRT) design, but several other technologies exist and solid-state monitors
may eventually predominate.

Tigure 2-1
A computer graphics workstation. (Courtesy of Tektronix, Inc.)

Refresh Cathode-Ray Tubes

Figure 2-2 illustrates the basic operation of a CRT. A beam of electrons (cathode
rays), emitted by an electron gun, passes through focusing and deflection systems
that direct the beam toward specified positions on the phosphor-coated screen.
The phosphor then emits a small spot of light at each position contacted by the
electron beam. Because the light emitted by the phosphor fades very rapidly,
some method is needed for maintaining the screen picture. One way to keep the
phosphor glowing is to redraw the picture repeatedly by quickly directing the
electron beam back over the same points. This type of display is called a refresh
CRT.

The primary components of an electron gun in a CRT are the heated metal
cathode and a control grid (Fig. 2-3). Heat is supplied to the cathode by directing
a current through a coil of wire, called the filament, inside the cylindrical cathode
structure. This causes electrons to be “boiled off” the hot cathode surface. In the
vacuum inside the CRT envelope, the free, negatively charged electrons are then
accelerated toward the phosphor coating by a high positive voltage. The acceler-

-

Figure 2-2
Basic design of a magnetic-deflection CRT.

Figure 2-3
Operation of an electron gun with an accelerating anode.

Section 2-1

Video Display Devices

Chapter 2

38

Overview of Graphics Systems

ating voltage can be generated with a positively charged metal coating on the in-
side of the CRT envelope near the phosphor screen, or an accelerating anode can
be used, as in Fig. 2-3. Sometimes the electron gun is built to contain the acceler-
ating anode and focusing system within the same unit.

Intensity of the electron beam is controlled by setting voltage levels on the
control grid, which is a metal cylinder that fits over the cathode. A high negative
voltage applied to the control grid will shut off the beam by repelling electrons
and stopping them from passing through the small hole at the end of the control
grid structure. A smaller negative voltage on the control grid simply decreases
the number of electrons passing through. Since the amount of light emitted by
the phosphor coating depends on the number of electrons striking the screen, we
control the brightness of a display by varying the voltage on the control grid. We
specify the intensity level for individual screen positions with graphics software
commands, as discussed in Chapter 3.

The focusing system in a CRT is needed to force the electron beam to con-
verge into a small spot as it strikes the phosphor. Otherwise, the electrons would
repel each other, and the beam would spread out as it approaches the screen. Fo-
cusing is accomplished with either electric or magnetic fields. Electrostatic focus-
ing is commonly used in television and computer graphics monitors. With elec-
trostatic focusing, the electron beam passes through a positively charged metal
cylinder that forms an electrostatic lens, as shown in Fig. 2-3. The action of the
electrostatic lens focuses the electron beam at the center of the screen, in exactly
the same way that an optical lens focuses a beam of light at a particular focal dis-
tance. Similar lens focusing effects can be accomplished with a magnetic field set
up by a coil mounted around the outside of the CRT envelope. Magnetic lens fo-
cusing produces the smallest spot size on the screen and is used in special-
purpose devices.

Additional focusing hardware is used in high-precision systems to keep the
beam in focus at all screen positions. The distance that the electron beam must
travel to different points on the screen varies because the radius of curvature for
most CRTs is greater than the distance from the focusing system to the screen
center. Therefore, the electron beam will be focused properly only at the center of
the screen. As the beam moves to the outer edges of the screen, displayed images
become blurred. To compensate for this, the system can adjust the focusing ac-
cording to the screen position of the beam.

As with focusing, deflection of the electron beam can be controlled either
with electric fields or with magnetic fields. Cathode-ray tubes are now commonly
constructed with magnetic deflection coils mounted on the outside of the CRT
envelope, as illustrated in Fig. 2-2. Two pairs of coils are used, with the coils in
each pair mounted on opposite sides of the neck of the CRT envelope. One pair is
mounted on the top and bottom of the neck, and the other pair is mounted on
opposite sides of the neck. The magnetic field produced by each pair of coils re-
sults in a transverse deflection force that is perpendicular both to the direction of
the magnetic field and to the direction of travel of the electron beam. Horizontal
deflection is accomplished with one pair of coils, and vertical deflection by the
other pair. The proper deflection amounts are attained by adjusting the current
through the coils. When electrostatic deflection is used, two pairs of parallel
plates are mounted inside the CRT envelope. One pair of plates is mounted hori-
zontally to control the vertical deflection, and the other pair is mounted vertically
to control horizontal deflection (Fig. 2-4).

Spots of light are produced on the screen by the transfer of the CRT beam
energy to the phosphor. When the electrons in the beam collide with the phos-

N ' A0fr-

Jn

|

Figure 2-4
Electrostatic deflection of the electron beam in a CRT.

phor coating, they are stopped and their kinetic energy is absorbed by the phos-
phor. Part of the beam energy is converted by friction into heat energy, and the
remainder causes electrons in the phosphor atoms to move up to higher quan-
tum-energy levels. After a short time, the “excited” phosphor electrons begin
dropping back to their stable ground state, giving up their extra energy as small
quantums of light energy. What we see on the screen is the combined effect of all
the electron light emissions: a glowing spot that quickly fades after all the excited
phosphor electrons have returned to their ground energy level. The frequency (or
color) of the light emitted by the phosphor is proportional to the energy differ-
ence between the excited quantum state and the ground state.

Different kinds of phosphors are available for use in a CRT. Besides color, a
major difference between phosphors is their persistence: how long they continue
to emit light (that is, have excited electrons returning to the ground state) after
the CRT beam is removed. Persistence is defined as the time it takes the emitted
light from the screen to decay to one-tenth of its original intensity. Lower-
persistence phosphors require higher refresh rates to maintain a picture on the
screen without flicker. A phosphor with low persistence is useful for animation; a
high-persistence phosphor is useful for displaying highly complex, static pic-
tures. Although some phosphors have a persistence greater than 1 second, graph-
ics monitors are usually constructed with a persistence in the range from 10 to 60
microseconds.

Figure 2-5 shows the intensity distribution of a spot on the screen. The in-
tensity is greatest at the center of the spot, and decreases with a Gaussian distrib-
ution out to the edges of the spot. This distribution corresponds to the cross-
sectional electron density distribution of the CRT beam.

The maximum number of points that can be displayed without overlap on a
CRT is referred to as the resolution. A more precise definition of resolution is the
number of points per centimeter that can be plotted horizontally and vertically,
although it is often simply stated as the total number of points in each direction.
Spot intensity has a Gaussian distribution (Fig. 2-5), so two adjacent spots will
appear distinct as long as their separation is greater than the diameter at which
each spot has an intensity of about 60 percent of that at the center of the spot.
This overlap position is illustrated in Fig. 2-6. Spot size also depends on intensity.
As more electrons are accelerated toward the phospher per second, the CRT
beam diameter and the illuminated spot increase. In addition, the increased exci-
tation energy tends to spread to neighboring phosphor atoms not directly in the

Figure 2-5

Intensity distribution of an
illuminated phosphor spot
a CRT screen.

on

39

Chapter 2
Overview of Graphics Systems

Figure 2-6

Two illuminated phosphor
spots are distinguishable
when their separation is
greater than the diameter at
which a spot intensity has
fallen to 60 percent of
maximum.

40

path of the beam, which further increases the spot diameter. Thus, resolution of a
CRT is dependent on the type of phosphor, the intensity to be displayed, and the
focusing and deflection systems. Typical resolution on high-quality systems is
1280 by 1024, with higher resolutions available on many systems. High-
resolution systems are often referred to as high-definition systems. The physical
size of a graphics monitor is given as the length of the screen diagonal, with sizes
varying from about 12 inches to 27 inches or more. A CRT monitor can be at-
tached to a variety of computer systems, so the number of screen points that can
actually be plotted depends on the capabilities of the system to which it is at-
tached.

Another property of video monitors is aspect ratio. This number gives the
ratio of vertical points to horizontal points necessary to produce equal-length
lines in both directions on the screen. (Sometimes aspect ratio is stated in terms of
the ratio of horizontal to vertical points.) An aspect ratio of 3/4 means that a ver-
tical line plotted with three points has the same length as a horizontal line plot-
ted with four points.

Raster-Scan Displays

The most common type of graphics monitor employing a CRT is the raster-scan
display, based on television technology. In a raster-scan system, the electron
beam is swept across the screen, one row at a time from top to bottom. As the
electron beam moves across each row, the beam intensity is turned on and off to
create a pattern of illuminated spots. Picture definition is stored in a memory
area called the refresh buffer or frame buffer. This memory area holds the set of
intensity values for all the screen points. Stored intensity values are then re-
trieved from the refresh buffer and “painted” on the screen one row {(scan line) at
a time (Fig. 2-7). Each screen point is referred to as a pixel or pel (shortened
forms of picture element). The capability of a raster-scan system to store inten-
sity information for each screen point makes it well suited for the realistic displayv
of scenes containing subtle shading and color patterns. Home television sets and
printers are examples of other systems using raster-scan raethods.

Intensity range for pixel positions depends on the capability of the raster
system. In a simple black-and-white system, each screen point is either on or off,
so only one bit per pixel is needed to control the intensity of screen positions. For
a bilevel system, a bit value of 1 indicates that the electron beam is to be turned
on at that position, and a value of 0 indicates that the beam intensity is to be off.
Additional bits are needed when color and intensity variations can be displayed.
Up to 24 bits per pixel are included in high-quality systems, which can require
several megabytes of storage for the frame buffer, depending on the resolution of
the system. A system with 24 bits per pixel and a screen resolution of 1024 bv
1024 requires 3 megabytes of storage for the frame buffer. On a black-and-white
system with one bit per pixel, the frame buffer is commonly called a bitmap. For
systems with multiple bits per pixel, the frame buffer is often referred to as a
pixmap.

Refreshing on raster-scan displays is carried out at the rate of 60 to 80
frames per second, although some systems are designed for higher refresh rates.
Sometimes, refresh rates are described in units of cycles per second, or Hertz
(Hz), where a cycle corresponds to one frame. Using these units, we would de-
scribe a refresh rate of 60 frames per second as simply 60 Hz. At the end of each
scan line, the electron beam returns to the left side of the screen to begin displav-
ing the next scan line. The return to the left of the screen, after refreshing each

= o'y

Figure 2-7
A raster-scan system displays an object as a set of discrete points across
each scan line.

scan line, is called the horizontal retrace of the electron beam. And at the end of
each frame (displayed in 1/80th to 1/60th of a second), the electron beam returns
(vertical retrace) to the top left corner of the screen to begin the next frame.

On some raster-scan systems (and in TV sets), each frame is displayed in
two passes using an interlaced refresh procedure. In the first pass, the beam
sweeps across every other scan line from top to bottom. Then after the vertical re-
trace, the beam sweeps out the remaining scan lines (Fig. 2-8). Interlacing of the
scan lines in this way allows us to see the entire screen displayed in one-half the
time it would have taken to sweep across all the lines at once from top to bottom.
Interlacing is primarily used with slower refreshing rates. On an older, 30 frame-
per-second, noninterlaced display, for instance, some flicker is noticeable. But
with interlacing, each of the two passes can be accomplished in 1/60th of a sec-
ond, which brings the refresh rate nearer to 60 frames per second. This is an effec-
tive technique for avoiding flicker, providing that adjacent scan lines contain sim-
ilar display information.

Random-Scan Displays

When operated as a random-scan display unit, a CRT has the electron beam di-
rected only to the parts of the screen where a picture is to be drawn. Random-
scan monitors draw a picture one line at a time and for this reason are also re-
ferred to as vector displays (or stroke-writing or calligraphic displays). The
component lines of a picture can be drawn and refreshed by a random-scan sys-

41

Chapter 2

42

Overview of Graphics Systems

Figure 2-8

Interlacing scan lines on a raster-
scan display. First, all points on the
even-numbered (solid) scan lines
are displayed; then all points along
the odd-numbered (dashed) lines
are displayed.

tem in any specified order {Fig. 2-9). A pen plotter operates in a similar way and
is an example of a random-scan, hard-copy device.

Refresh rate on a random-scan system depends on the number of lines to be
displayed. Picture definition is now stored as a set of line-drawing commands in
an area of memory referred to as the refresh display file. Sometimes the refresh
display file is called the display list, display program, or simply the refresh
buffer. To display a specified picture, the system cycles through the set of com-
mands in the display file, drawing each component line in turn. After all line-
drawing commands have been processed, the system cycles back to the first line
command in the list. Random-scan displays are designed to draw all the compo-
nent lines of a picture 30 to 60 times each second. High-quality vector systems are
capable of handling approximately 100,000 “short” lines at this refresh rate.
When a small set of lines is to be displayed, each refresh cycle is delayed to avoid
refresh rates greater than 60 frames per second. Otherwise, faster refreshing of
the set of lines could burn out the phosphor.

Random-scan systems are designed for line-drawing applications and can-
not display realistic shaded scenes. Since picture definition is stored as a set of
line-drawing instructions and not as a set of intensity values for all screen points,
vector displays generally have higher resolution than raster systems. Also, vector
displays produce smooth line drawings because the CRT beam directly follows
the line path. A raster system, in contrast, produces jagged lines that are plotted
as discrete point sets.

Color CRT Monitors

A CRT monitor displays color pictures by using a combination of phosphors that
emit different-colored light. By combining the emitted light from the different
phosphors, a range of colors can be generated. The two basic techniques for pro-
ducing color displays with a CRT are the beam-penetration method and the
shadow-mask method.

The beam-penetration method for displaying color pictures has been used
with random-scan monitors. Two layers of phosphor, usually red and green, are

Figure 2-9
A random-scan system draws the component lines of an object in any
order specified.

coated onto the inside of the CRT screen, and the displayed color depends on
how far the electron beam penetrates into the phosphor layers. A beam of slow
electrons excites only the outer red layer. A beam of very fast electrons penetrates
through the red layer and excites the inner green layer. At intermediate beam
speeds, combinations of red and green light are emitted to show two additional
colors, orange and yellow. The speed of the electrons, and hence the screen color
at any point, is controlled by the beam-acceleration voltage. Beam penetration
has been an inexpensive way to produce color in random-scan monitors, but only
four colors are possible, and the quality of pictures is not as good as with other
methods.

Shadow-mask methods are commonly used in raster-scan systems (includ-
ing color TV) because they produce a much wider range of colors than the beam-
penetration method. A shadow-mask CRT has three phosphor color dots at each
pixel position. One phosphor dot emits a red light, another emits a green light,
and the third emits a blue light. This type of CRT has three electron guns, one for
each color dot, and a shadow-mask grid just behind the phosphor-coated screen.
Figure 2-10 illustrates the delta-delta shadow-mask method, commonly used in
color CRT systems. The three electron beams are deflected and focused as a
group onto the shadow mask, which contains a series of holes aligned with the
phosphor-dot patterns. When the three beams pass through a hole in the shadow
mask, they activate a dot triangle, which appears as a small color spot on the
screen. The phosphor dots in the triangles are arranged so that each electron
beam can activate only its corresponding color dot when it passes through the

43

Chapter 2

44

Overview of Graphics Systems

Figure 2-10

Operation of a delta-delta, shadow-mask CRT. Three electron
guns, aligned with the triangular color-dot patterns on the screen,
are directed to each dot triangle by a shadow mask.

shadow mask. Another configuration for the three electron guns is an in-line
arrangement in which the three electron guns, and the corresponding
red—green—blue color dots on the screen, are aligned along one scan line instead
of in a triangular pattern. This in-line arrangement of electron guns is easier to
keep in alignment and is commonly used in high-resolution color CRTs.

We obtain color variations in a shadow-mask CRT by varying the intensity
levels of the three electron beams. By turning off the red and green guns, we get
only the color coming from the blue phosphor. Other combinations of beam in-
tensities produce a small light spot for each pixel position, since our eyes tend to
merge the three colors into one composite. The color we see depends on the
amount of excitation of the red, green, and blue phosphors. A white (or gray)
area is the result of activating all three dots with equal intensity. Yellow is pro-
duced with the green and red dots only, magenta is produced with the blue and
red dots, and cyan shows up when blue and green are activated equally. In some
low-cost systems, the electron beam can only be set to on or off, limiting displays
to eight colors. More sophisticated systems can set intermediate intensity levels
for the electron beams, allowing several million different colors to be generated.

Color graphics systems can be designed to be used with several types of
CRT display devices. Some inexpensive home-computer systems and video
games are designed for use with a color TV set and an RF (radio-frequency) mod-
ulator. The purpose of the RF modulator is to simulate the signal from a broad-
cast TV station. This means that the color and intensity information of the picture
must be combined and superimposed on the broadcast-frequency carrier signal
that the TV needs to have as input. Then the circuitry in the TV takes this signal
from the RF modulator, extracts the picture information, and paints it on the
screen. As we might expect, this extra handling of the picture information by the
RF modulator and TV circuitry decreases the quality of displayed images.

Composite monitors are adaptations of TV sets that allow bypass of the
broadcast circuitry. These display devices still require that the picture informa-

tion be combined, but no carrier signal is needed. Picture information is com-
bined into a composite signal and then separated by the monitor, 5o the resulting
picture quality is still not the best attainable.

Color CRTs in graphics systems are designed as RGB monitors. These mon-
itors use shadow-mask methods and take the intensity level for each electron gun
(red, green, and blue) directly from the computer system without any intermedi-
ate processing. High-quality raster-graphics systems have 24 bits per pixel in the
frame buffer, allowing 256 voltage settings for each electron gun and nearly 17
million color choices for each pixel. An RGB color system with 24 bits of storage
per pixel is generally referred to as a full-color system or a true-color system.

Direct-View Storage Tubes

An alternative method for maintaining a screen image is to store the picture in-
formation inside the CRT instead of refreshing the screen. A direct-view storage
tube (DVST) stores the picture information as a charge distribution just behind
the phosphor-coated screen. Two electron guns are used in a DVST. One, the pri-
mary gun, is used to store the picture pattern; the second, the flood gun, main-
tains the picture display.

A DVST monitor has both disadvantages and advantages compared to the
refresh CRT. Because no refreshing is needed, very complex pictures can be dis-
played at very high resolutions without flicker. Disadvantages of DVST systems
are that they ordinarily do not display color and that selected parts of a picture
cannot be erased. To eliminate a picture section, the entire screen must be erased
and the modified picture redrawn. The erasing and redrawing process can take
several seconds for a complex picture. For these reasons, storage displays have
been largely replaced by raster systems.

Flat-Panel Displays

Although most graphics monitors are still constructed with CRTs, other technolo-
gies are emerging that may soon replace CRT monitors. The term flat-panel dis-
play refers to a class of video devices that have reduced volume, weight, and
power requirements compared to a CRT. A significant feature of flat-panel dis-
plays is that they are thinner than CRTs, and we can hang them on walls or wear
them on our wrists. Since we can even write on some flat-panel displays, they
will soon be available as pocket notepads. Current uses for flat-panel displays in-
clude small TV monitors, calculators, pocket video games, laptop computers,
armrest viewing of movies on airlines, as advertisement boards in elevators, and
as graphics displays in applications requiring rugged, portable monitors.

We can separate flat-panel displays into two categories: emissive displays
and nonemissive displays. The emissive displays (or emitters) are devices that
convert electrical energy into light. Plasma panels, thin-film electroluminescent
displays, and light-emitting diodes are examples of emissive displays. Flat CRTs
have also been devised, in which electron beams are accelerated parallel to the
screen, then deflected 90° to the screen. But flat CRTs have not proved to be as
successful as other emissive devices. Nonemmissive displays (or nonemitters)
use optical effects to convert sunlight or light from some other source into graph-
ics patterns. The most important example of a nonemissive flat-panel display is a
liquid-crystal device.

Plasma panels, also called gas-discharge displays, are constructed by fill-
ing the region between two glass plates with a mixture of gases that usually in-

Section 2-1

Video Display Devices

45

Chapter 2

46

Overview of Graphics Systems

cludes neon. A series of vertical conducting ribbons is placed on one glass panel,
and a set of horizontal ribbons is built into the other glass panel (Fig. 2-11). Firing
voltages applied to a pair of horizontal and vertical conductors cause the gas at
the intersection of the two conductors to break down into a glowing plasma of
electrons and ions. Picture definition is stored in a refresh buffer, and the firing
voltages are applied to refresh the pixel positions (at the intersections of the con-
ductors) 60 times per second. Alternating-current methods are used to provide
faster application of the firing voltages, and thus brighter displays. Separation
between pixels is provided by the electric field of the conductors. Figure 2-12
shows a high-definition plasma panel. One disadvantage of plasma panels has
been that they were strictly monochromatic devices, but systems have been de-
veloped that are now capable of displaying color and grayscale.

Thin-film electroluminescent displays are similar in construction to a
plasma panel. The difference is that the region between the glass plates is filled
with a phosphor, such as zinc sulfide doped with manganese, instead of a gas
(Fig. 2-13). When a sufficiently high voltage is applied to a pair of crossing elec-
trodes, the phosphor becomes a conductor in the area of the intersection of the
two electrodes. Electrical energy is then absorbed by the manganese atoms,
which then release the energy as a spot of light similar to the glowing plasma ef-
fect in a plasma panel. Electroluminescent displays require more power than
plasma panels, and good color and gray scale displays are hard to achieve.

A third type of emissive device is the light-emitting diode (LED). A matrix
of diodes is arranged to form the pixel positions in the display, and picture defin-
ition is stored in a refresh buffer. As in scan-line refreshing of a CRT, information

¢
(

Figure 2-11 Figure 2-12

Basic design of a plasma-panel A plasma-panel display with a

display device. resolution of 2048 by 2048 and a

screen diagonal of 1.5 meters.
(Courtesy of Photonics Systems .}

Figure 2-13
Basic design of a thin-film
electroluminescent display device.

is read from the refresh buffer and converted to voltage levels that are applied to
the diodes to produce the light patterns in the display.

Liquid-crystal displays (LCDs) are commonly used in small systems, such
as calculators (Fig. 2-14) and portable, laptop computers (Fig. 2-15). These non-
emissive devices produce a picture by passing polarized light from the surround-
ings or from an internal light source through a liquid-crystal material that can be
aligned to either block or transmit the light.

The term liquid crystal refers to the fact that these compounds have a crys-
talline arrangement of molecules, yet they flow like a liquid. Flat-panel displays
commonly use nematic (threadlike) liquid-crystal compounds that tend to keep
the long axes of the rod-shaped molecules aligned. A flat-panel display can then
be constructed with a nematic liquid crystal, as demonstrated in Fig. 2-16. Two
glass plates, each containing a light polarizer at right angles to the other plate,
sandwich the liquid-crystal material. Rows of horizontal transparent conductors
are built into one glass plate, and columns of vertical conductors are put into the
other plate. The intersection of two conductors defines a pixel position. Nor-
mally, the molecules are aligned as shown in the “on state” of Fig. 2-16. Polarized
light passing through the material is twisted so that it will pass through the op-
posite polarizer. The light is then reflected back to the viewer. To turn off the
pixel, we apply a voltage to the two intersecting conductors to align the mole-
cules so that the light is not twisted. This type of flat-panel device is referred to as
a passive-matrix LCD. Picture definitions are stored in a refresh buffer, and the
screen is refreshed at the rate of 60 frames per second, as in the emissive devices.
Back lighting is also commonly applied using solid-state electronic devices, so
that the system is not completely dependent on outside light sources. Colors can
be displayed by using different materials or dyes and by placing a triad of color
pixels at each screen location. Another method for constructing LCDs is to place
a transistor at each pixel location, using thin-film transistor technology. The tran-
sistors are used to control the voltage at pixel locations and to prevent charge
from gradually leaking out of the liquid-crystal cells. These devices are called
active-matrix displays.

Section 2-1

Video Display Devices

Figure 2-14
A hand calculator with an

LCD screen. (Courtesy of Texas

Instruments.)

47

Figure 2-15

A backlit, passive-matrix, liquid-

crystal display in a laptop

computer, featuring 256 colors, a

screen resolution of 640 by 400, and .

a screen diagonal of 9 inches. - - . - ple -

(Courtesy of Apple Computer, Inc.) - - : N ‘ L

roni
» .ate _ uctor

Figure 2-16
The light-twisting, shutter effect used in the design of most liquid-
crystal display devices.

48

Three-Dimensional Viewing Devices Section 2-1
Video Display Devices

Graphics monitors for the display of three-dimensional scenes have been devised
using a technique that reflects a CRT image from a vibrating, flexible mirror. The
operation of such a system is demonstrated in Fig. 2-17. As the varifocal mirror
vibrates, it changes focal length. These vibrations are synchronized with the dis-
play of an object on a CRT so that each point on the object is reflected from the
mirror into a spatial position corresponding to the distance of that point from a
specified viewing position. This allows us to walk around an object or scene and
view it from different sides.

Figure 2-18 shows the Genisco SpaceGraph system, which uses a vibrating
mirror to project three-dimensional objects into a 25-cm by 25-cm by 25-cm vol-
ume. This system is also capable of displaying two-dimensional cross-sectional
“slices” of objects selected at different depths. Such systems have been used in
medical applications to analyze data from ultrasonography and CAT scan de-
vices, in geological applications to analyze topological and seismic data, in de-
sign applications involving solid objects, and in three-dimensional simulations of
systems, such as molecules and terrain.

Figure 2-17

Operation of a three-dimensional display system using a
vibrating mirror that changes focal length to match the depth of
points in a scene.

Figure 2-18
The SpaceGraph interactive
graphics system displays objects in
three dimensions using a vibrating,
flexible mirror. (Courtesy of Genisco
Computers Corporation.)
49

Chapter 2 Stereoscopic and Virtual-Reality Systems
Overview of Graphics Systems

Another technique for representing three-dimensional objects is displaying
stereoscopic views. This method does not produce true three-dimensional im-
ages, but it does provide a three-dimensional effect by presenting a different
view to each eye of an observer so that scenes do appear to have depth (Fig. 2-19).

To obtain a stereoscopic projection, we first need to obtain two views of a
scene generated from a viewing direction corresponding to each eye (left and
right). We can construct the two views as computer-generated scenes with differ-
ent viewing positions, or we can use a stereo camera pair to photograph some
object or scene. When we simultaneous look at the left view with the left eye and
the right view with the right eye, the two views merge into a single image and
we perceive a scene with depth. Figure 2-20 shows two views of a computer-
generated scene for stereographic projection. To increase viewing comfort, the
areas at the left and right edges of this scene that are visible to only one eye have
been eliminated.

Figure 2-19
Viewing a stereoscopic projection.
(Courtesy of StereoGraphics Corporation.)

Figure 2-20
A stereoscopic viewing pair. (Courtesy of Jerry Farm.)
50

One way to produce a stereoscopic effect is to display each of the two views
with a raster system on alternate refresh cycles. The screen is viewed through
glasses, with each lens designed to act as a rapidly alternating shutter that is syn-
chronized to block out one of the views. Figure 2-21 shows a pair of stereoscopic
glasses constructed with liquid-crystal shutters and an infrared emitter that syn-
chronizes the glasses with the views on the screen.

Stereoscopic viewing is also a component in virtual-reality systems,
where users can step into a scene and interact with the environment. A headset
(Fig. 2-22) containing an optical system to generate the stereoscopic views is
commonly used in conjuction with interactive input devices to locate and manip-
ulate objects in the scene. A sensing system in the headset keeps track of the
viewer'’s position, so that the front and back of objects can be seen as the viewer

Figure 2-21

Glasses for viewing a
stereoscopic scene and an
infrared synchronizing emitter.
(Courtesy of StereoGraphics Corporation.)

Figure 2-22
A headset used in virtual-reality systems. (Courtesy of Virtual
Research.)

Section 2-1

Video Display Devices

51

Chapter 2

52

Overview of Graphics Systems

Figure 2-23

Interacting with a virtual-reality environment. (Courtesy of the
National Center for Supercomputing Applications, University of llinois at
Urbana-Champaign.)

“walks through” and interacts with the display. Figure 2-23 illustrates interaction
with a virtual scene, using a headset and a data glove worn on the right hand
(Section 2-5).

An interactive virtual-reality environment can also be viewed with stereo-
scopic glasses and a video monitor, instead of a headset. This provides a means
for obtaining a lower-cost virtual-reality system. As an example, Fig. 2-24 shows
an ultrasound tracking device with six degrees of freedom. The tracking device is
placed on top of the video display and is used to monitor head movements so
that the viewing position for a scene can be changed as head position changes.

Figure 2-24

An ultrasound tracking device used
with stereoscopic glasses to track
head position. (Courtesy of
StereoGraphics Corporation.)

2-2
RASTER-SCAN SYSTEMS

Interactive raster graphics systems typically employ several processing units. In
addition to the central processing unit, or CPU, a special-purpose processor,
called the video controller or display controller, is used to control the operation
of the display device. Organization of a simple raster system is shown in Fig. 2-25.
Here, the frame buffer can be anywhere in the system memory, and the video
controller accesses the frame buffer to refresh the screen. In addition to the video
controller, more sophisticated raster systems employ other processors as co-
processors and accelerators to implement various graphics operations.

Video Controller

Figure 2-26 shows a commonly used organization for raster systems. A fixed area
of the system memory is reserved for the frame buffer, and the video controller is
given direct access to the frame-buffer memory.

Frame-buffer locations, and the corresponding screen positions, are refer-
enced in Cartesian coordinates. For many graphics monitors, the coordinate ori-

Figure 2-25
Architecture of a simple raster graphics system.

Figure 2-26
Architecture of a raster system with a fixed portion of the system
memory reserved for the frame buffer.

Section 2-2

Raster-Scan Systems

53

Chapter 2
Overview of Graphics Systems

Figure 2-27

The origin of the coordinate
system for identifying screen
positions is usually specified
in the lower-left corner.

54

gin is defined at the lower left screen corner (Fig. 2-27). The screen surface is then
represented as the first quadrant of a two-dimensional system, with positive x
values increasing to the right and positive y values increasing from bottom to
top. {On some personal computers, the coordinate origin is referenced at the
upper left corner of the screen, so the y values are inverted.) Scan lines are then
labeled from Y, at the top of the screen to 0 at the bottom. Along each scan line,
screen pixel positions are labeled from 0 to x,,,.

In Fig. 2-28, the basic refresh operations of the video controller are dia-
grammed. Two registers are used to store the coordinates of the screen pixels. Ini-
tially, the x register is set to 0 and the y register is set to y.,,. The value stored in
the frame buffer for this pixel position is then retrieved and used to set the inten-
sity of the CRT beam. Then the x register is incremented by 1, and the process re-
peated for the next pixel on the top scan line. This procedure is repeated for each
pixel along the scan line. After the last pixel on the top scan line has been
processed, the x register is reset to 0 and the y register is decremented by 1. Pixels
along this scan line are then processed in turn, and the procedure is repeated for
each successive scan line. After cycling through all pixels along the bottom scan
line (y = 0), the video controller resets the registers to the first pixel position on
the top scan line and the refresh process starts over.

Since the screen must be refreshed at the rate of 60 frames per second, the
simple procedure illustrated in Fig. 2-28 cannot be accommodated by typical
RAM chips. The cycle time is too slow. To speed up pixel processing, video con-
trollers can retrieve multiple pixel values from the refresh buffer on each pass.
The multiple pixel intensities are then stored in a separate register and used to
control the CRT beam intensity for a group of adjacent pixels. When that group
of pixels has been processed, the next block of pixel values is retrieved from the
frame buffer.

A number of other operations can be performed by the video controller, be-
sides the basic refreshing operations. For various applications, the video con-

Figure 2-28
Basic video-controller refresh operations.

Fignre 2-29
Architecture of a raster-graphics system with a display processor.

troller can retrieve pixel intensities from different memory areas on different re-
fresh cycles. In high-quality systems, for example, two frame buffers are often
provided so that one buffer can be used for refreshing while the other is being
filled with intensity values. Then the two buffers can switch roles. This provides
a fast mechanism for generating real-time animations, since different views of
moving objects can be successively loaded into the refresh buffers. Also, some
transformations can be accomplished by the video controller. Areas of the screen
can be enlarged, reduced, or moved from one location to another during the re-
fresh cycles. In addition, the video controller often contains a lookup table, so
that pixel values in the frame buffer are used to access the lookup table instead of
controlling the CRT beam intensity directly. This provides a fast method for
changing screen intensity values, and we discuss lookup tables in more detail in
Chapter 4. Finally, some systems are designed to allow the video controller to
mix the frame-buffer image with an input image from a television camera or
other input device.

Raster-Scan Display Processor

Figure 2-29 shows one way to set up the organization of a raster system contain-
ing a separate display processer, sometimes referred to as a graphics controller
or a display coprocessor. The purpose of the display processor is to free the CPU
from the graphics chores. In addition to the system memory, a separate display-
processor memory area can also be provided.

A maijor task of the display processor is digitizing a picture definition given
in an application program into a set of pixel-intensity values for storage in the
frame buffer. This digitization process is called scan conversion. Graphics com-
mands specifying straight lines and other geometric objects are scan converted
into a set of discrete intensity points. Scan converting a straight-line segment, for
example, means that we have to locate the pixel positions closest to the line path
and store the intensity for each position in the frame buffer. Similar methods are
used for scan converting curved lines and polygon outlines. Characters can be
defined with rectangular grids, as in Fig. 2-30, or they can be defined with curved

Figure 2-30

A character defined as a
rectangular grid of pixel
positions.

55

)

Figure 2-31
A character defined as a
curve outline.

56

outlines, as in Fig. 2-31. The array size for character grids can vary from about 5
by 7 to 9 by 12 or more for higher-quality displays. A character grid is displayed
by superimposing the rectangular grid pattern into the frame buffer at a specified
coordinate position. With characters that are defined as curve outlines, character
shapes are scan converted into the frame buffer.

Display processors are also designed to perform a number of additional op-
erations. These functions include generating various line styles (dashed, dotted,
or solid), displaying color areas, and performing certain transformations and ma-
nipulations on displayed vbjects. Also, display processors are typically designed
to interface with interactive input devices, such as a mouse.

In an effort to reduce memory requirements in raster systems, methods
have been devised for organizing the frame buffer as a linked list and encoding
the intensity information. One way to do this is to store each scan line as a set of
integer pairs. One number of each pair indicates an intensity value, and the sec-
ond number specifies the number of adjacent pixels on the scan line that are to
have that intensity. This technique, called run-length encoding, can result in a
considerable saving in storage space if a picture is to be constructed mostly with
long runs of a single color each. A similar approach can be taken when pixel in-
tensities change linearly. Another approach is to encode the raster as a set of rec-
tangular areas (cell encoding). The disadvantages of encoeding runs are that in-
tensity changes are difficult to make and storage requirements actually increase
as the length of the runs decreases. In addition, it is difficult for the display con-
troller to process the raster when many short runs are involved.

2-3
RANDOM-SCAN SYSTEMS

The organization of a simple random-scan (vector) system is shown in Fig. 2-32.
An application program is input and stored in the system memory along with a
graphics package. Graphics commands in the application program are translated
by the graphics package into a display file stored in the system memory. This dis-
play file is then accessed by the display processor to refresh the screen. The dis-
play processor cycles through each command in the display file program once
during every refresh cycle. Sometimes the display processor in a random-scan
system is referred to as a display processing unit or a graphics controller.

Figure 2-32
Architecture of a simple random-scan system.

Graphics patterns are drawn on a random-scan system by directing the Section 2-4
electron beam along the component lines of the picture. Lines are defined by the Graphics Monitors
values for their coordinate endpoints, and these input coordinate values are con- 2nd Workstations
verted to x and y deflection voltages. A scene is then drawn one line at a time by
positioning the beam to fill in the line between specified endpoints.

2-4
GRAPHICS MONITORS AND WORKSTATIONS

Most graphics monitors today operate as raster-scan displays, and here we sur-
vey a few of the many graphics hardware configurations available. Graphics sys-
tems range from small general-purpose computer systems with graphics capabil-
ities (Fig. 2-33) to sophisticated full-color systems that are designed specifically
for graphics applications (Fig. 2-34). A typical screen resolution for personal com-

Figure 2-33

A desktop general-purpose
computer system that can be used
for graphics applications. (Courtesy of
Apple Computer, Inc.)

Figure 2-34
Computer graphics workstations with keyboard and mouse input devices. (a) The Iris
Indigo. (Courtesy of Silicon Graphics Corporation.) (b) SPARCstation 10. (Courtesy of Sun Microsystems.)

57

Chapter 2

58

Overview of Graphics Systems

puter systems, such as the Apple Quadra shown in Fig. 2-33, is 640 by 480, al-
though screen resolution and other system capabilities vary depending on the
size and cost of the system. Diagonal screen dimensions for general-purpose per-
sonal computer systems can range from 12 to 21 inches, and allowable color se-
lections range from 16 to over 32,000. For workstations specifically designed for
graphics applications, such as the systems shown in Fig. 2-34, typical screen reso-
lution is 1280 by 1024, with a screen diagonal of 16 inches or more. Graphics
workstations can be configured with from 8 to 24 bits per pixel (full-color sys-
tems), with higher screen resolutions, faster processors, and other options avail-
able in high-end systems.

Figure 2-35 shows a high-definition graphics monitor used in applications
such as air traffic control, simulation, medical imaging, and CAD. This system
has a diagonal screen size of 27 inches, resolutions ranging from 2048 by 1536 to
2560 by 2048, with refresh rates of 80 Hz or 60 Hz noninterlaced.

A multiscreen system called the MediaWall, shown in Fig. 2-36, provides a
large “wall-sized” display area. This system is designed for applications that re-
quire large area displays in brightly lighted environments, such as at trade
shows, conventions, retail stores, museums, or passenger terminals. MediaWall
operates by splitting images into a number of sections and distributing the sec-
tions over an array of monitors or projectors using a graphics adapter and satel-
lite control units. An array of up to 5 by 5 monitors, each with a resolution of 640
by 480, can be used in the MediaWall to provide an overall resolution of 3200 by
2400 for either static scenes or animations. Scenes can be displayed behind muil-
lions, as in Fig. 2-36, or the mullions can be eliminated to display a continuous
picture with no breaks between the various sections.

Many graphics workstations, such as some of those shown in Fig. 2-37, are
configured with two monitors. One monitor can be used to show all features of
an object or scene, while the second monitor displays the detail in some part of
the picture. Another use for dual-monitor systems is to view a picture on one
menitor and display graphics options (menus) for manipulating the picture com-
ponents on the other monitor.

Figure 2-35

A very high-resolution (2560 by
2048) color monitor. (Courtesy of
BARCOQ Chromatics.)

Figure 2-36

The MediaWall: A multiscreen display system. The image displayed on
this 3-by-3 array of monitors was created by Deneba Software. (Courtesy
of RGB Spectrum.)

Figure 2-37
Single- and dual-monitor graphics workstations. (Courtesy of Intergraph
Corporation.)

Figures 2-38 and 2-39 illustrate examples of interactive graphics worksta-
tions containing multiple input and other devices. A typical setup for CAD appli-
cations is shown in Fig, 2-38. Various keyboards, button boxes, tablets, and mice
are attached to the video monitors for use in the design process. Figure 2-39
shows features of some types of artist’s workstations.

59

60

Figure 2-38
Multiple workstations for a CAD group. (Courtesy of Hewlett-Packard

Company.)
Figure 2-39
An artist's workstation, featuring a color raster monitor, keyboard,
graphics tablet with hand cursor, and a light table, in addition to
data storage and telecommunications devices. (Courtesy of DICOMED
Corporation.)
2-5

INPUT DEVICES

Various devices are available for data input on graphics workstations. Most sys-
tems have a keyboard and one or more additional devices specially designed for
interactive input. These include a mouse, trackball, spaceball, joystick, digitizers,

dials, and button boxes. Some other input devices usea 1n particular applications
are data gloves, touch panels, image scanners, and voice systems.

Keyboards

An alphanumeric keyboard on a graphics system is used primarily as a device
for entering text strings. The keyboard is an efficient device for inputting such
nongraphic data as picture labels associated with a graphics display. Keyboards
can also be provided with features to facilitate entry of screen coordinates, menu
selections, or graphics functions.

Cursor-control keys and function keys are common features on general-
purpose keyboards. Function keys allow users to enter frequently used opera-
tions in a single keystroke, and cursor-control keys can be used to select dis-
played objects or coordinate positions by positioning the screen cursor. Other
types of cursor-positioning devices, such as a trackball or joystick, are included
on some keyboards. Additionally, a numeric keypad is often included on the key-
board for fast entry of numeric data. Typical examples of general-purpose key-
boards are given in Figs. 2-1, 2-33, and 2-34. Fig. 240 shows an ergonomic
keyboard design.

For specialized applications, input to a graphics application may come from
a set of buttons, dials, or switches that select data values or customized graphics
operations. Figure 2-41 gives an example of a button box and a set of input dials.
Buttons and switches are often used to input predefined functions, and dials are
common devices for entering scalar values. Real numbers within some defined
range are selected for input with dial rotations. Potentiometers are used to mea-
sure dial rotations, which are then converted to deflection voltages for cursor
movement.

Mouse

A mouse is small hand-held box used to position the screen cursor. Wheels or
rollers on the bottom of the mouse can be used to record the amount and direc-

Figure 2-40

Ergonomically designed keyboard
with removable palm rests. The
slope of each half of the keyboard
can be adjusted separately. (Courtesy
of Apple Computer, Inc.)

Section 2-5

~

input Devices

61

Chapter 2

62

Overview of Graphics Systems

@)

tion of movement. Another method for detecting mouse motion is with an opti-
cal sensor. For these systems, the mouse is moved over a special mouse pad that
has a grid of horizontal and vertical lines. The optical sensor detects movement
across the lines in the grid.

Since a mouse can be picked up and put down at another position without
change in cursor movement, it is used for making relative changes in the position
of the screen cursor. One, two, or three buttons are usually included on the top of
the mouse for signaling the execution of some operation, such as recording cur-
sor position or invoking a function. Most general-purpose graphics systems now
include a mouse and a keyboard as the major input devices, as in Figs. 2-1, 2-33,
and 2-34.

Additional devices can be included in the basic mouse design to increase
the number of allowable input parameters. The Z mouse in Fig. 242 includes

(b)

Figure 2-41
A button box (a) and a set of input dials (b). (Courtesy of Vector General)

Figure 2-42

The Z mouse features three buttons,
a mouse ball underneath, a
thumbwheel on the side, and a
trackball on top. (Courtesy of
Mutltipoint Technology Corporation.)

three buttons, a thumbwheel on the side, a trackball on the top, and a standard
mouse ball underneath. This design provides six degrees of freedom to select
spatial positions, rotations, and other parameters. With the Z mouse, we can pick
up an object, rotate it, and move it in any direction, or we can navigate our view-
ing position and orientation through a three-dimensional scene. Applications of
the Z mouse include virtual reality, CAD, and animation.

Trackball and Spaceball

As the name implies, a trackball is a ball that can be rotated with the fingers or
palm of the hand, as in Fig. 2-43, to produce screen-cursor movement. Poten-
tiometers, attached to the ball, measure the amount and direction of rotation.
Trackballs are often mounted on keyboards (Fig. 2-15) or other devices such as
the Z mouse (Fig. 2-42).

While a trackball is a two-dimensional positioning device, a spaceball (Fig.
2-45) provides six degrees of freedom. Unlike the trackball, a spaceball does not
actually move. Strain gauges measure the amount of pressure applied to the
spaceball to provide input for spatial positioning and orientation as the ball is
pushed or pulled in various directions. Spaceballs are used for three-dimensional
positioning and selection operations in virtual-reality systems, modeling, anima-
tion, CAD, and other applications.

fjoysticks

A joystick consists of a small, vertical lever (called the stick) mounted on a base
that is used to steer the screen cursor around. Most joysticks select screen posi-
tions with actual stick movement, others respond to pressure on the stick. Figure
2-44 shows a movable joystick. Some joysticks are mounted on a keyboard; oth-
ers function as stand-alone units.

The distance that the stick is moved in any direction from its center position
corresponds to screen-cursor movement in that direction. Potentiometers
mounted at the base of the joystick measure the amount of movement, and
springs return the stick to the center position when it is released. One or more
buttons can be programmed to act as input switches to signal certain actions once
a screen position has been selected.

Figure 2-43
A three-button track ball. (Courtesy of Measurement Systems Inc., Norwalk,
Connectickt.)

Section 2-5

Input Devices

63

Chapter 2

64

Qverview of Graphics Systems

Figure 2-44
A moveable joystick. (Courtesy of CalComp Group; Sanders
Associates, Inc.)

In another type of movable joystick, the stick is used to activate switches
that cause the screen cursor to move at a constant rate in the direction selected.
Eight switches, arranged in a circle, are sometimes provided, so that the stick can
select any one of eight directions for cursor movement. Pressure-sensitive joy-
sticks, also called isometric joysticks, have a nonmovable stick. Pressure on the
stick is measured with strain gauges and converted to movement of the cursor in
the direction specified.

Data Glove

Figure 2-45 shows a data glove that can be used to grasp a “virtual” object. The
glove is constructed with a series of sensors that detect hand and finger motions.
Electromagnetic coupling between transmitting antennas and receiving antennas
is used to provide information about the position and orientation of the hand.
The transmitting and receiving antennas can each be structured as a set of three
mutually perpendicular coils, forming a three-dimensional Cartesian coordinate
system. Input from the glove can be used to position or manipulate objects in a
virtual scene. A two-dimensional projection of the scene can be viewed on a
video monitor, or a three-dimensional projection can be viewed with a headset.

Digitizers

A common device for drawing, painting, or interactively selecting coordinate po-
sitions on an object is a digitizer. These devices can be used to input coordinate
values in either a two-dimensional or a three-dimensional space. Typically, a dig-
itizer is used to scan over a drawing or object and to input a set of discrete coor-
dinate positions, which can be joined with straight-line segments to approximate
the curve or surface shapes.

One type of digitizer is the graphics tablet (also referred to as a data tablet),
which is used to input two-dimensional coordinates by activating a hand cursor
or stylus at selected positions on a flat surface. A hand cursor contains cross hairs
for sighting positions, while a stylus is a pencil-shaped device that is pointed at

Figure 2-45

A virtual-reality scene, displayed
on a two-dimensional video
monitor, with input from a data
glove and a spaceball. (Courtesy of The
Computer Graphics Center, Darmstadt,
Germany.)

positions on the tablet. Figures 2-46 and 2-47 show examples of desktop and
floor-model tablets, using hand cursors that are available with 2, 4, or 16 buttons.
Examples of stylus input with a tablet are shown in Figs. 2-48 and 2-49. The
artist’s digitizing system in Fig. 249 uses electromagnetic resonance to detect the
three-dimensional position of the stylus. This allows an artist to produce different
brush strokes with different pressures on the tablet surface. Tablet size varies
from 12 by 12 inches for desktop models to 44 by 60 inches or larger for floor
models. Graphics tablets provide a highly accurate method for selecting coordi-
nate positions, with an accuracy that varies from about 0.2 mm on desktop mod-
els to about 0.05 mm or less on larger models.

Many graphics tablets are constructed with a rectangular grid of wires em-
bedded in the tablet surface. Electromagnetic pulses are generated in sequence

Figure 2-46
The SummaSketch 111 desktop tablet with a 16-button
hand cursor. (Courtesy of Summagraphics Corporation.}

Section 2-5

Input Devices

65

Chapter 2

Overview of Graphics Systems

Figure 2-47

The Microgrid Il tablet with a 16-

button hand cursor, designed for

digitizing larger drawings. (Courtesy

of Summagraphics Corporation.}
along the wires, and an electric signal is induced in a wire coil in an activated sty-
lus or hand cursor to record a tablet position. Depending on the technology, ei-
ther signal strength, coded pulses, or phase shifts can be used to determine the
position on the tablet.

Acoustic (or sonic) tablets use sound waves to detect a stylus position. Ei-
ther strip microphones or point microphones can be used to detect the sound
emitted by an electrical spark from a stylus tip. The position of the stylus is calcu-

Figure 2-48

The NotePad desktop tablet
with stylus. (Courtesy of
CalComp Digitizer Division,

a part of CalComp, Inc.)

Figure 2-49
An artist’s digitizer system, with a
pressure-sensitive, cordless stylus.
(Courtesy of Wacom Technology

66 Corporation.)

lated by timing the arrival of the generated sound at the different microphone
positions. An advantage of two-dimensional accoustic tablets is that the micro-
phones can be placed on any surface to form the “tablet” work area. This can be
convenient for various applications, such as digitizing drawings in a book.

Three-dimensional digitizers use sonic or electromagnetic transmissions to
record positions. One electromagnetic transmission method is similar to that
used in the data glove: A coupling between the transmitter and receiver is used
to compute the location of a stylus as it moves over the surface of an object. Fig-
ure 2-50 shows a three-dimensional digitizer designed for Apple Macintosh com-
puters. As the points are selected on a nonmetallic object, a wireframe outline of
the surface is displayed on the computer screen. Once the surface outline is con-
structed, it can be shaded with lighting effects to produce a realistic display of
the object. Resolution of this system is from 0.8 mum to 0.08 mm, depending on
the model.

Image Scanners

Drawings, graphs, color and black-and-white photos, or text can be stored for
computer processing with an image scanner by passing an optical scanning
mechanism over the information to be stored. The gradations of gray scale or
color are then recorded and stored in an array. Once we have the internal repre-
sentation of a picture, we can apply transformations to rotate, scale, or crop the
picture to a particular screen area. We can also apply various image-processing
methods to modify the array representation of the picture. For scanned text
input, various editing operations can be performed on the stored documents.
Some scanners are able to scan either graphical representations or text, and they
come in a variety of sizes and capabilities. A small hand-model scanner is shown
in Fig. 2-51, while Figs 2-52 and 2-53 show larger models.

Figure 2-50

A three-dimensional digitizing

system for use with Apple

Macintosh computers. (Courtesy of
" Mira Imaging.)

Section 2-5

Input Devices

67

Chapter 2

68

Overview of Graphics Systems

Figure 2-51

A hand-held scanner that can be used to input
either text or graphics images. (Courtesy of
Thunderware, Inc.)

Figure 2-52

Desktop full-color scanners: (a) Flatbed scanner with a resolution of 600 dots per inch.
(Courtesy of Sharp Electronics Carparation.} (b) Drum scanner with a selectable resolution from 50
to 4000 dots per inch. (Courtesy of Howtek, Inc.)

Touch Panels

As the name implies, touch panels allow displayed objects or screen positions to
be selected with the touch of a finger. A typical application of touch panels is for
the selection of processing options that are represented with graphical icons.
Some systems, such as the plasma panéls shown in Fig. 2-54, are designed with
touch screens. Other systems can be adapted for touch input by fitting a transpar-
ent device with a touch-sensing mechanism over the video monitor screen. Touch
input can be recorded using optical, electrical, or acoustical methods.

Optical touch panels employ a line of infrared light-emitting diodes (LEDs)
along one vertical edge and along one horizontal edge of the frame. The opposite
vertical and horizontal edges contain light detectors. These detectors are used to
record which beams are interrupted when the panel is touched. The two crossing

Figure 2-53

A large floor-model scanner used to
scan architectural and engineering
drawings up to 40 inches wide and
100 feet long. (Courtesy of
Summagraphics Corporation.)

beams that are interrupted identify the horizontal and vertical coordinates of the
screen position selected. Positions can be selected with an accuracy of about 1/4
inch. With closely spaced LEDs, it is possible to break two horizontal or two ver-
tical beams simultaneously. In this case, an average position between the two in-
terrupted beams is recorded. The LEDs operate at infrared frequencies, so that
the light is not visible to a user. Figure 2-55 illustrates the arrangement of LEDs in
an optical touch panel that is designed to match the color and contours of the
system to which it is to be fitted.

An electrical touch panel is constructed with two transparent plates sepa-
rated by a small distance. One of the plates is coated with a conducting material,

and the other plate is coated with a resistive material. When the outer plate is.

touched, it is forced into contact with the inner plate. This contact creates a volt-
age drop across the resistive plate that is converted to the coordinate values of
the selected screen position.

In acoustical touch panels, high-frequency sound waves are generated in
the horizontal and vertical directions across a glass plate. Touching the screen
causes part of each wave to be reflected from the finger to the emitters. The screen
position at the point of contact is calculated from a measurement of the time in-
terval between the transmission of each wave and its reflection to the emitter.

=1

Figure 2-54
Plasma panels with touch screens. (Courtesy of Photonics Systems.)

Section 2-5

Input Devices

69

70

Overview of Graphics Systems

Figure 2-55

An optical touch panel, showing
the arrangement of infrared LED
units and detectors around the
edges of the frame. (Courtesy of Carroll
Touch, Inc.)

Light Pens

Figure 2-56 shows the design of one type of light pen. Such pencil-shaped de-
vices are used to select screen positions by detecting the light coming from points
on the CRT screen. They are sensitive to the short burst of light emitted from the
phosphor coating at the instant the electron beam strikes a particular point. Other
light sources, such as the background light in the room, are usually not detected
by a light pen. An activated light pen, pointed at a spot on the screen as the elec-
tron beam lights up that spot, generates an electrical pulse that causes the coordi-
nate position of the electron beam to be recorded. As with cursor-positioning de-
vices, recorded light-pen coordinates can be used to position an object or to select
a processing option.

Although light pens are still with us, they are not as popular as they once
were since they have several disadvantages compared to other input devices that
have been developed. For one, when a light pen is pointed at the screen, part of
the screen image is obscured by the hand and pen. And prolonged use of the
light pen can cause arm fatigue. Also, light pens require special implementations
for some applications because they cannot detect positions within black areas. To
be able to select positions in any screen area with a light pen, we must have some
nonzero intensity assigned to each screen pixel. In addition, light pens sometimes
give false readings due to background lighting in a room.

Voice Systems

Speech recognizers are used in some graphics workstations as input devices to
accept voice commands The voice-system input can be used to initiate graphics

Figure 2-56

A light pen activated with a button switch. (Courtesy of Interactive Computer
Products.)

operations or to enter data. These systems operate by matching an input against
a predefined dictionary of words and phrases.

A dictionary is set up for a particular operator by having the operator speak
the command words to be used into the system. Each word is spoken several
times, and the system analyzes the word and establishes a frequency pattern for
that word in the dictionary along with the corresponding function to be per-
formed. Later, when a voice command is given, the system searches the dictio-
nary for a frequency-pattern match. Voice input is typically spoken into a micro-
phone mounted on a headset, as in Fig. 2-57. The microphone is designed to
minimize input of other background sounds. If a different operator is to use the
system, the dictionary must be reestablished with that operator’s voice patterns.
Voice systems have some advantage over other input devices, since the attention

of the operator does not have to be switched from one device to another to enter
a command.

Figure 2-57
A speech-recognition system. (Courtesy of Threshold Technology, Inc.)

Section 2-5

Input Devices

71

Chapter 2

72

2-6

Overview of Graphics Systems HARD-COPY DEVICES

We can obtain hard-copy output for our images in several formats. For presenta-
tions or archiving, we can send image files to devices or service bureaus that will
produce 35-mm slides or overhead transparencies. To put images on film, we can
simply photograph a scene displayed on a video monitor. And we can put our
pictures on paper by directing graphics output to a printer or plotter.

The quality of the pictures obtained from a device depends on dot size and
the number of dots per inch, or lines per inch, that can be displayed. To produce
smooth characters in printed text strings, higher-quality printers shift dot posi-
tions so that adjacent dots overlap.

Printers produce output by either impact or nonimpact methods. Impact
printers press formed character faces against an inked ribbon onto the paper. A
line printer is an example of an impact device, with the typefaces mounted on
bands, chains, drums, or wheels. Nonimpact printers and plotters use laser tech-
niques, ink-jet sprays, xerographic processes (as used in photocopying ma-
chines), electrostatic methods, and electrothermal methods to get images onto
paper.

Character impact printers often have a dof-matrix print head containing a
rectangular array of protruding wire pins, with the number of pins depending on
the quality of the printer. Individual characters or graphics patterns are obtained
by retracting certain pins so that the remaining pins form the pattern to be
printed. Figure 2-58 shows a picture printed on a dot-matrix printer.

In a laser device, a laser beam creates a charge distribution on a rotating
drum coated with a photoelectric material, such as selenium. Toner is applied to
the drum and then transferred to paper. Figure 2-59 shows examples of desktop
laser printers with a resolution of 360 dots per inch.

Ink-jet methods produce output by squirting ink in horizontal rows across a
roll of paper wrapped on a drum. The electrically charged ink stream is deflected
by an electric field to produce dot-matrix patterns. A desktop ink-jet plotter with

Figure 2-58

A picture generated on a dot-matrix printer showing how the
density of the dot patterns can be varied to produce light and
dark areas. (Courtesy of Apple Computer, Inc.)

Figure 2-59
Small-footprint laser printers.
(Courtesy of Texas Instruments.)

a resolution of 360 dots per inch is shown in Fig. 2-60, and exampies of larger
high-resolution ink-jet printer /plotters are shown in Fig. 2-61.

An electrostatic device places a negative charge on the paper, one complete
row at a time along the length of the paper. Then the paper is exposed to a toner.
The toner is positively charged and so is attracted to the negatively charged
areas, where it adheres to produce the specified output. A color electrostatic
printer/plotter is shown in Fig. 2-62. Electrothermal methods use heat in a dot-
matrix print head to output patterns on heat-sensitive paper.

We can get limited color output on an impact printer by using different-
colored ribbons. Nonimpact devices use various techniques to combine three
color pigments (cyan, magenta, and yellow) to produce a range of color patterns.
Laser and xerographic devices deposit the three pigments on separate passes;
ink-jet methods shoot the three colors simultaneously on a single pass along each
print line on the paper.

Figure 2-60

A 360-dot-per-inch desktop ink-jet
. plotter. (Courtesy of Summagraphics

Corporation.)

Section 2-6

Hard-Copy Devices

73

74

Ld) i)
Figure 2-61
Floor-model, ink-jet color printers that use variable dot size to achieve
an equivalent resolution of 1500 to 1800 dots per inch. (Courtesy of IRIS
Graphics Inc., Bedford, Massachuset!s.)

Figure 2-62

An electrostatic printer that can
display 400 dots per inch. (Courtesy of
CalComp Digitizer Division, a part of
CalComp, Inc.)

Drafting layouts and other drawings are typically generated with ink-jet or
pen plotters. A pen plotter has one or more pens mounted on a carriage, or cross-
bar, that spans a sheet of paper. Pens with varying colors and widths are used to
produce a variety of shadings and line styles. Wet-ink, ball-point, and felt-tip
pens are all possible choices for use with a pen plotter. Plotter paper can lie flat or
be rolled onto a drum or belt. Crossbars can be either moveable or stationary,
while the pen moves back and forth along the bar. Either clamps, a vacuum, or
an electrostatic charge hold the paper in position. An example of a table-top
flatbed pen plotter is given in Figure 2-63, and a larger, rollfeed pen plotter is
shown in Fig. 2-64.

Figure 2-63

A desktop pen plotter with a
resolution of 0.025 mm. (Courtesy of
Summagraphics Corporation.)

Figure 2-64

A large, rollfeed pen plotter with
automatic multicolor 8-pen changer
and a resolution of 0.0127 mm.
(Courtesy of Summagraphics Corporation.)

2-7
GRAPHICS SOFTWARE

There are two general classifications for graphics software: general programming
packages and special-purpose applications packages. A general graphics pro-
gramming package provides an extensive set of graphics functions that can be

Section 2-7

Graphics Software

75

Chapter 2

76

Overview of Graphics Systams

used in a high-level programming language, such as C or FORTRAN. An exam-
ple of a general graphics programming package is the GL (Graphics Library) sys-
tem on Silicon Graphics equipment. Basic functions in a general package include
those for generating picture components (straight lines, polygons, circles, and
other figures), setting color and intensity values, selecting views, and applying
transformations. By contrast, application graphics packages are designed for
nonprogrammers, so that users can generate displays without worrying about
how graphics operations work. The interface to the graphics routines in such
packages allows users to communicate with the programs in their own terms. Ex-
amples of such applications packages are the artist’s painting programs and vari-
ous business, medical, and CAD systems.

Coordinate Representations

With few exceptions, general graphics packages are designed to be used with °
Cartesian coordinate specifications. If coordinate values for a picture are speci-
fied in some other reference frame (spherical, hyberbolic, etc.), they must be con-
verted to Cartesian coerdinates before they can be input to the graphics package.
Special-purpose packages may allow use of other coordinate frames that are ap-
propriate to the application. In general, several different Cartesian reference
frames are used to construct and display a scene. We can construct the shape of
individual objects, such as trees or furniture, in a scene within separate coordi-
nate reference frames called modeling coordinates, or sometimes local coordi-
nates or master coordinates. Once individual object shapes have been specified,
we can place the objects into appropriate positions within the scene using a refer-
ence frame called world coordinates. Finally, the world-coordinate description of
the scene is transferred to one or more output-device reference frames for dis-
play. These display coordinate systems are referred to as device coordinates, or
screen coordinates in the case of a video monijtor. Medeling and world-
coordinate definitions allow us to set any convenient floating-point or integer di-
mensions without being hampered by the constraints of a particular output de-
vice. For some scenes, we might want to specify object dimensions in fractions of
a foot, while for other applications we might want to use millimeters, kilometers,
or light-years. "

Generally, a graphics system first converts world-coordinate positions to
normalized device coordinates, in the range from 0 to 1, before final conversion
to specific device coordinates. This makes the system independent of the various
devices that might be used at a particular workstation. Figure 2-65 illustrates the
sequence of coordinate transformations from modeling coordinates to device co-
ordinates for a two-dimensional application. An initial modeling-coordinate po-
sition (x,,, Y, in this illustration is transferred to a device coordinate position
(x4, Yao) with the sequence:

(xmr' ymc) = (x,,, ywc) i (Jncl ym:) = (x4, ydc)

The modeling and world-coordinate posiﬁons"m this transformation can be any
floating-point values; normalized coordinates satisfy the inequalities: 0 =< x,, = 1,
0 =y, = 1, and the device coordinates x,. and y,, are integers within the range
(0, 0) t0 (Xpnas, Yenax) for a particular output device. To accommodate differences in
scales and aspect ratios, normalized coordinates are mapped into a square area of
the output device so that proper proportions are maintained.

Graphics Functions

A general-purpose graphics package provides users with a variety of functions
for creating and manipulating pictures. These routines can be categorized accord-
ing to whether they deal with output, input, attributes, transformations, viewing,
or general control.

The basic building blocks for pictures are referred to as output primitives.
They include character strings and geometric entities, such as points, straight
lines, curved lines, filled areas (polygons, circles, etc.), and shapes defined with
arrays of color points. Routines for generating output primitives provide the
basic tools for constructing pictures.

Attributes are the properties of the output primitives; that is, an attribute
describes how a particular primitive is to be displayed. They include intensity
and color specifications, line styles, text styles, and area-filling patterns. Func-
tions within this category can be used to set attributes for an individual primitive
class or for groups of output primitives.

We can change the size, position, or orientation of an object within a scene
using geometric transformations. Similar modeling transformations are used to
construct a scene using object descriptions given in modeling coordinates.

Given the primitive and attribute definition of a picture in world coordi-
nates, a graphics package projects a selected view of the picture on an output de-
vice. Viewing transformations are used to specify the view that is to be pre-
sented and the portion of the output display area that is to be used.

Pictures can be subdivided into component parts, called structures or seg-
ments or objects, depending on the software package in use. Each structure de-
fines one logical unit of the picture. A scene with several objects could reference
each individual object in a separate named structure. Routines for processing

Section 2-7

Graphics Software

Figure 2-65

The transformation sequence from modeling coordinates to device coordinates for a two-
dimensional scene. Object shapes are defined in local modeling-coordinate systems, then
positioned within the overall world-coordinate scene. World-coordinate specifications are
then transformed into normalized coordinates. At the final step, individual device drivers
transfer the normalized-coordinate representation of the scene to the vutput devices for

display.

77

Chapter 2

78

Overview of Graphics Systems

structures carry out operations such as the creation. modification, and transfor-
mation of structures.

Interactive graphics applications use various kinds of input devices, such as
a mouse, a tablet, or a joystick. Tnput functions are used to control and process
the data flow from these interactive devices.

Finally, a graphics package contains a number of housekeeping tasks, such
as clearing a display screen and initializing parameters. We can lump the func-
tions for carrving out these chores under the heading control operations.

Sottware Standards

The primary goal of standardized graphics software is portability. When pack-
ages are designed with -tandard graphics functions, software can be moved eas-
ily from one hardware system to another and used in different implementations
and applications. Without standards. programs designed for one hardware sys-
tem often cannot be transterred to another system without extensive rewriting of
the programs.

International and national standards planning organizations in many coun-
tries have cooperated in an cffort to develop a generally accepted standard for
computer graphics. After considerable effort, this work on standards led to the
development of the Graphical Kernel System (GKS). This system was adopted
as the first graphics software standard by the International Standards Organiza-
tion (ISO) and by various national standards organizations, including the Ameri-
can National Standards Institute (ANSI). Although CKS was originally designed
as a two-dimensional graphics package, a three-dimensional GKS extension was
subsequently developed. The second software standard to be developed and ap-
proved by the standarde orgainzations was PHIGS (Programmer’s Hierarchical
Interactive Graphics Standard), which is an extension of GKS. Increased capabil-
ities for object modeling,. color specifications, surface rendering, and picture ma-
nipulations are provided in PHIGS. Subsequently, an extension of PHIGS, called
PHIGS+, was developed to provide three-dimensional surface-shading capabili-
ties not available in PHIC,S.

Standard graphics tunctions are defined as a set of specifications that is in-
dependent of anv progr:mming language. A language binding is then defined
for a particular high-level programming language. This binding gives the syntax
for accessing the various standard graphics functions from this language. For ex-
ample, the general form of the PHIGS (and GKS) function for specifying a se-
quence of n— 1 connected two-dimensional straight line segments is

polyline(n x, y)

In FORTRAN, this procecure is implemented as a subroutine with the name GPL.
A graphics programmer, using FORTRAN, would invoke this procedure with
the subroutine call statement CALL GPL(N, X, Y), where X and Y are one-
dimensional arrays of coordinate values for the line endpoints. In C, the proce-
dure would be invoked with ppclyline(n, pts), where pts is the list of co-
ordinate endpoint positicns. Each language binding is defined to make best use
of the corresponding language capabilities and to handle various syntax issues,
such as data types, parameter passing, and errors.

In the following chapters, we use the standard functions defined in PHIGS
as a framework for discussing basic graphics concepts and the design and appli-
cation of graphics packages. Example programs are presented in Pascal to illus-

trate the algorithms for implementation of the graphics functions and to illustrate
also some applications of the functions. Descriptive names for functions, based
on the PHIGS definitions, are used whenever a graphics function is referenced in
a program.

Although PHIGS presents a specification for basic graphics functions, it
does not provide a standard methodology for a graphics interface to output de-
vices. Nor does it specify methods for storing and transmitting pictures. Separate
standards have been developed for these areas. Standardization for device inter-
face methods is given in the Computer Graphics Interface (CGI) system. And
the Computer Graphics Metafile (CGM) system specifies standards for archiv-
ing and transporting pictures.

PHIGS Workstations

Generally, the term workstation refers to a computer system with a combination of
input and output devices that is designed for a single user. In PHIGS and GKS,
however, the term workstation is used to identify various combinations of
graphics hardware and software. A PHIGS workstation can be a single output
device, a single input device, a combination of input and output devices, a file, ar
even a window displayed on a video monitor.

To define and use various “workstations” within an applications program,
we need to specify a workstation identifier and the workstation type. The following
statements give the general structure of a PHIGS program:

openPhigs (errorFile, memorySize)

openWorkstation (ws, connection, type)
{ create and display picture}

closeWorkstation (ws)

closePhigs

where parameter errorFile is to contain any error messages that are gener-
ated, and parameter memorySize specifies the size of an internal storage area.
The workstation identifier (an integer) is given in parameter ws, and parameter
connection states the access mechanism for the workstation. Parameter type
specifies the particular category for the workstation, such as an input device, an
output device, a combination outin device, or an input or output metafile.

Any number of workstations can be open in a particular application, with
input coming from the various open input devices and output directed to all the
open output devices. We discuss input and output methods in applications pro-
grams in Chapter §, after we have explored the basic procedures for creating and
manipulating pictures.

SUMMARY

In this chapter, we have surveyed the major hardware and software features of
computer graphics systems. Hardware components include video monitors,
hard-copy devices, keyboards, and other devices for graphics input or output.
Graphics software includes special applications packages and general program-
ming packages.

The predominant graphics display device is the raster refresh monitor,
based on television technology. A raster system uses a frame buffer to store inten-
sity information for each screen position (pixel). Pictures are then painted on the

Summary

79

Chapter 2

80

Overview of Graphics Systems

screen by tetrieving this information from the frame buffer as the electron beam
in the CRT sweeps across each scan line, from top to bottom. Older vector dis-
plays construct pictures by drawing lines between specified line endpoints. Pic-
ture information is then stored as a set of line-drawing instructions.

Many other video display devices are available. In particular, flat-panel dis-
play technology is developing at a rapid rate, and these devices may largely re-
place raster displays in the near future. At present, flat-panel displays are com-
monly used in small systems and in special-purpose systems. Flat-panel displays
include plasma panels and liquid-crystal devices. Although vector monitors can
be used to display high-quality line drawings, improvements in raster display
technology have caused vector monitors to be largely replaced with raster sys-
tems.

Other display technologies include three-dimensional and stereoscopic
viewing systems. Virtual-reality systems can include either a stereoscopic head-
set or a'standard video monitor.

For graphical input. we have a range of devices to choose from. Keyboards,
button boxes, and dials are used to input text, data values, or programming op-
tions. The most popular “pointing” device is the mouse, but trackballs, space-
balls, joysticks, cursorcontrol keys, and thumbwheels are also used to position
the screen cursor. In virtual-reality environments, data gloves are commonly
used. Other input devices include image scanners, digitizers, touch panels, light
pens, and voice systems.

Hard-copy devices for graphics workstations include standard printers and
plotters, in addition to devices for producing slides, transparencies, and film out-
put. Printing methods include dot matrix, laser, ink jet, electrostatic, and elec-
trothermal. Plotter meth::ds include pen plotting and combination printer-plotter
devices.

Graphics software can be roughly dassified as applications packages or
programming packages. Applications graphics software include CAD packages,
drawing and painting programs, graphing packages, and visualization pro-
grams. Common graphics programming packages include PHIGS, PHIGS+, GKS,
3D GKS, and GL. Software standards, such as PHIGS, GKS, CGl, and CGM, are
evolving and are becoming widely available on a variety of machines.

Normally, graphics packages require coordinate specifications to be given
with respect to Cartesian reference frames. Each object for a scene can be defined
In a separate modeling Cartesian coordinate system, which is then mapped to
world coordinates to construct the scene. From world coordinates, objects are
transferred to normalized device coordinates, then to the final display device co-
ordinates. The transformations from modeling coordinates to normalized device
coordinates are independent of particular devices that might be used in an appli-
cation. Device drivers are then used to convert normalized coordinates to integer
device coordinates. ‘

Functions in graphics programming packages can be divided into the fol-
lowing categories: output primitives, attributes, geometric and modeling trans-
formations, viewing transformations, structure operations, input functions, and
control operations.

Some graphics systems, such as PHIGS and GKS. use the concept of a
“workstation” to specifv devices or software that are to be used for input or out-
put in a particular application. A workstation identifier in these systems can refer
to a file; a single device, such as a raster monitor; or a combination of devices,
such as a monitor, keyboard, and a mouse. Multiple workstations can be open to
provide input or to receive output in a graphics application.

REFERENCES

A general treatment of electronic displays, including flat-panel devices, is available in Sherr
(1993). Flat-panel devices are discussed in Depp and Howard (1993). Tannas (1985) pro-
vides a reference for both flat-panel displays and CRTs. Additional information on raster-
graphics architecture can be found in Foley, et al. (1990). Three-dimensional terminals are
discussed in Fuchs et al. (1982), Johnson (1982), and lkedo (1984). Head-mounted dis-
plays and virtuai-reality environments are discussed in Chung et al. (1989).

For information on PHIGS and PHIGS+, see Hopgood and Duce (1991), Howard et al.
(1991), Gaskins (1992), and Blake (1993). Information on the two-dimensional GKS stan-
dard and on the evolution of graphics standards is available in Hopgood et al. (1983). An
additional reference for GKS is Enderle, Kansy, and Pfaff (1984).

EXERCISES

2-1. List the operating characteristics for the following display technologies: raster refresh
systems, vector refresh systems, plasma panels, and . CDs.

2-2. List some applications appropriate for each of the display technologies in Exercise 2-1.

2-3. Determine the resolution (pixels per centimeter) in the x and y directions for the video
monitor in use on your system. Determine the aspect ratio, and explain how relative
proportions of objects can be maintained on your svstem.

2-4. Consider three different raster systems with resolutions of 640 by 480, 1280 by 1024.
and 2560 by 2048. What size frame buffer (in bytes) is needed for each of these sys-
tems to store 12 bits per pixel? How much starage is required for each system if 24
bits per pixel are to be stored?

2-5. Suppose an RGB raster system is to be designed using an 8-inch by 10-inch screen
with a resolution of 100 pixels per inch in each direction. If we want 10 store 6 bats
per pixel in the frame buffer, how much storage (in bytes) do we need for the frame
buffer?

2.6. How long would it take 0 load a 640 by 480 frame buffer with 12 bits per pixel, i
10° bits can be transferred per second? How long would it take to load a 24-bit per
pixel frame buffer with a resolution of 1280 by 1024 using this same transfer rate?

2-7. Suppose we have a computer with 32 bits per word and a transfer rate of 1 mip (one
million instructions per second). How long would t take to fill the frame buffer of a
300-dpi (dot per inch) laser printer with a page size of 8 1/2 inches by 11 inches?

2-8. Consider two raster systems with resolutions of 640 by 480 and 1280 by 1024. How
many pixels could be accessed per second in each of these systems by a display con-
troller that refreshes the screen at a rate of 60 frames per second? What is the access
time per pixel in »ach syslem?

2-9. Suppose we have a video monitor with a display area that measures 12 inches across
and 9.6 inches high. If the resolution is 1280 by 1024 and the aspect ratio is 1, what 1s
the diameter of each screen point?

2-10. How much time is spent scanning across each row of pixels during screen refresh on a
raster system with a resolution of 1280 by 1024 and a refresh rate of 60 frames per
second?

2-11, Consider a noninterlaced raster monitor with a resolution of n by m (m scan lines and
n pixels per scan line), a refresh rate of r frames per second, a horizontal retrace time
of th,n,, and a vertical retrace time of ¢,,,. What is the fraction of the total refresh time
per frame spent in retrace of the electron beam?

2-12. What is the fraction of the total refresh time per Irame spent in retrace of the electron
beam for a noninterlaced raster system with a esolution of 1280 by 1024, a refresh

rate of 60 Hz, a horizontal retrace time of 5 microseconds, and a vertical retrace time
of 500 microseconds?

Exercises

81

Chapter 2

82

Overview of Graphics Systems

2-13.

2-14.

2-15.

2-16.

2-17.
2-18,

Assuming that a certain full-color (24-bit per pixel) RGB rasler system has a 512-by-
512 frame buffer, how many distinct color choices (intensity levels) would we have
available? How many different colors could we displav at any one time?

Compare the advantages and disadvantages of a three-dimensional monitor using a
varifocal mirror with a stereoscopic system.

List the different input and output components that are iypically used with virtuai-
reality systems. Also explain how users interact with a virtual scene displayed with dif-
ferent output devices, such as two-dimensional and stereoscopic monitors.

Explain how virtual-reality systems can be used in design applications. What are some
other applications for virtual-reality systems?

List some applications for large-screen displays.

Explain the differences between a general graphics system designed for a programmer
and one designed for a specific application, such as architectural design?

8

o

A picture can be described in several ways. Assuming we have a raster dis-
play, a picture is completely specified by the set of intensities for the pixel
positions in the display. At the other extreme, we can describe a picture as a set of
complex objects, such as trees and terrain or furniture and walls, positioned at
specified coordinate locations within the scene. Shapes and colors of the objects
can be described internally with pixel arrays or with sets of basic geometric struc-
tures, such as straight line segments and polygon color areas. The scene is then
displayed either by loading the pixel arrays into the frame buffer or by scan con-
verting the basic geometric-structure specifications into pixel patterns. Typically,
graphics programming packages provide functions to describe a scene in terms
of these basic geometric structures, referred to as output primitives, and to
group sets of output primitives into more complex structures. Each output primi-
tive is specified with input coordinate data and other information about the way
that object is to be displayed. Points and straight line segments are the simplest
geometric components of pictures. Additional output primitives that can be used
to construct a picture include circles and other conic sections, quadric surfaces,
spline curves and surfaces, polygon color areas, and character strings. We begin
our discussion of picture-generation procedures by examining device-level algo-
rithms for displaying two-dimensional output primitives, with particular empha-
sis on scan-conversion methods for raster graphics systems. In this chapter, we
also consider how oulput functions can be provided in graphics packages, and
we take a look at the output functions available in the PHIGS language.

31
POINTS AND LINES

Point plotting is accomplished by converting a single coordinate position fur-
nished by an application program into appropriate operations for the output de-
vice in use. With a CRT monitor, for example, the electron beam is turned on to il-
luminate the screen phosphor at the selected location. How the electron beam is
positioned depends on the display technology. A random-scan (vector) system
stores point-plotting instructions in the display list, and coordinate values in
these instructions are converted to deflection voltages that position the electron
beam at the screen locations to be plotted during each refresh cycle. For a black-
and-white raster system, on the other hand, a point is plotted by setting the bit
value corresponding to a specified screen position within the frame buffer to 1.
Then, as the electron beam sweeps across each horizontal scan line, it emits a

burst of electrons (plots a point) whenever a value of 1 is encountered in the
frame buffer. With an RGB system, the frame buffer is loaded with the color
codes for the intensities that are to be displayed at the screen pixel positions.

Line drawing is accomplished by calculating intermediate positions along
the line path between two specified endpoint positions. An output device is then
directed to fill in these positions between the endpoints. For analog devices, such
as a vector pen plotter or a random-scan display, a straight line can be drawn
smoothly from one endpoint to the other. Linearly varying horizontal and verti-
cal deflection voltages are generated that are proportional to the required
changes in the x and y directions to produce the smooth line.

Digital devices display a straight line segment by plotting discrete points
between the two endpoints. Discrete coordinate positions along the line path are
calculated from the equation of the line. For a raster video display, the line color
(intensity) is then loaded into the frame buffer at the corresponding pixel coordi-
nates. Reading from the frame buffer, the video controller then “plots” the screen
pixels. Screen locations are referenced with integer values, so plotted positions
may only approximate actual line positions between two specified endpoints. A
computed line position of (10.48, 20.51), for example, would be converted to pixel
position (10, 21). This rounding of coordinate values to integers causes lines to be
displayed with a stairstep appearance (“the jaggies”), as represented in Fig 3-1.
The characteristic stairstep shape of raster lines is particularly noticeable on sys-
tems with low resolution, and we can improve their appearance somewhat by
displaying them on high-resolution systems. More effective techniques for
smoothing raster lines are based on adjusting pixel intensities along the line
paths.

For the raster-graphics device-level algorithms discussed in this chapter, ob-
ject positions are specified directly in integer device coordinates. For the time
being, we will assume that pixel positions are referenced according to scan-line
number and column number (pixel position across a scan line). This addressing
scheme is illustrated in Fig. 3-2. Scan lines are numbered consecutively from 0,
starting at the bottom of the screen; and pixel columns are numbered from 0, left
to right across each scan line. In Section 3-10, we consider alternative pixel ad-
dressing schemes.

To load a specified color into the frame buffer at a position corresponding
to column x along scan line y, we will assume we have available a low-level pro-
cedure of the form

setPixel (x, y)

Figure 3-1

Stairstep effect (jaggies) produced
when a line is generated as a series
of pixel positions.

Section 3-1

Points and lines

85

Y2 — /
Vi

X, x,

Figure 3-3
Line path between endpoint
positions (x;, y;) and (x3, ¥3).

86

Scan-
Line
Number
|
5 1
4
s :
2
1
o Figure 3-2
6 1 2 3 4 5 Pixel Column Pixel positions referenced by scan-
Number line number and column number.

We sometimes will also want to be able to retrieve the current frame-buffer
intensity setting for a specified location. We accomplish this with the low-level
function

getPixel (x, y)

32 -
LINE-DRAWING ALGORITHMS

The Cartesian slope-intercept equation for a straight line is
y=m-x+b (3-1

with m representing the slope of the line and b as the y intercept. Given that the
two endpoints of a line segment are specified at positions (xy, ¥;) and (x,, y,), as
shown in Fig. 3-3, we can determine values for the slope m and y intercept b with
the following calculations:

m= {20 (3-2)
X — X
b=y, ~m-x (3-3)

Algorithms for displaying straight lines are based on the line equation 3-1 and
the calculations given in Egs. 3-2 and 3-3.

For any given x interval Ax along a line, we can compute the corresponding
y interval Ay from Eq. 3-2 as

Ay = m Ax (3-4)

Similarly, we can obtain the x interval Ax corresponding to a specified Ay as

Ax = (3-5)

3lE

These equations form the basis for determining deflection voltages in analog de-

vices. For lines with slope magnitudes |ml<1, Ax can be set proportional to a
small horizontal deflection voltage and the corresponding vertical deflection is
then set proportional to Ay as calculated from Eq. 3-4. For lines whose slopes
have magnitudes Iml>1, Ay can be set proportional to a small vertical deflec-
tion voltage with the corresponding horizontal deflection voltage set propor-
tional to Ax, calculated from Eq. 3-5. For lines with m = 1, Ax = Ay and the hori-
zontal and vertical deflections voltages are equal. In each case, a smooth line with
slope m is generated between the specified endpoints.

On raster systems, lines are plotted with pixels, and step sizes in the hori-
zontal and vertical directions are constrained by pixel separations. That is, we
must “sample” a line at discrete positions and determine the nearest pixel to the
line at each sampled position. This scan-conversion process for straight lines is il-
lustrated in Fig. 3-4, for a near horizontal line with discrete sample positions
along the x axis.

DDA Algorithm

The digital differential analyzer (DDA) is a scan-conversion line algorithm based on
calculating either Ay or Ax, using Eq. 3-4 or Eq. 3-5. We sample the line at unit in-
tervals in one coordinate and determine corresponding integer values nearest the
line path for the other coordinate.

Consider first a line with positive slope, as shown in Fig. 3-3. If the slope is
less than or equal to 1, we sample at unit x intervals (Ax = 1) and compute each
successive y value as

Yerr =Yt m (3-6)

Subscript k takes integer values starting from 1, for the first point, and increases
by 1 until the final endpoint is reached. Since m can be any real number between
0 and 1, the calculated y values must be rounded to the nearest integer.

For lines with a positive slope greater than 1, we reverse the roles of x and
y. That is, we sample at unit y intervals (Ay = 1) and calculate each succeeding x
value as

1
Ty =%+ — (3-7)
m

Equations 3-6 and 3-7 are based on the assumption that lines are to be
processed from the left endpoint to the right endpoint (Fig. 3-3). If this processing
is reversed, so that the starting endpoint is at the right, then either we have
Ax = —-land

Yer =Y —m (3-8)
or (when the slope is greater than 1) we have Ay = —1 with
1
Xpsy = X — — (3'9)
m

Equations 3-6 through 3-9 can also be used to calculate pixel positions along
a line with negative slope. If the absolute value of the slope is less than 1 and the
start endpoint is at the left, we set Ax = 1 and calculate y values with Eq. 3-6.

Section 3-2

Line-Drawing Algorithms

Y2
|
T
T
—+ T 0
Y [
ool
Volob
[T
| R |
] T T T T T I
X X
Figure 3-4

Straight line segment with
five sampling positions along
the x axis between 1, and x,.

87

Chapter 3

88

Output Primitives

When the start endpoint is at the right (for the same slope), we set Ax = —1 and
obtain y positions from Eq. 3-8. Similarly, when the absolute value of a negative
slope is greater than 1, we use Ay = —1 and Eq. 3-9 or we use Ay = 1 and Eq. 3-7.

This algorithm is summarized in the following procedure, which accepts as
input the two endpoint pixel positions. Horizontal and vertical differences be-
tween the endpoint positions are assigned to parameters dx and dy. The differ-
ence with the greater magnitude determines the value of parameter steps. Start-
ing with pixel position (x,, ¥,), we determine the offset needed at each step to
generate the next pixel position along the line path. We loop through this process
steps times. If the magnitude of dx is greater than the magnitude of dy and xa
is less than xb, the values of the increments in the x and y directions are 1 and m,
respectively. If the greater change is in the x direction, but xa is greater than xb,
then the decrements —1 and —m are used to generate each new point on the line.
Otherwise, we use a unit increment (or decrement) in the y direction and an x in-
crement (or decrement) of 1/m.

#include *device.h”
#define ROUND(a) ((int) (a+0.5))

void lineDDA (int xa, int ya, int xb, int yb)
{
int dx = xb - xa, dy = yb - ya, steps, k;
float xIncrement, vIncrement, X = Xa, Yy = ya;

if (abs (dx) > abs (dy)) steps = abs (dx):
else steps = abs dy);

xIncrement = dx / (float) steps;
yIncrement = dy / (float) steps; f

setPixel (ROUNDI(x), ROUND(y)):
for (k=0: k<steps; k++) {
®x += xIncrement;
¥y += yIncrement;
setPixel (ROUND(x), ROUND(y}):;
}
}

The DDA algorithin is a faster method for calculating pixel positions than
the direct use of Eq. 3-1. It eliminates the multiplication in Eq. 3-1 by making use
of raster characteristics, so that appropriate increments are applied in the x or ¥
direction to step to pixel positions along the line path. The accumulation of
roundoff error in successive additions of the floating-point increment, however,
can cause the calculated pixel positions to drift away from the true line path for
long line segments. Furthermore, the rounding operations and floating-point
arithmetic in procedure 1ineDDA are still time-consuming. We can improve the
performance of the DDA algorithm by separating the increments m and 1/m into
integer and fractional parts so that all calculations are reduced to integer opera-
tions. A method for calculating 1/m intrements in integer steps is discussed in
Section 3-11. In the following sections, we consider more general scan-line proce-
dures that can be applied to both lines and curves.

Bresenham’s Line Algorithm

An accurate and efficient raster line-generating algorithm, developed by Bresen-

ham, scan converts lines using only incremental integer calculations that can be
adapted to display circles and other curves. Figures 3-5 and 3-6 illustrate sections
of a display screen where straight line segments are to be drawn. The vertical
axes show scan-line positions, and the horizontal axes identify pixel columns.
Sampling at unit x intervals in these examples, we need to decide which of two
possible pixel positions is closer to the line path at each sample step. Starting
from the left endpoint shown in Fig. 3-5, we need to determine at the next sample
position whether to plot the pixel at position (11, 11) or the one at (11, 12). Simi-
larly, Fig. 3-6 shows a negative slope line path starting from the left endpoint at
pixel position (50, 50). In this one, do we select the next pixel position as (51, 50}
or as (51, 49)? These questions are answered with Bresenham’s line algorithm by
testing the sign of an integer parameter, whose value is proportional to the differ-
ence between the separations of the two pixel positions from the actual line path.

To illustrate Bresenham’s approach, we first consider the scan-conversion
process for lines with positive slope less than 1. Pixel positions along a line path
are then determined by sampling at unit x intervals. Starting from the left end-
point (x,, yo) of a given line, we step to each successive column (x position) and
plot the pixel whose scan-line y value is closest to the line path. Figure 3-7
demonstrates the kth step in this process. Assuming we have determined that the
pixel at (x;, i) is to be displayed, we next need to decide which pixel to plot in
column x;, ;. Our choices are the pixels at positions (x,+1, y) and (x, +1, y+1).

At sampling position x,+1, we label vertical pixel separations from the
mathematical line path as d, and d, (Fig. 3-8). The y coordinate on the mathemat-
cal lin€ at pixel column position x,+1 is calculated as

y=mx+1)+b (3-10
Then
h=y-u
=mx,+1+b-y
and
dy=(y + D —y
=y +1l-mx+1) -5
The difference between these two separations is
dy—dy=2m(x, + 1) =2y, + 2b ~ 1 3-1D

A decision parameter p, for the kth step in the line algorithm can be ob-
tained by rearranging Eq. 3-11 so that it involves only integer calculations. We ac-
complish this by substituting m = Ay/Ax, where Ay and Ax are the vertical and
horizontal separations of the endpoint positions, and defining:

P = Ax(dl - dz)

=20y x —2Ax-y + ¢ 3-12

The sign of p, is the same as the sign of d; — d,, since Ax > 0 for our example. Pa-
rameter ¢ is constant and has the value 2Ay + Ax(2b - 1), which is independent

T
Specified v
Line Path

e

Figure 3-5

Section of a display screen
where a straight line segment
15 to be plotted, starting from
the pixel at column 10 on scan
line 11.

Specified~

49 \ /Line Path

48

50 51 52 53

Figure 3-0

Section of a display screen
where a negative slope line
segment is to be plotted,
starting from the pixel at
column 50 on scan line 50.

89

Yioa

Yeea y-mx+b)
\

Yeo

(T3 4/

.

Xe ket Xeaz Xpaa

Figure 3-7

Section of the screen grid

showing a pixel in column x,
on scan line y, that is to be
plotted along the path of a

line segment with slope
0<m<1.

e+ 1+)]d,
y -
d‘
Ve T []
+
X+ 1
Figure 3-8

Distances between pixel
positions and the line y

coordinate at sampling

position x;+1.

30

of pixel position and will be eliminated in the recursive calculations for p,. If the
pixel at y, is closer to the line path than the pixel at y,+1 (that is, d; < d,)}, then de-
cision parameter p, is negative. In that case, we plot the lower pixel; otherwise,
we plot the upper pixel.

Coordinate changes along the line occur in unit steps in either the x or y di-
rections. Therefore, we can obtain the values of successive decision parameters
using incremental integer calculations. At step k + 1, the decision parameter is
evaluated from Eq. 3-12 as

Pesr = 2Ay C Xg+1 2Ax - Vi +c
Subtracting Eq. 3-12 from the preceding equation, we have
Pret = P = 280(xis1 — xp) — 2 8x(Y;0y — Yo
But x;,, = x; + 1, so that
Pra = P+ 28y — 28x(ypsy — i) (3-13)
where the term y,,, — v, is either 0 or 1, depending on the sign of parameter p,.
This recursive calculation of decision parameters is performed at each inte-
ger x position, starting at the left coordinate endpoint of the line. The first para-
meter, p, is evaluated from Eq. 3-12 at the starting pixel position (x,, yo} and with
m evaluated as Ay/Ax:
po = 24y - Ax 3-14
We can summarize Bresenham line drawing for a line with a positive slope
less than 1 in the following listed steps. The constants 2Ay and 2Ay — 2Ax are cal-

culated once for each line to be scan converted, so the arithmetic involves only
integer addition and subtraction of these two constants.

Bresenham’s Line-Drawing Algorithm for Iml<1

1. Input the two line endpoints and store the left endpoint in (xgq, yo).
2. Load (x,, yo) into the frame buffer; that is, plot the first point.

3. Calculate constants Ax, Ay, 2Ay, and 2Ay — 2Ax, and obtain the start-
ing value for the decision parameter as

po = 24y — Ax

4. At each x, along the line, starting at k = 0, perform the following test:
If p; < 0, the next point to plot is (x, + 1, y,) and

Pre1 = p + 208y
Otherwise, the next point to plot is {(x; + 1, y, + 1) and
Prar = P+ 28y — 2Ax

5. Repeat step 4 Ax times.

Section 3-2

Example 3-1 Bresenham Line Drawing Line-Drawing Algorithms

To illustrate the algorithm, we digitize the line with endpoints (20, 10) and (30,
18). This line has a slope of 0.8, with

Ax = 10, Ay =8
The initial decision parameter has the value

po = 24y — Ax
=6

and the increments for calculating successive decision parameters are
2Ay = 16, 28y — 2Ax == —4

We plot the initial point (x5, yo) = (20, 10), and determine successive pixel posi-
tions along the line path from the decision parameter as

k P (Xes 1, Yisr) k P Kt 1r Yiesr)
0 6 (21, 11) 5 6 (26, 15)
1 2 (22, 12) 6 2 (27,16)
2 -2 (23,12) 7 -2 (28, 16)
3 14 24,13) 8 14 (29,17)
4 10 25, 14) 9 10 (30, 18)

A plot of the pixels generated along this line path is shown in Fig. 3-9.

An implementation of Bresenham line drawing for slopes in the range 0 <
m < 1 is given in the following procedure. Endpoint pixel positions for the line
are passed to this procedure, and pixels are plotted from the left endpoint to the
right endpoint. The call to setPixel loads a preset color value into the frame
buffer at the specified (x, y) pixel position.

#include "device.h”

void lineBres (int xa, 1lat vya, int xb, int yb)
({
int dx = abs (xa - xb}, dy = abs (ya - yb);
int p = 2 * dy - dx;
int twoDy = 2 * dy, twoDyDx = 2 * (dy - dx);
int x, y, XEnd;)

/* Determine which point to use as start, which as end */
if xa » xb) (

x = xb;

y = yb;

xEnd = xa:

Chapter 3

92

Qutput Primitives

X = xa;
Y = vai
xEnd = xb;
}
setPixel (x, y);

while (x < xEnd) ¢

X++;
if (p < 0)

p += twoDy:
else (

Y+

p += twoDyDx;
}
setPixel (x, y);
}
}

Bresenham’s algorithm is generalized to lines with arbitrary slope by con-
sidering the symmetry between the various octants and quadrants of the xy
plane. For a line with positive slope greater than 1, we interchange the roles of
the x and y directions. That is, we step along the y direction in unit steps and cal-
culate successive x values nearest the line path. Also, we could revise the pro-
gram to plot pixels starting from either endpoint. If the initial position for a line
with positive slope is the right endpoint, both x and y decrease as we step from
right to left. To ensure that the same pixels are plotted regardless of the starting
endpoint, we always choose the upper (or the lower) of the two candidate pixels
whenever the two vertical separations from the line path are equal (4, = 4;). For
negative slopes, the procedures are similar, except that now one coordinate de-
creases as the other increases. Finally, special cases can be handled separately:
Horizontal lines (Ay = 0), vertical lines (Ax = 0), and diagonal lines with |Ax| =
|Ay | each can be loaded directly into the frame buffer without processing them
through the line-plotting algorithm.

Parallel Line Algorithms

The line-generating algorithms we have discussed so far determine pixel posi-
tions sequentially. With a parallel computer, we can calculate pixel positions

18+
151
1
T Figure 3-9
i Pixel positions along the line path
10 IR between endpoints (20, 10) and
20 2t 22 25 30 (30, 18), plotted with Bresenham'’s
line algorithm.

along a line path simultaneously by partitioning the computations among the
various processors available. One approach to the partitioning problem is to
adapt an existing sequential algorithm to take advantage of multiple processors.
Alternatively, we can look for other ways to set up the processing so that pixel
positions can be calculated efficiently in parallel. An important consideration in
devising a parallel algorithm is to balance the processing load among the avail-
able processors.

Given n, processors, we can set up a parallel Bresenham line algorithm by
subdividing the line path into n, partitions and simultaneously generating line
segments in each of the subintervals. For a line with slope 0 < m <1 and left
endpoint coordinate position (x, y,), we partition the line along the positive x di-
rection. The distance between beginning x positions of adjacent partitions can be
calculated as

Ax. = Act+n, -1 (3-15)

P

nF

where Ax is the width of the line, and the value for partition width Ax, is com-
puted using integer division. Numbering the partitions, and the processors, as 0,
1,2, up to n, —1, we calculate the starting x coordinate for the kth partition as

X = Xy + kAx, (3-16)

As an example, suppose Ax = 15 and we have n, = ¢ processors. Then the width
of the partitions is 4 and the starting x values for the partitions are xo, x5 + 4, xo +
8, and x, + 12. With this partitioning scheme, the width of the last (rightmost)
subinterval will be smaller than the others in some cases. In addition, if the line
endpoints are not integers, truncation errors can result in variable width parti-
tions along the length of the line.

To apply Bresenham'’s algorithm over the partitions, we need the initial
value for the i coordinate and the initial value for the decision parameter in each
partition. The change Ay, in the y direction over each partition is calculated from
the line slope 7 and partition width Ax,,;

Ay, = mAx, {3-17}

At the kth partition, the starting y coordinate is then
¥ = yo + round(kAy,) (3-18)

The initial decision parameter for Bresentyym’s algorithm at the start of the kth
subinterval is obtained from Eq. 3-12:

P = (kAx,)(2Ay) - round(kAy,)(24x) + 28y ~ Ax 3-19

Each processor then calculates pixel positions over its assigned subinterval using
the starting decision parameter value for that subinterval and the starting coordi-
nates (x;, y5). We can also reduce the floating-point calculations to integer arith-
metic in the computations for starting values y; and p; by substituting m =
Ay/Ax and rearranging terms. The extension of the parallel Bresenham algorithm
to a line with slope greater than 1 is achieved by partitioning the line in the y di-

Section 3-2

Line-Drawing Algorithms

93

Yai—-
Vi
1 1
X X,
Figure 3-10
Bounding box for a line with

coordinate extents Ax and Ay.

94

rection and calculating beginning x values for the partitions. For negative slopes,
we increment coordinate values in one direction and decrement in the other.

Another way to set up parallel algorithms on raster systems is to assign
each processor to a particular group of screen pixels. With a sufficient number of
processors (such as a Connection Machine CM-2 with over 65,000 processors), we
can assign each processor to one pixel within some screen region. This approach
can be adapted to line display by assigning one processor to each of the pixels
within the limits of the line coordinate extents (bounding rectangle) and calculating
pixel distances from the line path. The number of pixels within the bounding box
of a line is Ax-Ay (Fig. 3-10). Perpendicular distance d from the line in Fig. 3-10 to
a pixel with coordinates (x, y) is obtained with the calculation

d=Ax+By+C (3-20)

where

- T4y
linelength
B = __L
linelength
XAY — yobx
linelength

C=

with
linelength = VAx% + Ay?

Once the constants A, B, and C have been evaluated for the line, each processor
needs to perform two multiplications and two additions to compute the pixel
distance d. A pixel is plotted if d is less than a specified line-thickness parameter.

Instead of partitioning the screen into single pixels; we can assign to each
processor either a scan line or a column of pixels depending on the line slope.
Each processor then calculates the intersection of the line with the horizontal row
or vertical column of pixels assigned that processor. For a line with slope |m f<
1, each processor simply solves the line equation for y, given an x column value.
For a line with slope magnitude greater than 1, the line equation is solved for x
by each processor, given a scan-line y value. Such direct methods, although slow
on sequential machines, can be performed very efficiently using multiple proces-
SOrS.

3-3
LOADING THE FRAME BUFFER

When straight line segments and other objects are scan converted for display
with a raster system, frame-buffer positions must be calculated. We have as-
sumed that this is accomplished with the setPixel procedure, which stores in-
tensity values for the pixels at corresponding addresses within the frame-buffer
array. Scan-conversion algorithms generate pixel positions at successive unit in-

HRNENE

|

° 6,00 (1,00 (2,0 / \
x, y) l (Xomgn 01 (0, 1)
0* I

e e ! addr {0, 0
0 X,

ax
Screen Frame Buffer

addr {x, y}

Figure 3-11
Pixel screen positions stored linearly in row-major crder within the frame buffer.

tervals. This allows us to use incremental methods to calculate frame-buffer ad-
dresses.

As a specific example, suppose the frame-butfer array is addressed in row-
major order and that pixel positions vary from (0, 0) at the lower left screen cor-
ner to (X ¥max) at the top right corner (Fig. 3-11). For a bilevel system (1 bit per
pixel), the frame-buffer bit address for pixel position (x, y) is calculated as

addr(x, y) = addr(0, 0) + y(x_,, + 1) +x (3-21)

Moving across a scan line, we can calculate the frame-buffer address for the pixel
at (x + 1, y) as the following offset from the address for position (x, y):

addr(x + 1, y) = addr(x, v) + 1 (3-22

Stepping diagonally up to the next scan line from (x, y), we get to the frame-
buffer address of (x + 1,y + 1) with the calculation

addr(x + 1,y + 1) = addrlx. y) + x, + 2 (3-23)

where the constant x,,,,, + 2 is precomputed once for all line segments. Similar in-
cremental calculations can be obtained from Eq. 3-21 for unit steps in the nega-
tive x and y screen directions. Each of these address calculations involves only a
single integer addition.

Methods for implementing the setPixel procedure to store pixel intensity
values depend on the capabilities of a particular system and the design require-
ments of the software package. With systems that can display a range of intensity
values for each pixel, frame-buffer address calculations would include pixel
width (number of bits), as well as the pixel screen location.

3-4
LINE FUNCTION

A procedure for specifying straight-line segments can be set up in a number of
different forms. In PHIGS, GKS, and some other packages, the two-dimensional
line function is

(Xma:/ Vrnux(J

95

Chapter 3

926

Output Primitives

polyline (n, wcPoints)

where parameter n is assigned an integer value equal to the number of coordi-
nate positions to be input, and wcPoints is the array of input world-coordinate
values for line segment endpoints. This function is used to define a set of n — 1
connected straight line segments. Because series of connected line segments
occur more often than isolated line segments in graphics applications, polyline
provides a more general line function. To display a single straight-line segment,
we set n'= 2 and list the x and y values of the two endpoint coordinates in
wcPoints.

As an example of the use of polyline, the following statements generate
two connected line segments, with endpoints at (50, 100), (150, 250), and (250,
100):

wcPoints([1l]).x = 50;

wcPoints{l]).y = 100;
wcPoints([2].x = 150;
wcPoints{2].y = 250;
wcPoints (31.x = 250;
wcPoints{3].y = 100;

polyline (3, wcPoints);

Coordinate references in the polyline function are stated as absolute coordi-
nate values. This means that the values specified are the actual point positions in
the coordinate system in use.

Some graphics systems employ line (and point) functions with relative co-
ordinate specifications. In this case, coordinate values are stated as offsets from
the last position referenced (called the current position). For example, if location
(3,2) is the last position that has been referenced in an application program, a rel-
ative coordinate specification of (2, —1) corresponds to an absolute position of (5,
1). An additional function is also available for setting the current position before
the line routine is summoned. With these packages, a user lists only the single
pair of offsets in the line command. This signals the system to display a line start-
ing from the current position to a final position determined by the offsets. The
current position is then updated to this final line position. A series of connected
lines is produced with such packages by a sequence of line commands, one for
each line section to be drawn. Some graphics packages provide options allowing
the user to specify line endpoints using either relative or absolute coordinates.

Implementation of the polyline procedure is accomplished by first per-
forming a series of coordinate transformations, then making a sequence of calls
to a device-level line-drawing routine. In PHIGS, the input line endpoints are ac-
tually specified in modeling coordinates, which are then converted to world co-
ordinates. Next, world coordinates are converted to normalized coordinates, then
to device coordinates. We discuss the details for carrving out these two-dimen-
sional coordinate transformations in Chapter 6. Once in device coordinates, we
display the polyline by invoking a line routine, such as Bresenham’s algorithm,
n = 1 times to connect the n coordinate points. Each successive call passes the co-
ordinate pair needed to plot the next line section, where the first endpoint of each
coordinate pair is the last endpoint of the previous section. To avoid setting the
intensity of some endpoints twice, we could modify the line algorithm so that the
last endpoint of each segment is not plotted. We discuss methods for avoiding
overlap of displayed objects in more detail in Section 3-10.

3-5
CIRCLE-GENERATING ALGORITHMS

Since the circle is a frequently used component in pictures and graphs, a proce-
dure for generating either full circles or circular arcs is included in most graphics
packages. More generally, a single procedure can be provided to display either
circular or elliptical curves.

v+
Properties of Circles]

A circle is defined as the set of points that are all at a given distance r from a cen-

ter position (x,, y.) (Fig. 3-12). This distance relationship is expressed by the Figure 3-12

Pythagorean theorem in Cartesian coordinates as Circle with center coordinates

(x., y) and radius r.

(x—x)+ly—y)y=r (3-24)
We could use this equation to calculate the position of points on a circle circum-
ference by stepping along the x axis in unit steps from x, — r to x. + r and calcu- T
lating the corresponding y values at each position as e Y
y=y 2Vl — & 3¢ (3-25)

But this is not the best method for generating a circle. One problem with this ap-

proach is that it involves considerable computation at each step. Moreover, the

spacing between plotted pixel positions is not uniform, as demonstrated in Fig. -

3-13. We could adjust the spacing by interchanging x and y (stepping throughy Figure 3-13 .

values and calculating x values) whenever the absolute value of the slope of the P;’S“;;e h.all: ofa :;le g

circle is greater than 1. But this simply increases the computation and processing af:: « w") :”?0 0 an

required by the algorithm. o Ye o
Another way to eliminate the unequal spacing shown in Fig. 3-13 is to cal-

culate points along the circular boundary using polar coordinates r and 6 (Fig.

3-12). Expressing the circle equation in parametric polar form yields the pair of

equations

x=1x +rcosl
(3-26)
y =y + rsind

When a display is generated with these equations using a fixed angular step size,
a circle is plotted with equally spaced points along the circumference. The step
size chosen for 8 depends on the application and the display device. Larger an-
gular separations along the circumference can be connected with straight line
segments to approximate the circular path. For a more continuous boundary on a
raster display, we can set the step size at 1/r. This plots pixel positions that are
approximately one unit apart.

Computation can be reduced by considering the symmetry of circles. The
shape of the circle is similar in each quadrant. We can generate the circle section
in the second quadrant of the xy plane by noting that the two circle sections are
symmetric with respect to the y axis. And circle sections in the third and fourth
quadrants can be obtained from sections in the first and second quadrants by

97

14
—y. x) | ty. x)
=x.y)
450 {0V
x
{-x -y} {x, -yl
(=y,-x) | ly.-x)
Figure 3-14
Symmetry of a circle.

Calculation of a circle point
(z, y) in one octant yields the
circle points shown for the
other seven octants.

98

considering symmetry about the x axis. We can take this one step further and
note that there is also symmetry between octants. Circle sections in adjacent oc-
tants within one quadrant are symmetric with respect to the 45° line dividing the
two octants. These symmetry conditions are illustrated in Fig.3-14, where a point
at position (x, y) on a one-eighth circle sector is mapped into the seven circle
points in the other octants of the xy plane. Taking advantage of the circle symme-
try in this way, we can generate all pixel positions around a circle by calculating
only the points within the sector fromx =0tox = y.

Determining pixel positions along a circle circumference using either Eq.
3-24 or Eq. 3-26 still requires a good deal of computation time. The Cartesian
equation 3-24 involves multiplications and square-root calculations, while the
parametric equations contain multiplications and trigonometric calculations.
More efficient circle algorithms are based on incremental calculation of decision

-parameters, as in the Bresenham line algorithm, which involves only simple inte-
ger operations.

Bresenham’s line algorithm for raster displays is adapted to circle genera-
tion by setting up decision parameters for finding the closest pixel to the circum-
ference at each sampling step. The circle equation 3-24, however, is nonlinear, so
that square-root evaluations would be required to compute pixel distances from a
circular path. Bresenham's circle algorithm avoids these square-root calculations
by comparing the squares of the pixel separation distances.

A method for direct distance comparison is to test the halfway position be-
tween two pixels to determine if this midpoint is inside or outside the circle
boundary. This method is more easily applied to other conics; and for an integer
circle radius, the midpoint approach generates the same pixel positions as the
Bresenham circle algorithm. Also, the error involved in locating pixel positions
along any conic section using the midpoint test is limited to one-half the pixel
separation.

Midpoint Circle Algorithm

As in the raster line algorithm, we sample at unit intervals and determine the
closest pixel position to the specified circle path at each step. For a given radius r
and screen center position (x,,), we can first set up our algorithm to calculate
pixel positions around a circle path centered at the coordinate origin (0, 0). Then
each calculated position (x, y) is moved to its proper screen position by adding x,
to x and y,. to y. Along the circle section from x = 0 to x = y in the first quadrant,
the slope of the curve varies from 0 to —1. Therefore, we can take unit steps in
the positive x direction over this octant and use a decision parameter to deter-
mine which of the two possible y positions is closer to the circle path at each step.
Positions ifi the other seven octants are then obtained by symmetry.
To apply the midpoint method, we define a circle function:

fcm:le(xl y) =x1+ y2 -1 (3-27)

Any point (x, y) on the boundary of the circte with radius r satisfies the equation
faraelx, ¥) = 0. If the point is in the interior of the circle, the circle function is nega-
tive. And if the point is outside the circle, the circle function is positive. To sum-
marize, the relative position of any point (x, v) can be determined by checking the
sign of the circle function:

<0, if(x, y) isinside the circle boundary
faraelx, ¥) 1 =0, if (x, y) is on the circle boundary (3-28)
>0, if (x, y) is outside the circle boundary

The circle-function tests in 3-28 are performed for the midpositions between pix-
els near the circle path at each sampling step. Thus, the circle function is the deci-
sion parameter in the midpoint algorithm, and we can set up incremental calcu-
lations for this function as we did in the line algorithm.

" Figure 3-15 shows the midpoint between the two candidate pixels at sam-
pling position x, + 1. Assuming we have just plotted the pixel at (x;, 1), we next
need to determine whether the pixel at position (x; + 1, y;) or the one at position
(xy + 1,y —- 1) is closer to the circle. Our decision parameter is the circle function
3-27 evaluated at the midpoint between these two pixels:

1
p= fdrcl-(xk + 1Ly~ 5)

1 (3-29)
= (% + 1)2+(yk- 5>1—r1

If p, < 0, this midpoirt is inside the circle and the pixel on scan line y; is closer to
the circle boundary. Otherwise, the midposition is outside or on the circle bound-
ary, and we select the pixel on scanline y, — 1.

Successive decision parameters are obtained using incremental calculations.
We obtain a recursive expression for the next decision parameter by evaluating
the circle function at sampling positionx,; + 1 = x, + 2:

1
Prer = fu‘:de(xkn + 1, Yoy = E)

S+ D) +12+ (y“, - %)2 —p
or
Peor =P+ 206+ D+ G, YD — W — W) + 1 (3-30)

where vy, , is either y; or yy_,, depending on the sign of p;.

Increments for obtaining p,., are either 2x,,;, + 1 (if p, is negative) or 2x;,,
+ 1 - 2y,,,. Evaluation of the terms 2x,,, and 2y,., can also be done incremen-
tally as

Dbpey = 2% + 2
2yk+l = 2yk - 2

At the start position (0, r), these two terms have the values 0 and 27, respectively.
Each successive value is obtained by adding 2 to the previous value of 2x and
subtracting 2 from the previous value of 2y.

The initial decision parameter is obtained by evaluating the circle function
at the start position (xg, yo) = (0, 7):

Y

X2+ yl-rieQ

ye- 1

T

Midpoint \
S

7 N

X

|

AY

X+ 1 X +2

Figure 3-15

Midpoint between candidate
pixels at sampling position
x,+1 along a circular path.

99

Chapter 3

100

Output Primitives

or

Po = i -r (3-3D)

If the radius r is specified as an integer, we can simply round p, to
Po=1-r (forraninteger)

since all increments are integers.

As in Bresenham'’s line algorithm, the midpoint method calculates pixel po-
sitions along the circumference of a circle using integer additions and subtrac-
tions, assuming that the circle parameters are specified in integer screen coordi-
nates. We can summarize the steps in the midpoint circle algorithm as follows.

Midpoint Circle Algorithm

1. Input radius r and circle center (x, y.), and obtain the first point on
the circumference of a circle centered on the origin as

(xo, yo) =(0,n

2. Calculate the initial value of the decision parameter as

3. At each x, position, starting at k = 0, perform the following test: 1f
pr <0, the next point along the circle centered on (0, 0) is (x4, y,» and

Pror = Prt D + 1
Otherwise, the next point along the circle is (x, + 1,3, — 1) and
Prot = Pe+ 26, + 1= 2y,

whene 2x,, = 2% + 2 and 2y = 2y, — 2.
4. Determine symmetry points in the other seven octants.
5. Move each calculated pixel position (x, ¥) onto the circular path cen-

tered on (x,, y.) and plot the coordinate values:

r=xt+x, y=yty

6. Repeat steps 3 through 5 until x = v.

y y=x
o .
10 e
9 s
8 i
7
6 e Q
5 /.)
4 ol Figure 3-16
3 P \’) Selected pixel positions (solid
2 P circles) along a circle path with
y z radius r = 10 centered on the origin,

! 4 using the midpoint circle algorithm.
0. (D « Open circles show the symmetry

0 7 2 3 45 6 7 8 9 10 positions in the first quadrant.

Example 3-2 Midpoint Circle-Drawing

Given a circle radius » = 10, we demonstrate the midpoint circle algorithm by
determining positions along the circle octant in the first quadrant from x = 0 to
x = y. The initial value of the decision parameter is

pp=1-r= -9

For the circle centered on the coordinate origin, the initial point is (x,, yo -
(0, 10), and initial increment terms for calculating the ¢ acision parameters are

2,=0, 2y, =20

Successive decision parameter values and positions along the circle path are cal-
culated using the midpoint method as

ki pe Wn Vo) 2%, 2y
0 -9 (1,10 2 20
1 -6 (2,10 4 20
2 -1 (3,10 6 20
3 6 4,9) 8 18
4 -3 (5,9 10 i8
5 8 (6, 8) 12 16
6 5 7,7 14 14

A plot of the generated pixel positions in the first quadrant is shown in Fig. 3-10.

The following procedure displays a raster circle on a bilevel monitor using
the midpoint algorithm. Input to the procedure are the coordinates for the circle
center and the radius. Intensities for pixel positions along the circle circumfer-
ence are loaded into the frame-buffer array with calls to the set Pixel routine.

Section 3-5

Circle-Generating Algorithms

101

Chapter 3
Quiput Primitives

P={xyl

Figure 3-17
Ellipse generated about foci
F,and F,.

102

#include "device.h"

void circleMidpoint

(

(int xCenter, int yCenter, int radius)

int x = 0;

int y = radius;

int p = 1 - radius;

void circlePlotPoints {int, int, int, int):
/* Plot first set of points */
circlePlotPoints (xCenter, yCenter, x, Y);

while (x < y) {

X++;

if (p < 0)

P *+= 2 * x + 1;
else {

y--i

P += 2 * (x -y) + 1;

}

circlePlotPoints (xCenter, yCenter, X, Y):

)

void circlePlotPoints

{int xCenter, int yCenter, int x, int y)
{
setPixel (xCenter + x, yCenter + y);
setPixel (xCenter - x, yCenter + y);
setPixel (xCenter + x, yCenter - y);
setPixel (xCenter - x, yCenter - y)};
setPixel (xCenter + y, yCenter + x);
setPixel (xCenter - y, yCenter * x);
setPixel (xCenter + y, yCenter - x);
setPixel (xCenter - y, yCenter - x);

3-6
ELLIPSE-GENERATING ALGORITHMS

Loosely stated, an ellipse is an elongated circle. Therefore, elliptical curves can be
generated by modifying circle-drawing procedures to take into account the dif-
ferent dimensions of an ellipse along the major and minor axes.

Properties of Ellipses

An ellipse is defined as the set of points such that the sum of the distances from
two fixed positions (foci) is the same for all points (Fig. 3-17). If the distances to
the two foci from any point P = (x, ¥} on the ellipse are labeled d, and d,, then the
general equation of an ellipse can be stated as

d, + d, = constant (3-3D)

Expressing distances d, and 4, in terms of the focal coordinates F, = (x,, y,} and
F, = (xy, ¥,), we have

Vix —x)2+ (y —)P + Vx — 12> + (y — y2)* = constant (3-3%)

By squaring this equation, isolating the remaining radical, and then squaring
again, we can rewrile the general ellipse equation in the form

Ax* + B2+ Cxy+ Dx+ Ey+ F=0 (3-34)

where the coefficients A, B, C, D, E, and F are evaluated in terms of the focal coor-
dinates and the dimensions of the major and minor axes of the ellipse. The major
axis is the straight line segment extending from one side of the ellipse to the
other through the foci. The minor axis spans the shorter dimension of the ellipse,
bisecting the major axis at the halfway position (ellipse center) between the two
foci.

An interactive method for specifying an ellipse in an arbitrary orientation is
to input the two foci and a point on the ellipse boundary. With these three coordi-
nate positions, we can evaluate the constant in Eq. 3-33. Then, the coefficients in
Eq. 3-34 can be evaluated and used to generate pixels along the elliptical path.

Ellipse equations are greatly simplified if the major and minor axes are ori-
ented to align with the coordinate axes. In Fig. 3-18, we show an ellipse in “stan-
dard position” with major and minor axes oriented parallel to the x and y axes.
Parameter r, for this example labels the semimajor axis, and parameter r, labels
the semiminor axis. The equation of the ellipse shown in Fig. 3-18 can be written
in terms of the ellipse center coordinates and parameters r, and r, as

L 2 - 2
(Aé) N yf) -1 (3-35)

Iy \ ry

Using polar coordinates r and 6, we can also describe the ellipse in standard posi-
tion with the parametric equations:

Y =x.+r, cos
(3-36)
¥y =Y. tr,sing

Svmmetry considerations can be used to further reduce computations. An ellipse
in standard position is symmetric between quadrants, but unlike a circle, it is not
symmetric between the two octants of a quadrant. Thus, we must calculate pixel

positions along the elliptical arc throughout one quadrant, then we obtain posi-
tions in the remaining three quadrants by symmetry (Fig 3-19).

Midpoint Ellipse Asgorithm

Our approach here is similar to that used in displaying a raster circle. Given pa-
rameters +,, r,, and (x,, y.), we determine points (x,) for an ellipse in standard
position centered on the origin, and then we shift the points so the ellipse is cen-
tered at (x., y.). It we wish also to display the ellipse in nonstandard position, we
could then rotate the ellipse about its center coordinates to reorient the major and
minor axes. For the present, we consider only the display of ellipses in standard
position. We discuss general methods for transforming object orientations and
positions in Chapter 5.

The midpoint ellipse method is applied throughout the first quadrant in
two parts. Figure 3-20 shows the division of the first quadrant according to the
slope of an ellipse with r, < r,. We process this quadrant by taking unit steps in
the x direction where the slope of the curve has a magnitude less than 1, and tak-
ing unit steps in the y direction where the slope has a magnitude greater than 1.

Regions 1 and 2 (Fig. 3-20), can be processed in various ways. We can start
at position (0, v) and step clockwise along the elliptical path in the first quadrant,

Figure 3-18

Ellipse centered at (x., y,) with

mimajor axis r, and
Semiminor axis r,.

103

Chapter 3

Output Primitives

Figure 3-19

Symmetry of an ellipse.
Calculation of a point (x, y)
in one quadrant yields the
ellipse points shown for the
other three quadrants.

Regron) Slope = -1
’
s
7 Regeon
s 2 1

Ty x

Figure 3-20

Ellipse processing regions.
Over region 1, the magnitude
of the ellipse slope is less
than 1; over region 2, the
magnitude of the slopeis
greater than t.

104

shifting from unit steps in x to unit steps in y when the slope becomes less than
~1. Alternatively, we could start at (r,, 0) and select points in a counterclockwise
order, shifting from unit steps in y to unit steps in x when the slope becomes
greater than —1. With parallel processors, we could calculate pixel positions in
the two regions simultaneously. As an example of a sequential implementation of
the midpoint algorithm, we take the start position at (0, r,) and step along the el-
lipse path in clockwise order throughout the first quadrant.
We define an ellipse function from Eq. 3-35 with (x., y.) = (0, 0) as

fotipse®.) = r2x? + rly? — r2rl (3-37)
which has the following properties:

<0, if (x, y) is inside the ellipse boundary
faupselx,) § =0, if (x, y) is on the ellipse boundary (3-38)
>0, if{x,y) is outside the ellipse boundary

Thus, the ellipse function f,ype(, y) serves as the decision parameter in the mid-
point algorithm. At each sampling position, we select the next pixel along the el-
lipse path according to the sign of the ellipse function evaluated at the midpoint
between the two candidate pixels.

Starting at (0, r,), we take unit steps in the x direction until we reach the
boundary between region 1 and region 2 (Fig. 3-20). Then we switch to unit steps
in the y direction over the remainder of the curve in the first quadrant. At each
step, we need to test the value of the slope of the curve. The ellipse slope is calcu-
lated from Eq. 3-37 as

2
dy _ _ 2rix (3-39)
dx 2rly
At the boundary between region 1 and region 2, dy/dx = —1 and
2rix = 2rly
Therefore, we move out of region 1 whenever
2rkx = 2rly (3-40)

Figure 3-21 shows the midpoint between the two candidate pixels at sam-
pling position x; + 1 in the first region. Assuming position (x,, y,) has been se-
lected at the previous step, we determine the next position along the ellipse path
by evaluating the decision parameter (that is, the ellipse function 3-37) at this
midpoint:

1
rl =feu.-pse(1’k Ly~ E)
e (341
=i + 12+ r}(yk - 5) —r2r}
If p1, < 0, the midpoint is inside the ellipse and the pixel on scan line y, is closer

to the ellipse boundary. Otherwise, the midposition is outside or on the ellipse
boundary, and we select the pixel on scan line y, — 1.

At the next sampling position (x;.; + 1 = x + 2), the decision parameter rAXT 4 r2y?-r2r2 =0

for region 1 is evaluated as lj
1 v ;
plia :fellipse(xl'+1 T L — 5) - Uz
y, -1 midpoint
1\2 Ne
=rilix+ D +]]2+r§(yk+l = E) —rir?] | \
xp X + 1
or _ —
Figure 3-21

Pleey = plg + 2} + 1) + 1] + 12

132 1\2 Midpoint between candidate
Yeor ” 51 5 (.‘/k) (3-42) pixels at sampling position

x+1 along an elliptical path.
where y; 4, is either y, or y, — 1, depending on the sign of pl,.
Decision parameters are incremented by the following amounts:

) . iz, + 13, if p1, <0
increment =
22y + 12~ 2riYesy, ifply=0

As in the circle algerithm, increments for the decision parameters can be calcu-
lated using only addition and subtraction, since values for the terms 2rlx and
2rly can also be obtained incrementally. At the initial position (0, r,), the two
terms evaluate to

2rix =0 (3-43)

2r2y = 2r2r, (3-44)
As x and y are incremented, updated values are obtained by adding 2r7 to 3-43
and subtracting 2r2 from 3-44. The updated values are compared at each step,
and we move from region 1 to region 2 when condition 3-40 is satisfied.

In region 1, the initial value of the decision parameter is obtained by evalu-
ating the ellipse function at the start position (x, ¥p) = (0, r,):

N

1
Plo = femP*(]' T ™ E)

, 1\2
=242y - 2} - 22
st r,(ry 5 rir

or

1
plo=r—rir, + 4—r} (3-45

Over region 2, we sample at unit steps in the negative y direction, and the
midpoint is now taken between horizontal pixels at each step (Fig. 3-22). For this
region, the decision parameter is evaJuated as

1
P2 =fel].ipse(xk + 3 W~ 1)
(3-46)

1\2
= rf(xk + 5) +riy - D -2k 105

Chapter 3

106

Output Primitives

Ly2 1y _ 2 =
rAxd s rdy? -7 =0

“midpoint

——

Figure 3-22

Midpoint between candidate pixels
at sampling positiony, — 1 along an
X Nt X2 elliptical path.

If p2, > 0, the midposition is outside the ellipse boundary, and we select the pixel
at x;. If p2, = 0, the midpoint is inside or on the ellipse boundary, and we select
pixel position x;, ;.

To determine the relationship between successive decision parameters in
region 2, we evaluate the ellipse function at the next sampling step y;,, — 1 =
W

1
P2y = feuipsc(xul + R 1)
(3-47)
1\2
= r;*(x,“\ + 5) +rilyx -~ D11 = rird

or

17\2 1\2
P2y = P - 2r¥y - D + 2 + rg[{xhl + 5) —(x,l + 5)]
A

with x; . , set either to x, or to x; + 1, depending on the sign of p2,.
When we enter region 2, the initial position (xy, y.) is taken as the last posi-
tion selected in region 1 and the initial decision parameter in region 2 is then

1
P = fellipse(xo + 3%~ 1)
(3-49)

1\2
= r&(xo + 5) Friyg - 1P - rird

To simplify the calculation of p2;, we could select pixel positions in counterclock-
wise order starting at (r,, 0). Unit steps would then be taken in the positive y di-
rection up to the last position selected in region 1.

The midpoint algorithm can be adapted to generate an ellipse in nonstan-
dard position using the ellipse function Eq. 3-34 and calculating pixel positions
over the entire elliptical path. Alternatively, we could reorient the ellipse axes to
standard position, using transformation methods discussed in Chapter 5, apply
the midpoint algorithm to determine curve positions, then convert calculated
pixel positions to path positions along the original ellipse orientation.

Assuming r,, r,, and the ellipse center are given in integer screen coordi-
nates, we only need incremental integer calculations to determine values for the
decision parameters in the midpoint ellipse algorithm. The increments 12, rZ, 2r,
and 2r? are evaluated once at the beginning of the procedure. A summary of the
midpoint ellipse algorithm is listed in the following steps:

Midpeint Ellipse Algorithm

1. Input r,, r, and ellipse center (x, ¥, and obtain the first point on an
ellipse centered on the origin as

(xo, 49) = (0, 1)
2. Calculate the initial value of the decision parameter in region 1 as
2 1,
plo=ri-rr, + e
3. At each x; position in region 1, starting at k = G, perform the follow-
ing test: If pl; < 0, the next point along the ellipse centered on (0, 0)
is{x;.y, v,) and
Pl = ple+ 2rix + 1
Otherwise, the next point along the circle is (x, + 1, y; — 1) and
Plest = ple + 22, = 2834, + 72
with
20Xy = 2 X, + 2r%, 2riy,., = 21y, — 2r%

and continue until 2rix =2rly.

4, Calculate the initial value of the decision parameter in region 2 using
the last point (xy, y,) calculated in region 1 as

1\2
0= ri(x0+ S + - 022

5. At each y, position in region 2, starting at k = 0, perform the follow-
ing test: If p2;> 0, the next point along the ellipse centered on (0, 0) is
(e, ¥, -) and

P2y =p - 2f§yh; “r
Otherwise, the next point along the circleis (x, + 1, — 1) and

Pt = P2+ 200, - 200, + R

using the same incremental calculations for x and y as in region 1.
6. Determine symmetry points in the other three quadrants.

7. Move each calculated pixel position (x, y) onto the elliptical path cen-
tered on (x., y.) and plot the coordinate values:

x=x+x, y=yty

8. Repeat the steps for region 1 until 2rix = 2rly.

Section 3-6

fllipse-Generating Algorithms

107

Chagpter 3

108

Qutput Primitives

Example 3-3 Midpoint Ellipse Drawing

Given input ellipse parameters r, = 8 and r, = 6, we illustrate the steps in the
midpoint ellipse algorithim by determining raster positions along the ellipse path
in the first quadrant. Initial values and increments for the decision parameter cal-
culations are

2rlx =0 (with increment 2r2 = 72)

il

2rly = 2rir, (with increment -2r? = ~128)

For region 1: The initial point for the ellipse centered on the origin is (xy, o) =

(0, 6), and the initial decision parameter value is

1
plo = ryz - r}fy + Zf}, = =332

Successive decision parameter values and positions along the ellipse path are cal-
culated using the midpoint method as

Kk ply Xir 1 Yirr) 208 Xpas 28 Yia
0 ~332 (1, 6) 72 768
1 -224 (2, 6) 144 768
2 -44 (3, 6) 216 768
3 208 (4, 5) 288 640
4 -108 (5,5) 360 640
5 288 6, 4) 432 512
6 244 (7, 3) 504 384

We now move out of region 1, since 272x > 2rfy.

For region 2, the initial point is (xo, yo) = {7, 3) and the initial decision parameter
is

P2 = f(7 + %2) = -151

The remaining positions along the ellipse path in the first quadrant are then cal-
culated as

k P2 (Xee1r Yiet) 2’}"/:“ 21 Y
0 -151 (8, 2} 576 256
1 233 (8, 1} 576 128
2 745 (8, 0) — _

A plot of the selected positions around the ellipse boundary within the first
quadrant is shown in Fig. 3-23.

In the following procedure, the midpoint algorithm is used to display an el-
lipse with input parameters Rx, Ry, xCenter, and yCenter. Positions along the

N W e OO

01 2 3 45 6 7 8

Section 3-6

Ellipse-Generating Algorithms

Figure 3-23

Positions along an elliptical path
centered on the origin withr, = 8
and r, = 6 using the midpoint
algorithm to calculate pixel
addresses in the first quadrant.

curve in the first quadrant are generated and then shifted to their proper screen
positions. Intensities for these positions and the symmetry positions in the other
three quadrants are loaded into the frame buffer using the set Pixel routine.

tinclude "device.h*

tdefine ROUND(a) ((int){a+0.5))

void ellipseMidpoint (int xCenter,

{
int
int
int
int
int
int
int
int
int yi
void ellipsePlotPoints

RX*Rx;
Ry*Ry:
2*Rx2;
2*Ry2;

nou

(int, int,
/* Plot the first set of points */
ellipsePlotPoints (xCenter, yCenter,

/* Region 1 */
p = RCUND {(Ry2 -
while (px < py) {
X4+
pPX += TwoRy2;
if (p < 0)
p += Ry2 + px;
else {
Y--i
pPY -= twWORx2;
P += Ry2 + pX - py;
}
ellipsePlotPoints (xCenter,

}

/* Region 2 */
p:
while {(y » 0) {
y--
py -= twoRxZ;
if (p > 0)
P *= Rx2 - py;
else {
X++;
px += tWORY2:;
p += Rx2 - py + pxX;

int yCenter,

int,

(Rx2 * Ry) + (0.25 * Rx2));

yCenter,

ROUND (Ry2* (x+0.5)* (x+0.5) + Rx2*(y-1)*(y-1)

int Rx, int Ry)

int) ;

X, ¥Y)i

X, ¥);

- Rx2*Ry2) ;

109

Chapter 3

Output Primitives

}
ell:psePlotPoints {xCenter, yCenter, x, yl:
}
}

void ellipsePlotPo.nts (int xCenter, int yCenter, int x, int y)
{

setPixel (xCenter + x, yCenter + y):

setPixel (xCenter - x, yCenter + y);
setPixel (xCenter + x, yCenter - y);
setPixel (xCenter - x, yCenter - y};

3-7

OTHER CURVES

Various curve functions are useful in object modeling, animation path specifica-
tions, data and function graphing, and other graphics applications. Commonly
encountered curves include conics, trigonometric and exponential functions,
probability distributions, general polynomials, and spline functions. Displays of
these curves can be generated with methods similar to those discussed for the
circle and ellipse functions. We can obtain positions along curve paths directly
from explicit representations y = f(x) or from parametric forms. Alternatively, we
could apply the incremental midpoint method to plot curves described with im-
plicit functions fix, y) = 0.

A straightforward method for displaying a specified curve function s to ap-
proximate it with straight line segments. Parametric representations are useful in
this case for obtaining equally spaced line endpoint positions along the curve
path. We can also generate equally spaced positions from an explicit representa-
tion by choosing the independent variable according to the slope of the curve.
Where the slope of y = f(x) has a magnitude less than 1, we choose x as the inde-
pendent variable and calculate y values at equal x increments. To obtain equal
spacing where the slope has a magnitude greater than 1, we use the inverse func-
tion, x = f “¥y), and calculate values of x at equal y steps.

Straight-line or curve approximations are used to graph a data set of dis-
crete coordinate points. We could join the discrete points with straight line seg-
ments, or we could use linear regression (least squares) to approximate the data
set with a single straight line. A nonlinear least-squares approach is used to dis-
play the data set with some approximating function, usually a polynomial.

As with circles and ellipses, many functions possess symmetries that can be
exploited to reduce the computation of coordinate positions along curve paths.
For example, the normal probability distribution function is symmetric about a
center position (the mean), and all points along one cycle of a sine curve can be
generated from the points in a 90° interval.

Conic Sections

In general, we can describe a conic section (or conic) with the second-degree
equation:

Ax2+ By?+ Cxy + Dx + Ey + F =0 (3-50)

where values for parameters A, B, C, D, E, and F determine the kind of curve we
are to display. Given this set of coefficients, we can determine the particular conic
that will be generated by evaluating the discriminant B* — 4AC:

<0, generates an ellipse (or circle)
B2 - 4AC < =0, generates a parabola (3-531)

>0, generates a hyperbola

For example, we get the circle equation 3-24 whenA = B=1,C=0,D = —2x,
E = -2y,and F = x2 + y? — r2. Equation 3-50 also describes the “degenerate”
conics: points and straight lines.

Ellipses, hyperbolas, and parabolas are particularly useful in certain anima-
tion applications. These curves describe orbital and other motions for objects
subjected to gravitational, electromagnetic, or nuclear forces. Planetary orbits in
the solar system, for example, are ellipses; and an object projected into a uniform
gravitational field travels along a parabolic trajectory. Figure 3-24 shows a para-
bolic path in standard position for a gravitational field acting in the negative y di-
rection. The explicit equation for the parabolic trajectory of the object shown can
be written as

y =1y +alx — xg)? + blx —) (3-52)

with constants a and b determined by the initial velocity v, cf the object and the
acceleration g due to the uniform gravitational force. We can also describe such
parabolic motions with parametric equations using a time parameter ¢, measured
in seconds from the initial projection point:

x = x5 + v,
0 ()] i (333)
Y= Yottt = 58t

Here, v, and v, are the initial velocity components, and the value of g near the
surface of the earth is approximately 980cm/sec?. Object positions along the par-
abolic path are then calculated at selected time steps.

Hyperbolic motions (Fig. 3-25) occur in connection with the collision of
charged particles and in certain gravitational problems. For example, comets or
meteorites moving around the sun may travel along hyperbolic paths and escape
to outer space, never to return. The particular branch (left or right, in Fig. 3-25)
describing the motion of an object depends on the forces involved in the prob-
lem. We can write the standard equation for the hyperbola centered on the origin

in Fig. 3-25 as
2 2
(i) _(i) -1 (3-34)
Iy ry

with x = —r, for the left branch and x = r, for the right branch. Since this equa-
tion differs from the standard ellipse equation 3-35 only in the sign between the
x? and y? terms, we can generate points along a hyperbolic path with a slightly
modified ellipse algorithm. We will return to the discussion of animation applica-
tions and methods in more detail in Chapter 16. And in Chapter 10, we discuss
applications of computer graphics in scientific visualization.

Section 3-7

Other Curves

Vo
Vo + é \

2
-

.

w

Figure 3-24

Parabolic path of an object
tossed into a downward
gravitational field at the
iritial position (xo, yo).

Figure 3-25

Left and right branches of a
hvperbola in standard
position with symmetry axis
along the x axis.

Tt

Chapter 3
Qutput Primitives

Figure 3-26

A spline curve formed with
individual cubic polynomial
sections between specified
coordinate points.

112

Parabolas and hyperbolas possess a symmetry axis. For example, the
parabola described by Eq. 3-53 is symmetric about the axis:

x =xy+ v,ovyo/g

The methods used in the midpoint ellipse algorithm can be directly applied to
obtain points along one side of the symmetry axis of hyperbolic and parabolic
paths in the two regions: (1) where the magnitude of the curve slope is less than
1, and (2) where the magnitude of the slope is greater than 1. To do this, we first
select the appropriate form of Eq. 3-50 and then use the selected function to set
up expressions for the decision parameters in the two regions.

Polynomials and Spline Curves

A polynomial function of nth degree in x is defined as

y= ax*
k=0 (3-55)

=gy tax+---ta,_x" " +ax"

where n is a nonnegative integer and the a, are constants, with a, #0. We get a
quadratic when # = 2; a cubic polynomial when n = 3; a quartic when n = 4; and
so forth. And we have a straight line when » = 1. Polynomials are useful in a
number of graphics applications, including the design of object shapes, the speci-
fication of animation paths, and the graphing of data trends in a discrete set of
data points.

Designing object shapes or motion paths is typically done by specifying a
few points to define the general curve contour, then fitting the selected points
with a polynomial. One way to accomplish the curve fitting is to construct a
cubic polynomial curve section between each pair of specified points. Each curve
section is then described in parametric form as

X =agt+ agu +agut + au} (3-56)

Y =a, + agu + aud + aue (3-57)

where parameter u varies over the interval 0 to 1. Values for the coefficients of u
in the parametric equations are determined from boundary conditions on the
curve sections. One boundary condition is that two adjacent curve sections have
the same coordinate position at the boundary, and a second condition is to match
the two curve slopes at the boundary so that we obtain one continuous, smooth
curve (Fig. 3-26). Continuous curves that are formed with polynomial pieces are
called spline curves, or simply splines. There are other ways to set up spline
curves, and the various spline-generating methods are explored in Chapter 10.

3-8
PARALLEL CURVE ALGORITHMS

Methods for exploiting parallelism in curve generation are similar to those used
in displaying straight line segments. We can either adapt a sequential algorithm
by allocating processors according to curve partitions, or we could devise other

methods and assign processors to screen partitions.

A parallel midpoint method for displaying circles is to divide the circular
arc from 90° to 45° into equal subarcs and assign a separate processor to each
subarc. As in the parallel Bresenham line algorithm, we then need to set up com-
putations to determine the beginning y value and decisicn parameter p; value for
each processor. Pixel positions are then calculated throughout each subarc, and
positions in the other circle octants are then obtained by symmetry. Similarly, a
parallel ellipse midpoint method divides the elliptical arc over the first quadrant
into equal subarcs and parcels these out to separate processors. Pixel positions in
the other quadrants are determined by symmetry. A screen-partitioning scheme
for circles and ellipses is to assign each scan line crossing the curve to a separate
processor. In this case, each processor uses the circle or ellipse equation to calcu-
late curve-intersection coordinates.

For the display of elliptical arcs or other curves, we can simply use the scan-
line partitioning method. Each processor uses the curve equation to locate the in-
tersection positions along its assigned scan line. With processors assigned to indi-
vidual pixels, each processor would calculate the distance (or distance squared)
from the curve to its assigned pixel. If the calculated distance is less than a prede-
fined value, the pixel is plotted.

3-9
CURVE FUNCTIONS

Routines for circles, splines, and other commonly used curves are included in
many graphics packages. The PHIGS standard does not provide explicit func-
tions for these curves, but it does include the following general curve function:

generalizedDrawingPrimitive {n, wcPoints, id, datalist)

where wcPoints isa list of n coordinate positions, datalist contains noncoor-
dinate data values, and parameter id selects the desired function. At a particular
installation, a circle might be referenced with id = 1, an ellipse with id = 2, and
so on.

As an example of the definition of curves through this PHIGS function, a
circle (id = 1, say) could be specified by assigning the two center coordinate val-
ues to wepoints and assigning the radius value to datalist. The generalized
drawing primitive would then reference the appropriate algorithm, such as the
midpoint method, to generate the circle. With interactive input, a circle could be
defined with two coordinate points: the center position and a point on the cir-
cumference. Similarly, interactive specification of an ellipse can be done with
three points: the two foci and a point on the ellipse boundary, all stored in we-
points. For an ellipse in standard position, wepoints could be assigned only the
center coordinates, with dalalist assigned the values for 7, and 7,. Splines defined
with control points would be generated by assighing the control point coordi-
nates towcpoints.

Functions to generate circles and ellipses often include the capability of
drawing curve sections by specifying parameters for the line endpoints. Expand-
ing the parameter list allows specification of the beginning and ending angular
values for an arc, as {llustrated in Fig. 3-27. Another method for designating a cir-

Section 3-9

Curve Functions

Figure 3-27

Circular arc specified by
beginning and ending angles.
Circle center is at the
coordinate origin.

113

Chapter 3
Output Primitives

cular or elliptical arc is to input the beginring and ending coordinate positions of
the arc.

3-10

Figure 3-28

Lower-left section of the
screen grid referencing
integer coordinate positions.

o\//

0 1 2 3 4 5

Figure 3-29

Line path for a series of
connected line segments
between screen grid
coordinate positions.

S -

-

~ow

Figure 3-30

Illuminated pixel at raster
position (4,5).

114

PIXEL ADDRESSING AND OBJECT GEOMETRY

So far we have assumed that all input positions were given in terms of scan-line
number and pixel-position number across the scan line. As we saw in Chapter 2,
there are, in general, several coordinate references associated with the specifica-
tion and generation of a picture. Object descriptions are given in a world-
reference frame, chosen to suit a particular application, and input world coordi-
nates are ultimately converted to screen display positions. World descriptions of
objects are given in terms of precise coordinate positions, which are infinitesi-
mally small mathematical points. Pixel coordinates, however, reference finite
screen areas. lf we want to preserve the specified geometry of world objects, we
need to compensate for the mapping of mathematical input points to finite pixel
areas. One way to do this is simply to adjust the dimensions of displayed objects
to account for the amount of overlap of pixel areas with the object boundaries.
Another approach is to map world coordinates onto screen positions between
pixels, so that we align object boundaries with pixel boundaries instead of pixel
centers.

Screen Grid Coordinates

An alternative to addressing display positions in terms of pixel centers is to refer-
ence screen coordinates with respect to the grid of horizontal and vertical pixel
boundary lines spaced one unit apart (Fig. 3-28). A screen coordinalte position is
then the pair of integer values identifying a grid intersection position between
two pixels. For example, the mathematical line path for a polyline with screen
endpoints (0, 0), (5, 2), and (1, 4) is shown in Fig. 3-29.

With the coordinate origin at the lower left of the screen, each pixel area can
be referenced by the integer grid coordinates of its lower left corner. Figure 3-30
illustrates this convention for an 8 by 8 section of a raster, with a single illumi-
nated pixel at screen coordinate position (4, 5). In general, we identify the area
occupied by a pixel with screen coordinates (x, y) as the unit square with diago-
nally opposite corners at (x, y) and (x + 1, y + 1). This pixel-addressing scheme
has several advantages: It avoids half-integer pixel boundaries, it facilitates pre-
cse object representations, and it simplifies the processing involved in many
scan-conversion algorithms and in other raster procedures.

The algorithms for line drawing and curve generation discussed in the pre-
ceding sections are still valid when applied to input positions expressed as screen
grid coordinates. Decision parameters in these algorithms are now simply a mea-
sure of screen grid separation differences, rather than separation differences from
pixel centers.

Maintaining Geometric Properties of Displayed Objects

When we convert geometric descriptions of objects into pixel representations, we
transform mathematical points and lines into finite screen areas. If we are to
maintain the original geometric measurements specified by the input coordinates

L} -
1
!
i
|- T LT Figure 3-31
- Line path and corresponding pixel
| - R display for input screen grid
_ endpoint coordinates (20, 10) and
o (30, 18).

for an object, we need to account for the finite size of pixels when we transform
the object definition to a screen display.

Figure 3-31 shows the line plotted in the Bresenham line-algorithm example
of Section 3-2. Interpreting the line endpoints (20, 10) and (30, 18) as precise grid
crossing positions, we see that the line should not extend past screen grid posi-
tion (30, 18). If we were to plot the pixel with screen coordinates (30, 18), as in the
example given in Section 3-2, we would display a line that spans 11 horizontal
units and 9 vertical units. For the mathematical line, however, Ax = 10 and Ay =
8. If we are addressing pixels by their center positions, we can adjust the length
of the displayed line by omitting one of the endpoint pixels. If we think of screen
coordinates as addressing pixel boundaries, as shown in Fig. 3-31, we plot a line
using only those pixels that are “interior” to the line path; that is, only those pix-
els that are between the line endpoints. For our example, we would plot the left-
most pixel at (20, 10) and the rightmost pixel at (29, 17). This displays a line that

Figure 3-32

Conversion of rectangle (a) with verti-es at screen
coordinates (0, 0), (4, 0), (4, 3), and (0, 3) into display
(b) that includes the right and top boundaries and into
display (c) that maintains geometric magnitudes.

Section 3-10

Pixel Addressing and Object
Geometry

115

116

Chapter 3 has the same geomelric magnitudes as the mathematical line from (20, 10) to
Qutput Primitives (30, 18).

For an enclosed area, input geometric properties are maintained by display-
ing the area only with those pixels that are interior to the object boundaries. The
rectangle defined with the screen coordinate vertices shown in Fig. 3-32(a), for
example, is larger when we display it filled with pixels up to and including the
border pixel lines joining the specified vertices. As defined, the area of the
rectangle is 12 units, but as displayed in Fig. 3-32(b), it has an area of 20 units. In
Fig. 3-32(c), the original rectangle measurements are maintained by displaying

15

_ | (x - 1012 + (y — 10)2 = 52

5 K10,10) 15

Figure 3-33
Circle path and midpoint circle algorithm plot of a circle with radius 5
in screen coordinates.

SR [NV U O (SR S5V PR |
(y,-x -1 -y -1,-x-1

x.-y-1) X T-y -1 B
0.0
1 -
(x, y) -x—-1y)

{y, x} |{-y -1, x)

Figure 3-34
Modification of the circle plot in Fig. 3-33 to maintain the specified circle
diameter of 10.

only the internal pixels. The right boundary of the input rectangle is at x = 4. To
maintain this boundary in the display, we set the rightmost pixel grid coordinate
at x = 3. The pixels in this vertical column then span the interval from x = 3 to x
= 4. Similarly, the mathematical top boundary of the rectangle is at y = 3, so we
set the top pixel row for the displayed rectangle at y = 2.

These compensations for finite pixel width along object boundaries can be
applied to other polygons and to curved figures so that the raster display main-
tains the input object specifications. A circle of radius 5 and center position (10,
10), for instance, would be displayed as in Fig. 3-33 by the midpoint circle algo-
rithm using screen grid coordinate positions. But the plotted circle has a diameter
of 11. To plot the aircle with the defined diameter of 10, we can modify the circle
algorithm to shorten each pixel scan line and each pixel column, as in Fig. 3-34.
One way to do this is to generate points clockwise along the circular arc in the
third quadrant, starting at screen coordinates (10, 5). For each generated point,
the other seven circle symmetry points are generated by decreasing the x coordi-
nate values by 1 along scan lines and decreasing the y coordinate values by 1
along pixel columns. Similar methods are applied in ellipse algorithms to main-
tain the specified proportions in the display of an ellipse.

3-11
FILLED-AREA PRIMITIVES

A standard output primitive in general graphics packages is a solid-color or pat-
terned polygon area. Other kinds of area primitives are sometimes available, but
polygons are easier to process since they have linear boundaries

There are two basic approaches to area filling on raster systems. One way to
fill an area is to determine the overlap intervals for scan lines that cross the area.
Another method for area filling is to start from a given interior position and paint
outward from this point until we encounter the specified boundary conditions.
The scan-line approach is typically used in general graphics packages to fill poly-
gons, circles, ellipses, and other simple curves. Fill methods starting from an inte-
rior point are useful with more complex boundaries and in interactive painting
systems. In the following sections, we consider methods for solid fill of specified
areas. Other fill options are discussed in Chapter 4.

Scan-Line Polygon Filf Algorithm

Figure 3-35 illustrates the scan-line procedure for soha tilling of polygon areas.
For each scan line crossing a polygon, the area-fill algorithm locates the intersec-
tion points of the scan line with the polygon edges. These intersection points are
then sorted from left to right, and the corresponding frame-buffer positions be-
tween each intersection pair are set to the specified fill color. In the example of
Fig. 3-35, the four pixel intersection positions with the polygon boundaries define
two stretches of interior pixels from x = 10 to x = 14 and from x = 18 to x = 24,
Some scan-line intersections at polygon vertices require special handling. A
scan line passing through a vertex intersects two polygon edges at that position,
adding two points to the list of intersections for the scan line. Figure 3-36 shows
two scan lines at positions y and y’ that intersect edge endpoints. Scan line y in-
tersects five polygon edges. Scan line y’, however, intersects an even number of
edges although it also passes through a vertex. Intersection points along scan line

Section 3-11

Filled-Area Primitives

117

Chapter 3

118

Output Primitives

Figure 3-35
Interior pixels along a scan line
passing through a polygon area.

y' correctly identify the interior pixel spans. But with scan line y, we need to do
some additional processing to determine the correct interior points.

The topological difference between scan line y and scan line y” in Fig. 3-36 is
identified by noting the position of the intersecting edges relative to the scan line.
For scan line y, the two intersecting edges sharing a vertex are on opposite sides
of the scan line. But for scan line y’, the two intersecting edges are both above the
scan line. Thus, the vertices that require additional processing are those that have
connecting edges on opposite sides of the scan line. We can identify these vertices
by tracing around the polygon boundary either in clockwise or counterclockwise
order and observing the relative changes in vertex y coordinates as we move
from one edge to the next. If the endpoint y values of two consecutive edges mo-
notonically increase or decrease, we need to count the middle vertex as a single
intersection point for any scan line passing through that vertex. Otherwise, the
shared vertex represents a local extremum (minimum or maximum) on the polv-
gon boundary, and the two edge intersections with the scan line passing through
that vertex can be added to the intersection list.

Scan Line y*

/ Scan Line y

Figure 3-36

Intersection points along scan lines that intersect polygon vertices. Scan
line y generates an odd number of intersections, but scan line y
generates an even number of intersections that can be paired to identify
correctly the interior pixel spans.

One way to resolve the question as to whether we should count a vertex as
one intersection or two is to shorten some polygon edges to split those vertices
that should be counted as one intersection. We can process nonhorizontal edges
around the polygon boundary in the order specified, either clockwise or counter-
clockwise. As we process each edge, we can check to determine whether that
edge and the next nonhorizontal edge have either monotonically increasing or
decreasing endpoint y values. If so, the lower edge can be shortened to ensure
that only one intersection point is generated for the scan line going through the
common vertex joining the two edges. Figure 3-37 illustrates shortening of an
edge. When the endpoint y coordinates of the two edges are increasing, the y
value of the upper endpoint for the current edge 1s decreased by 1, as in Fig.
3-37(a). When the endpoint y values are monotonically decreasing, as in Fig.
3-37(b), we decrease the y coordinate of the upper endpoint of the edge following
the current edge.

Calculations performed in scan-conversion and other graphics algorithms
typically take advantage of various coherence properties of a scene that is to be
displayed. What we mean by coherence is simply that the properties of one part
of a scene are related in some way to other parts of the scene so that the relation-
ship can be used to reduce processing. Coherence methods often involve incre-
mental calculations applied along a single scan line or between successive scan
lines. In determining edge intersections, we can set up incremental coordinate
calculations along any edge by exploiting the fact that the slope of the edge is
constant from one scan line to the next. Figure 3-38 shows two successive scan
lines crossing a left edge of a polygon. The slope of this polygon boundary line
can be expressed in terms of the scan-line intersection coordinates:

m = Ll Y (3-58)
Xpey = Xy
Since the change in y coordinates between the two scan lines is simply
Yer — =1 (3-59)
P s \
/ / '
£ £ Scan Line y + 1
/ /
l \ Scan Line y
\ /
7

—P Scan Line y - 1
\ / /
d d

(a) (b}

Figure 3-37

Adjusting endpoint y values for a pulygon, as we process edges in order
around the polygon perimeter. The edge currently being processed is
inaicated as a solid line. In (a), the y coordinate of the upper endpoint of
the current edge is decreased by 1. In (b), the y coordinate of the upper
endpoint of the next edge is decreased by 1.

Section 3-11

Filled-Area Primitives

119

Chapter 3

120

Qutput Primitives

Scan Line y, + 1

Scan Line y,

Figure 3-38
Two successive scan lines
intersecting a polygon boundary.

the x-intersection value x;,, on the upper scan line can be determined from the
x-intersection value x; on the preceding scan line as

1)
Xpo) = X+ — (3-60)
m

Each successive x intercept can thus be calculated by adding the inverse of the
slope and rounding to the nearest integer.

An obvious parallel implementation of the fill algorithm is to assign each
scan line crossing the polygon area to a separate processor. Edge-intersection cal-
culations are then performed independently. Along an edge with slope m, the in-
tersection x, value for scan line k above the initial scan line can be calculated as

k .
Xy = X3+ — (3-61)
m

In a sequential fill algorithm, the increment of x values by the amount 1/m
along an edge can be accomplished with integer operations by recalling that the
slope 1 is the ratio of two integers:

where Ax and Ay are the differences between the edge endpoint x and y coordi-
nate values. Thus, incremental calculations of x intercepts along an edge for suc-
cessive scan lines can be expressed as

Ax
Xio] S X+ — 3-62)
kel T Xk Ay (

Using this equation, we can perform integer evaluation of the x intercepts by ini-
tializing a counter to 0, then incrementing the counter by the value of Ax each
time we move up to a new scan line. Whenever the counter value becomes equal
to or greater than Ay, we increment the current x intersection value by 1 and de-
crease the counter by the value Ay. This procedure is equivalent to maintaining
integer and fractional parts for x intercepts and incrementing the fractional part
until we reach the next integer value.

As an example of integer incrementing, suppose we have an edge with
slope m = 7/3. At the initial scan line, we set the counter to 0 and the counter in-

Scan-
Line
Number

Yc

Yo

c Scan Line y,

¢

E
Ya

Scan Line y,

Scan Line y,

© 4
)

Figure 3-39 o
A polygon and its sorted edge table, with edge DC shortened by one unit in the y
direction.

crement to 3. As we move up to the next three scan lines along this edge, the
counter is successively assigned the values 3, 6, and 9. On the third scan line
above the initial scan line, the counter now has a value greater than 7. So we in-
crement the x-intersection coordinate by 1, and reset the counter to the value
9 — 7 = 2. We continue determining the scan-line intersections in this way until
we reach the upper endpoint of the edge. Similar calculations are carried out to
obtain intersections for edges with negative slopes.

We can round to the nearest pixel x-intersection value, instead of truncating
to obtain integer positions, by modifying the edge-intersection algorithm so that
the increment is compared to Ay/2. This can be done with integer arithmetic by
incrementing the counter with the value 2Ax at each step and comparing the in-
crement to Ay. When the increment is greater than or equal to Ay, we increase the
x value by 1 and decrement the counter by the value of 24y. In our previous ex-
ample with m = 7/3, the counter values for the first few scan lines above the ini-
tial scan line on this edge would now be 6, 12 (reduced to —2), 4, 10 (reduced to
—4), 2, 8 (reduced to —6), 0, 6, and 12 (reduced to —2). Now x would be incre-
mented on scan lines 2, 4, 6, 9, etc., above the initial scan line for this edge. The
extra calculations required for each edge are 2Ax = Ax + Axand 24y = Ay + Ay.

To efficiently perform a polygon fill, we can first store the polygon bound-
ary in a sorted edge table that contains all the information necessary to process the
scan lines efficiently. Proceeding around the edges in either a clockwise or a
counterclockwise order, we can use a bucket sort to store the edges, sorted on the
smallest y value of cach edge, in the correct scan-line positions. Only nonhorizon-
tal edges are entered into the sorted edge table. As the edges are processed, we
can also shorten certain edges to resolve the vertex-intersection question. Each
entry in the table for a particular scan line contains the maximum y value for that
edge, the x-intercept value (at the lower vertex) for the edge, and the inverse
slope of the edge. For each scan line, the edges are in sorted order from left to
right. Figure 3-39 shows a polygon and the associated sorted edge table.

121

Chapter 3 Next, we process the scan lines from the bottom of the polygon to its top,

Output Pumitives producing an active edge list for each scan line crossing the pelygon boundaries.
The active edge list for a scan line contains all edges crossed by that scan line,
with iterative coherence calculations used to obtain the edge intersections.

Implementation of edge-intersection calculations can also be facilitated by
storing Ax and Ay values in the sorted edge table. Also, to ensure that we cor-
rectly fill the interior of specified polygons, we can apply the considerations dis-
cussed in Section 3-10. For each scan line, we fill in the pixel spans for each pair
of x-intercepts starting from the leftmost x-intercept value and ending at one po-
sition before the rightmost x intercept. And each polygon edge can be shortened
by one unit in the y direction at the top endpoint. These measures also guarantee
that pixels in adjacent polygons will not overlap each other,

The following procedure performs a solid-fill scan conversion for an input
set of polygon vertices. For each scan line within the vertical extents of the poly-
gon, an active edge list is set up and edge intersections are calculated. Across
each scan line, the interior fill is then applied between successive pairs of edge
intersections, processed from left to right.

#i

typedef struct tEdge {

Lk
Vo

{

P

int yNext (int k, int cnt, dcPt * pts)

{

122

nclude "device.h"

int yUpper;

float xIntersect, dxPerScan;
struct tEdge * next;

Edge;

Inserts edge into list in order of increas.ng xIntersect field. =/
id insertEdge (Edge * list, Edge * edge)

Edge * p, * g = list;

P = d->next;

while (p '= NULL} {
1f (edge->xIntersect < p-»xIntersect)
p = NULL;
else {
g =P

P = p->next;
3
}
edge->next = (->next:
g-»next = edge;

For an index, return y-coordinate of next nonhorizontal line =/

int 3

if ((k+1} > (cnt-1))

j = 0;
else
3=k + 1;
while (pts(k].y == pts[j].y)
if ((3+1) > {cnt-1))
j = 0;
else

j“;
return (pts([j).y):
}

/* Store lower-y coordinate and inverse slope for each edge. Adjust
and store upper-y coordinate for edges that are the lower member
of a monotonicallv iacreasing or decreasing pair of edges */

void makeEdgeRec
{dcPt lower, dcPt upper, int yComp, Edge * edge, Edge * edgesi])

{

edge->dxPerScan =
(float) (upper.x - lower.x) / (upper.y - lower.y);
edge->xIntersect = lower.x;
if (upper.y < yComp)
edge->yUpper = upper.y - 1;
else
edge->yUpper = upper.y;
insertEdge (edges{lower.y], edge);
)

void buildEdgelist (int cnt, decPt * pts, Edge * edges(])
{

Edge * edge:;

dcPr vl, v2;

int i, yPrev = pts[ent - 2].y;

vl.x = pts[cnt-1]).x; vl.y = pts(cnt-1].y:;
for (i=0; i<cnt; i++) {
v2 = pts[i];

if (vl.y != v2.y) { /* nonhorizontal line */
edge = (Edge *) malloc (sizeof (Edge));
if (vl.y < v2.y) /* up-going edge */
makeEdgeRec (vl, v2, yNext (i, ¢nt, pts), edge, edges);
else /* down-going edge */

makeEdgeRec (v2, vl, yPrev, edge, edges);
}
yPrev = vl.y;
vl = v2;

}

void buildActiveList (int scan, Edge * active, Edge * edges[})
{
Edge * p, * q:

p = edges|[scan]->next;
while (p) (
g = p->next;
insertEdge (active, p);
D= dq;
}
}

void fillScan (int scan, Edge * active)
{

Edge * pl, * p2;

int i;

pl = active->next;

while (pl} (
p2 = pl->next;

123

for (1=pl->xIntersect; 1<p2->xIntersect;
setPixel (lint) 1, scan):
pl = p2->next;

)

vold deleteifter (Edge * q)
{
Edge * p - g-»next;
g->next = p->»next;
free (p):

/* Delete completed edges.
void updateActivelist
{

Update

(int scan, Edge *

'xIntersect’
active)

L+

field for others

Edge * g = active, * p = active-»next;
while p)
if (scan »= p-»>yUpper) |{
p - p->next;
deleteAfter (q);
)
else {
p-»>xIntersect = p->xXintersect + p->dxPer:can;
q = p;
p = p->next;

vold rescrthActivelist

{

{Edge * active)

Edge * g, * p = actlve-»next:
active-»next = NULL;
while (p} {
q = p-»next;
insertEdge (active, p);
P = q;
}
)
void scanFill (int ent, dePt * pts)
(
Edge * edges[WINDOW_HEIGET]), * active:
int i, scan;
for (1i=0; 1<WINCOW_HEIGHT; i++) ({
edges[1] = (Edge *) malloc (sizeof (Edge))
edges|ij->next = NULL;
}
buildEdgelList (cnt, pts, edges);
active = (Edge *) malloc (sizeof (Edge));
active-»next = NULL;

for (scan=0; scan<WINDOW_HEIGHT;

buildActiveList (scan, active, edges);
1f (active-»next}
fillScan (scan, activej;
updateActivelList (scan, active);
resortAcrivelList (active);

124

scan++) {

*/

}
/* Free edge records that have been malloc'ed ... */
}

Inside-Outside Tests

Area-filling algorithms and other graphics processes often need to identify inte-
rior regions of objects. So far, we have discussed area filling only in terms of stan-
dard polygon shapes. In elementary geometry, a polygon is usually defined as
having no self-intersections. Examples of standard polygons include triangles,
rectangles, octagons, and decagons. The component edges of these objects are
joined only at the vertices, and otherwise the edges have no common points in
the plane. Identifying the interior regions of standard polygons is generally a
straightforward process. But in most graphics applications, we can specify any
sequence for the vertices of a fill area, including sequences that produce intersect-
ing edges, as in Fig. 3-40. For such shapes, it is not always clear which regions of
the xy plane we should call “interior” and which regions we should designate as
“exterior” to the object. Graphics packages normally use either the odd-even rule
or the nonzero winding number rule to identify interior regions of an object.

We apply the odd-even rule, also called the odd parity rule or the even-
add rule, by conceptually drawing a line from any position P to a distant point
outside the coordinate extents of the object and counting the number of edge
crossings along the line. If the number of polygon edges crossed by this line is
odd, then P is an interior point. Otherwise, P is an exterior point. To obtain an ac-
curate edge count, we must be sure that the line path we choose does not inter-
sect any polygon vertices. Figure 3-40(a) shows the interior and exterior regions
obtained from the odd-even rule for a self-intersecting set of edges. The scan-line
polygon fill algorithm discussed in the previous section is an example of area fill-
ing using the odd-even rule.

Another method for defining interior regions is the nonzero winding num-
ber rule, which counts the number of times the polygon edges wind around a
particular point in the counterclockwise direction. This count is called the wind-
ing number, and the interior points of a two-dimensional object are defined to be

Figure 3-40
Identifying interior and exterior regions for a self-intersecting polygon.

125

Chapter 3

126

Output Primitives

those that have a nonzero value for the winding number. We apply the nonzero
winding number rule to polygons by initializing the winding number t¢ C and
again imagining a line drawn from any position P to a distant point be yoi... the
coordinate extents of the object. The line we choose must not pass through any
vertices. As we move along the line from position P to the distant point, we count
the number of edges that cross the line in each direction. We add 1 to the winding
number every time we intersect a polygon edge that crosses the line from right to
left, and we subtract 1 every time we intersect an edge that crosses from left to
right. The final value of the winding number, after all edge crossings have been
counted, determines the relative position of P. lf the winding number is nonzero,
P is defined to be an interior point. Otherwise, P is taken to be an exterior point.
Figure 3-40(b) shows the interior and exterior regions defined by the nonzero
winding number rule for a self-intersecting set of edges. For standard polygons
and other simple shapes, the nonzero winding number rule and the odd-even
rule give the same results. But for more complicated shapes, the two methods
may yield different interior and exterior regions, as in the example of Fig. 3-40.

One way to determine directional edge crossings is to take the vector cross
product of a vector u along the line from P to a distant point with the edge vector
E for each edge that crosses the line. If the z component of the cross product
u X E for a particular edge is positive, that edge crosses from right to left and we
add 1 to the winding number. Otherwise, the edge crosses from left to right and
we subtract 1 from the winding number. An edge vector is calculated by sub-
tracting the starting vertex position for that edge from the ending vertex position.
For example, the edge vector for the first edge in the example of Fig. 3-40 is

Eiy= Vg -V,

where V, and Vj represent the point vectors for vertices A and B. A somewhat
simpler way to compute directional edge crossings is to use vector dot products
instead of cross products. To do this, we set up a vector that is perpendicular to u
and that points from right to left as we look along the line from P in the direction
of u. If the components of u are (u,, u,), then this perpendicular to u has compo-
nents (—u, u,) (Appendix A). Now, if the dot product of the perpendicular and
an edge vector is positive, that edge crosses the line from right to left and we add
1 to the winding number. Otherwise, the edge crosses the line from left to right,
and we subtract 1 from the winding number.

Some graphics packages use the nonzero winding number rule to imple-
ment area filling, since it is more versatile than the odd-even rule. In general, ob-
jects can be defined with multiple, unconnected sets of vertices or disjoint sets of
closed curves, and the direction specified for each set can be used to define the
interior regions of objects. Examples include characters, such as letters of the al-
phabet and punctuation symbols, nested polvgons, and concentric circles or el-
lipses. For curved lines, the odd-even rule is applied by determining intersec-
tions with the curve path, instead of finding edge intersections. Similarly, with
the nonzero winding number rule, we need to calculate tangent vectors to the
curves at the crossover intersection points with the line from position P.

Scan-Line Fill of Curved Boundary Areas

In general, scan-line fill of regions with curved boundaries requires more work
than polygon filling, since intersection calculations now involve nonlinear
boundaries. For simple curves such as circles or ellipses, performing a scan-line
fill is a straightforward process. We only need to calculate the two scan-line inter-

sections un opposite sides ot the curve. This is the same as generating pixel posi-
tions along the curve boundary, and we can do that with the midpoint method.
Then we simply fill in the horizontal pixel spans between the boundary points on
opposite sic'es of the curve. Symmetries between quadrants (and between octants
for circles) are used to reduce the boundary calculations.

Similar methods can be used to generate a fill area for a curve section. An
elliptical arc, for example, can be filled as in Fig. 3-41. The interior region is
bounded by the ellipse section and a straight-line segment that closes the curve
by joining the beginning and-ending positions of the arc. Symmetries and incre-
mental calculations are exploited whenever possible to reduce computations.

Boundary-Fill Algorithm

Another approach to area filling is to start at a point inside a region and paint the
interior outward toward the boundary. If the boundary is specified in a single
coler, the fill algorithm proceeds outward pixel by pixel until the boundary color
is encountered. This method, called the boundary-fill algorithm, is particularly
useful in interactive painting packages, where interior points are easily selected.
Using a graphics tablet or other interactive device, an artist or designer can
sketch a figure outline, select a fill color or pattern from a color menu, and pick
an interior point. The system then paints the figure interior. To display a solid
color region (with no border), the designer can choose the fill color to be the same
as the boundary color.

A boundary-fill procedure accepts as input the coordinates of an interior
point (x, ¥), a fill color, and a boundary color. Starting from (x, y), the procedure
tests neighboring positions to determine whether they are of the boundary color.
If not, they are painted with the fill color, and their neighbors are tested. This
process continues until all pixels up to the boundary color for the area have been
tested. Both inner and outer boundaries can be set up to specify an area, and
some examples of defining regions for boundary fill are shown in Fig. 342.

Figure 3-43 shows two methods for proceeding to neighboring pixels from
the current test position. In Fig. 3-43(a), four neighboring points are tested. These
are the pixel positions that are right, left, above, and below the current pixel
Areas filled by this method are called 4-connected. The second method, shown in
Fig. 3-43(b), is used to fill more complex figures. Here the set of neighboring posi-
tions to be tested includes the four diagonal pixels. Fill methods using this ap-
proach are called 8-connected. An 8-connected boundary-fill algorithm would
correctly fill the interior of the area defined in Fig. 3-44, but a 4-connected bound-
ary-fill algorithm produces the partial fill shown.

Figure 3-42
Example color boundaries for a boundary-fill procedure.

Figure 3-41
Interior fill of an elliptical arc.

U

Figure 3-43
Fill methods applied to a
4-connected area (a) and to an
8-connected area (b). Open
circles represent pixels to be
tested from the current test
position, shown as a solid
color

127

Chapter 3

128

Output Primitives

The following procedure illustrates a recursive method for filling a 4-
connected area with an intensity specified in parameter fi11 up to a boundary
color specified with parameter boundary. We can extend this procedure to fill an
8-connected region by including four additional statements to test diagonal
positions, suchas (x + 1, y + 1).

void boundaryFill4 (int x, int y, int fill, int boundary}
{

int current;

current = getPixel (x, y);

if ((current '!= boundary) && (current != fill)) {
setColor (fill):
setPixel (x, y):
boundaryFilld (x+1, y, fill, boundary);
boundaryFill4 (x-1, y, fill, boundary) :
boundaryFilld (x, y+l, fill, boundary);
boundaryFilld (x, y-1, fill, boundary);

}

/ J
Recursive boundary-fill algorithms may not fill regions correctly if some in-
terior pixels are already displayed in the fill color. This occurs because the algo-
rithm checks next pixels both for boundary color and for fill color. Encountering
a pixel with the fill color can cause a recursive branch to terminate, leaving other
interior pixels unfilled. To avoid this, we can first change the color of any interior
pixels that are initially set to the fill color before applying the boundary-fill pro-
cedure. i

Also, since this procedure requires considerable stacking of neighboring
points, more efficient methods are generally employed. These methods fill hori-
zontal pixel spans across scan lines, instead of proceeding to 4-connected or
8-connected neighboring points. Then we need only stack a beginning position
for each horizontal pixel span, instead of stacking all unprocessed neighboring
positions around the current position. Starting from the initial interior point with
this method, we first fill in the contiguous span of pixels on this starting scan
line. Then we locate and stack starting positions for spans on the adjacent scan
lines, where spans are defined as the contiguous horizontal string of positions

)
)
)
)

i b

Figure 3-44
The area defined within the color boundary (a) is only
partially filled in (b) using a 4-connected boundary-fill
algorithm.

Filled Pixel Spans Stacked Positions

(a)]

b}

{c)

(d)

E R - -]

- a;

Figure 3-45

Boundary fill across pixel
spans for a 4-connected area.
(a) The filled initial pixel
span, showing the position of
the initial point (open circle)
and the stacked positions for
pixel spans on adjacent scan
lines. (b) Filled pixel span on
the first scan line above the
initial scan line and the
current contents of the stack.
(c) Filled pixel spans on the
first two scan lines above the
initial scan line and the
current contents of the stack.
{d) Completed pixel spans for
the upper-right portion of the
defined region and the
remaining stacked positions
to be processed.

129

Chapter 3
Output Primitives

Figure 3-46
An area defined within
multiple color boundaries.

130

bounded by pixels displayed in the area border color. At each subsequent step,
we unstack the next start position and repeat the process.

An example of how pixel spans could be filled using this approach is illus-
trated for the 4-connected fill region in Fig. 3-45. In this example, we first process
scan lines successively from the start line to the top boundary. After all upper
scan lines are processed, we fill in the pixel spans on the remainihg scan lines in
order down to the bottom boundary. The leftmost pixel position for each hori-
zontal span is located and stacked, in left to right order across successive scan
lines, as shown in Fig. 3-45. In (a) of this figure, the initial span has been filled,
and starting positions 1 and 2 for spans on the next scan lines (below and above)
are stacked. In Fig. 3-45(b), position 2 has been unstacked and processed to pro-
duce the filled span shown, and the starting pixel (position 3) for the single span
on the next scan line has been stacked. After position 3 is processed, the filied
spans and stacked positions are as shown in Fig. 3-45(c). And Fig. 3-45(d) shows
the filled pixels after processing all spans in the upper right of the specified area.
Position 5 is next processed, and spans are filled in the upper left of the region;
then position 4 is picked up to continue the processing for the lower scan lines.

Flood-Fill Algorithm

Sometimes we want to fill in (or recolor) an area that is not defined within a sin-
gle color boundary. Figure 3-46 shows an area bordered by several different color
regions. We can paint such areas by replacing a specified interior color instead of
searching for a boundary color value. This approach is called a flood-fill algo-
rithm. We start from a specified interior point (x, y) and reassign all pixel values
that are currently set to a given interior color with the desired fill color. If the area
we want to paint has more than one interior color, we can first reassign pixel val-
ues so that all interior points have the same color. Using either a 4-connected or
8-connected approach, we then step through pixel positions until all interior
points have been repainted. The following procedure flood fills a 4-connected re-
gion recursively, starting from the input position.

void floodFilld (int x, int y, int fillColor, int ¢ldColor)
{
if (getPixel (x, y) == oldColor) {

setColor (fillColor):;

setPixel (x, y):

floodFilld (x+1, y., fillColor, oldColeor);

floodFilld (x-1, y., fillColor, oldColor);

floodFilld (x, y+1, fillColor, oldColor);

floodFilld (x, y-1, fllColor, oldColor}):

We can modify procedure f 100dFil14 to reduce the storage requirements
of the stack by filling horizontal pixel spans, as discussed for the boundary-fill al-
gorithm. In this approach, we stack only the beginning positions for those pixel
spans having the value oldColor . The steps in this modified flood-fill algo-
rithm are similar to those illustrated in Fig. 3-45 for a boundary fill. Starting at

the first position of each span, the pixel values are replaced until a value other
than oldColor is encountered.

3-12
FILL-AREA FUNCTIONS

We display a filled polygon in PHIGS and GKS wirth the function
fillArea (n, wcVertices)

The displayed polygon area is bounded by a series of n straight line segments
connecting the set of vertex positions specified in weVertices. These packages
do not provide fill functions for objects with curved boundaries.

Implementation of the fillArea function depends on the selected type of
interior fill. We can display the polygon boundary surrounding a hollow interior,
or we can choose a solid color or pattern fill with no border for the display of the
polygon. For solid fill, the £ i11Area function is implemented with the scan-line
fill algorithm to display a single color area. The various attribute options for dis-
plaving polygon fill areas in PHIGS are discussed in the next chapter.

Anocther polygon primitive available in PHIGS is f i11AreaSet. This func-
tion allows a series of polygons to be displayed by specifying the list of vertices
for each polygon. Also, in other graphics packages, functions are often provided
for displaying a variety of commonly used fill areas besides general polygons.
Some examples are fillRectangle, £illCircle, fillCircleArc, £ill-
Ellipse,and fillEllipseaArc.

3-13
CELL ARRAY

The cell array is a primitive that allows users to display an arbitrary shape de-
fined as a two-dimensional grid pattern. A predefined matrix of color values is
mapped by this function onto a specified rectangular coordinate region. The
PHIGS version of this function is

cellArray wcPoints, n, m, colorArray

where colorArray is the n by m matrix of integer color values and wcPoints
lists the limits of the rectangular coordinate region: (Xpin ¥mun) and (X Ymax)-
Figure 3-47 shows the distribution of the elements of the color matrix over the cc-
ordinate rectangle.

Each coordinate cell in Fig. 3-47 has width (x,,, — Xpn,.)/n and height
(Vinax — Ymu)/ M. Pixel color values are assigned according to the relative positions
of the pixel center coordinates If the center of a pixel lies within one of the n by m
coordinate cells, that pixel is assigned the color of the corresponding element in
the matrix colorarray.

3-14
CHARACTER GENERATION

Letters, numbers, and other characters can be displaved in a variety of sizes and
styles. The overall design style for a set (or family) of characters is called a type-

Section 3-12

Fill-Area Functions

131

132

Voar +

Yein +

i
+

X inax

Figure 3-47
Mapping an n by m cell array into a rectangular coordinate region,

face. Today, there are hundreds of typefaces available for computer applications.
Examples of a few common typefaces are Courier, Helvetica, New York, Palatino,
and Zapf Chancery. Originally, the term font referred to a set of cast metal char-
acter forms in a particular size and format, such as 10-point Courier Italic or 12-
point Palatino Bold. Now, the terms font and typeface are often used inter-
changeably, since printing is no longer done with cast metal forms.

Typefaces (or fonts) can be divided into two broad groups: serif and sans
serif. Serif type has small lines or accents at the ends of the main character
strokes, while sans-serif type does not have accents. For example, the text in this
book is set in a serif font (Palatino). But this sentence is printed in a sans-serif font
(Optima). Serif type is generally more readable; that is, it is easier to read in longer
blocks of text. On the other hand, the individual characters in sans-serif type are
easier to recognize. For this reason, sans-serif type is said to be more legible. Since
sans-serif characters can be quickly recognized, this typeface is good for labeling
and short headings.

Two different representations are used for storing computer fonts. A simple
method for representing the character shapes in a particular typeface is to use
rectangular grid patterns. The set of characters are then referred to as a bitmap
font (or bitmapped font). Another, more flexible, scheme is to describe character
shapes using straight-line and curve sections, as in PostScript, for example. In
this case, the set of characters is called an outline font. Figure 3-48 illustrates the
two methods for character representation. When the pattern in Fig. 3-48(a) is
copied to an area of the frame buffer, the 1 bits designate which pixel positions
are to be displayed on the monitor. To display the character shape in Fig. 3-48(b),
the interior of the character outline must be filled using the scan-line fill proce-
dure (Section 3-11).

Bitmap fonts are the simplest to define and display: The character grid only
needs to be mapped to a frame-buffer position. In general, however, bitmap fonts

require more space, because each variation (size and format) must be stored in a Section3-14
font cache. It is possible to generate different sizes and other variations, such as haracter Generation
bold and italic, from one set, but this usually does not produce good results.
In contrast to bitmap fonts, outline fonts require less storage since each vari-
ation does not require a distinct font cache. We can produce boldface, italic, or
different sizes by manipulating the curve definitions for the character outlines.
But it does take more time to process the outline fonts, because they must be scan
converted into the frame buffer.
A character string is displayed in PHIGS with the following function:

text {wcPoint, string)

Parameter string is assigned a character sequence, which is then displayed at
coordinate position wcPoint = (x, y). For example, the statement

text (wcPoint, ‘‘Population Distribution-’)

along with the coordinate specification for wcPoint, could be used as a label on
a distribution graph.

Just how the string is positioned relative to coordinates (x, y) is a user op-
tion. The default is that (x, y) sets the coordinate location for the lower left corner
of the first character of the horizontal string to be displayed. Other string orienta-
tions, such as vertical, horizontal, or slanting, are set as attribute options and will
be discussed in the next chapter.

Another convenient character function in PHIGS is one that places a desig-
nated character, called a marker symbol, at one or more selected positions. This
function is defined with the same parameter list as in the line function:

polymarker (n, wcPoints)

A predefined character is then centered at each of the n coordinate positions in
the list wePoints. The default symbol displayed by polymarker depends on the

1T i1y [1jp1|1j0}0
of1ry1jojoy1j1j|o
o1 |1t1o0fjoj1{1}ao
Cf{1|r{1|r|1]|0]0
o(1fjtrjyof|ojt|1]o
of1f(1rjojoj1j{1]o0
111|111} 010
LCl gto{ololo{olQ

(a) (b
Figure 3-48
The letter B represented in (a) with an 8 by 8 bilevel bitmap pattern and
in (b) with an outline shape defined with straight-line and curve
segments.

133

134

50 +
Figure 349
t e x Sequence of data values plotted
0 50 100 150 with the pol ymarker function.

particular implementation, but we assume for now that an asterisk is to be used.
Figure 3-49 illustrates plotting of a data set with the statement

polymarker (6, wcPoints)

SUMMARY

The output primitives discussed in this chapter provide the basic tools for con-
structing pictures with straight lines, curves, filled areas, cell-array patterns, and
text. Examples of pictures generated with these primitives are given in Figs. 3-50
and 3-51.

Three methods that can be used to plot pixel positions along a straight-line
path are the DDA algorithm, Bresenham’s algorithm, and the midpoint method.
For straight lines, Bresenham'’s algorithm and the midpoint method are identical
and are the most efficient Frame-buffer access in these methods can also be per-
formed efficiently by incrementally calculating memory addresses. Any of the
line-generating algorithms can be adapted to a parallel implementation by parti-
tioning line segments.

Circles and ellipses can be efficiently and accurately scan converted using
midpoint methods and taking curve symmetry into account. Other conic sec-
tions, parabolas and hyperbolas, can be plotted with similar methods. Spline
curves, which are piecewise continuous polynomials, are widely used in design
applications. Parallel implementation of curve generation can be accomplished
by partitioning the curve paths.

To account for the fact that displayed lines and curves have finite widths,
we must adjust the pixel dimensions of objects to coincide to the specified geo-
metric dimensions. This can be done with an addressing scheme that references
pixel positions at their lower left corner, or by adjusting line lengths.

Filled area primitives in many graphics packages refer to filled polygons. A
common method for providing polygon fill on raster systems is the scan-line fill
algorithm, which determines interior pixel spans across scan lines that intersect
the polygon. The scan-line algorithm can also be used to fill the interior of objects
with curved boundaries. Two other methods for filling the interior regions of ob-
jects are the boundary-fill algorithm and the flood-fill algorithm. These two fill
procedures paint the interior, one pixel at a time, outward from a specified inte-
rior point.

The scan-line fill algorithm is an example of fillirg object interiors using the
odd-even rule to locate the interior regions. Other methods for defining object in-
teriors are also useful, particularly with unusual, self-intersecting objects. A com-
mon example is the nonzero winding number rule. This rule is more flexible than
the odd-even rule for handling objects defined with multiple boundaries.

Figure 3-50

A data plot generated with straight
line segments, a curve, circles (or
markers), and text, (Couflesy of

Wolfram Research, Inc., The Maker of
Mathematica.)

Additional primitives available in graphics packages include cell arrays,
character strings, and marker symbols. Cell arrays are used to define and store
color patterns. Character strings are used to provide picture and graph labeling.
And marker symbols are useful for plotting the position of data points.

Table 3-1 lists implementations for some of the output primitives discussed
in this chapter.

TABLE 3-1
OQUTPUT PRIMITIVE IMPLEMENTATIONS

typedef struct { float x, y; } wcPt2;
Defines a location in 2-dimensional world-coordinates.

pPolyline (int n, wcPt2 * pts)
Draw a connected sequence of n-1 line segments, specified in pts.

pCircle (wcPt2 center, float r)
Draw a circle of radius r at center.

pFillarea (int n, wcPt2 * pts)
Draw a filled polygon with n vertices, specified in pts.

pCellArray (wcPt2 * pts, int n, int m, ' int colors)
Map an n by m array of colors onto a rectangular area defined by pts.

pText (wcPt2 position, char * txt)
Draw the character string txt at position.

pPolymarker (int n, wcPt2 * pts)
Draw a collection of n marker symbols at pts.

Figure 3-51

An electrical diagram drawn
with straight line sections,
circles, filled rectangles, and

text. (Courtesy of Wolfram
Research, Inc., The Maker of
Mathematica.)

135

Chapter 3 Applications
Output Primitives

Here, we present a few example programs illustrating applications of output
primitives. Functions listed in Table 3-1 are defined in the header file graph-
ics.h, aleng with the routines openGraphics, closeGraphics, setColor,
and setBackground.)

The first program produces a line graph for monthly data over a period of
one year. Output of this procedure is drawn in Fig. 3-52. This data set is also used
by the second program to produce the bar graph in Fig. 3-53 .

t#include <stdio.h>
#include “graphics.h"

#define WINDOW_WIDTH 600

#define WINDOW_HEIGHT 500

/* Amount of space to leave on each side of the chart */
#define MARGIN_WIDTH 0,05 * WINDOW_WIDTH

#define N_DATA 12

typedef enum
{ Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec) Months;

char * monthMNames (N_DATA] = ("Jan*, "Feb®", "Mar®", *apr", “May®*, “Jun®,
Jul®, "RAug®, 'Sep", "Oct, "Nov", "Dec"” };

int readData (char * inFile, float * data)
{

int fileError = FALSE;

FILE * fp:

Months month;

if ((fp = fopen (inFile, "r=})) == NULL)
fileError = TRUE:

else (
for (month = Jan; month <= Dec; month++)

fscanf (fp, "%f", &data[month))

fclose (fp);

)

return {fileError);

}

void lineChart (float * data)
{
wcPt2 dataPos([N_DATA], labelPos;
Months m;
float mWidth = (WINDOW_WIDTH - 2 * MARGIN WIDTH} / N_DATA;
int chartBottom = 0.1 * WINDOW_HEIGHT;
int offset = 0.05 * WINDOW_HEIGHT; /* Space between data and labels */
int labelLength = 24: /* Assuming fixed-width 8-pixel characters */

labelPos.y = chartBottom;

for (m = Jan; m <= Dec; m++} {
/* Calculate x and y positions for data markers */
dataPos({m).x = MARGIN_WIDTH + m * mWidth + 0.5 * mWidth;
dataPos[m} .y = chartBottom + offset + data(m);
/* Shift the label to the left by one-half its length */
labelPos.x = dataPosim].x - 0.5 * labelLength;
pText (labelPos, monthNames[m]):

}

pPolyline (N_DATA, dataPos)

pPolymarker (N_DATA, dataPos):

136

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 3-52
A line plot of data points output by
the lineChart procedure.

}

void main (int argec, char ** argv)
{

float data([N_DATA];

int dataError = FALSE;

long windowlD;

if (arge < 2) {
fprintf (stderr, "Usage: %s dataFileName\n", argv(0}):
exit ();
}
dataError = readData {argv([l], data);
if (dataError) (
fprintf (stderr., "%s error. Can't read file %s\n", argv(ll};
exit () .
}
windowID = openGraphics (*argv, WINDOW_WIDTH, WINDOW_HEIGHT) ;
setBackground (WHITE) ;
setColor (BLACK):
lineChart {(data);
sleep (10};
closeGraphics (windowlID);

Summary

void barChart float * data)
{
wcPt2 dataPos[4], labelPos;
Months m;
float x, mWidth = (WINDOW_WIDTH - 2 * MARGIN_WIDTH) / N_DATA;
int chartBottom = Q.1 * WINDOW_HEIGHT;

int offset = 0.05 * WINDOW_HEIGHT; /* Space between data and labels */

int labelLength = 24; /* Assuming fixed-width 8-pixel characters */

labelPos.y = chartBottom;
for (m = Jan; m <= Dec; m++) {
/* Find the center of this month's bar */
x = MARGIN_WIDTH + m * mWidth + 0.5 * mWidth;

/* Shift the label to the left by one-half its assumed length */
labelPos.x = x - 0.5 * labelLength;

137

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Figure 3-33

A bar-chart plot output by the
barChart procedure.

pText (labelPos, monthNames[m]};

/* Get the coordinates for this month's bar */

dataFos{0}.x = dataPos 3).x = x - 0.5 * labellLength;
dataFos|[1].x = dataPos(2].x = x + 0.5 * laoelLength;
datafFos{0].y = dataPos(l].y = chartBottom + offset;
dataFos[2].y = dataPos[3].y = chartBottom + offset + datalm);
pFillArea (4, dataPos);

Pie charts are used to show the percentage contribution of individual parts
to the whole. The next procedure constructs a pie chart, with the number and rel-
ative size of the slices determined by input. A sample output from this procedure
appears in Fig. 3-54.

tdefine TWO_PI 6.28

void pieChart (float * data)
{
wCPt2 ptsi{2), center;
float radius = WINDOW_HEIGHT / 4.0;
float newSlice, total = 0.0, lastSlice = 0.0
Months month;

center.x = WINDON_WIDTH / 2;

center.y = WINDOAN_HEIGHT / 2:

pCircle (centey, radius);

for (month = .Jan; month <= Dec; month++)
total += datalmonth];

ptsi{0].x = center.x:; pts|[0].y = center.y;

for {month = Jan; month <= Dec; month++) {
newSiice = TWO_PI * datalmonth] / total + lastSlice;
pts{l].x = center.x + radius * cosf (newSlice);
pts(ll.y = center.y + radius * sinf (newSlice):
pPolyline (2, pts):
lastSlice = newSlice;

138

Some variations on the circle equations are output by this next procedure.
The shapes shown in Fig. 3-55 are generated by varying the radius r of a circle.
Depending on how we vary r, we can produce a spiral, cardioid, limagon, or
other similar figure.

#include <stdio.h>
#include <math.n>
#include "graphics.h-"
#define TWO_P1 6.28
/= Limacon equation is r = a * cc¢s(theta) + b. Cardicid is the same, :
with a == b, sor = a * (1 + cos{theta)}, [
vypedef enum { spiral, cardioid, threeLeat, fourLeaf, limacon } Fig;
void drawlurlyFig (Fig figure, wcPt2 pos, int * p) f
{
float r, theta = 0.0, dtheta = 1.0 / (float) p[0]; i
int nPoints = {int) ceilf (TWO_PI * pl0]) + 1;
wcPt2 * pt:
if ((pt = (wePt2 *) malloc {(nPcints * sizeof (wcPt2))) == NULL)} {
fprintf (stderr, "Couldn't allocate pcints\n®); !
return; .
1
) !
|
/* Set first point for figure */
pt[0]l.y = pos.y; 1
switch (figure) { '
case spiral: ptl(0].x = pos.x; break: '
case limacon: pt[0].x = pos.x + pl0) + [1]; break;
case cardioid: pt[0].x = pos.x + pi{0] * Z; break;
case threeleaf: pt([0].x = pos.x + p{0); break;
case fourLeaf: pt[0].x = pos.x + pl[0]); break;
}
nPoints = 1i;
while (theta < TWO_PI) {
switch (figure) {
case spiral: r = p[0] * theta; break;
case limacon: r = p{0)] * cost (theta} + p{l]; break;
case cardioid: r = p{0] * (1 + cosf (tlLeta)); break;
case threeleaf: r = p[(0] * cosf (3 * theta); break;
case fourLeaf: 1r = pl[0] * cosf (2 * theta}; break;
}
pt{nPoints].x =« pos.x + r * cosf (theta::
pt{nPoints).y = pos.y + r * sinf (theta;
nPaints++;
theta += dtheta;
}
pPolyline (nPecints, pt):
free (pt);
}
void main (int argc, char ** argv}
{

139

O&IPE

Figure 3-55

Curved figures produced with the drawsShape procedure.

Figure 3-54
Output generated from the
pieChart procedure.

long windowlD = openGraphics (*argv, 400, 100);

Fig f;

/* Center positions for each figure */

wcPt2 center(] = { 50, 50, 100, 50, 175, 50, 250, 50, 300, 50 };

/* Parameters to define each figure. First four need ocne parameter.
Fifth figure (limacon) needs two. */
int p(5112) = {5, -1, 20, -1, 30, -1, 30, -1, 40, 10 }:

setBackground (WHITE);

setColor (BLACK):

for (f=spiral; f<=limacon; f++)
drawCurlyFig (f, center(f], p[f]);

sleep (10);

closeGraphics

(windowlD) ;

140

REFERENCES

Information on Bresenham’s algorithms can be found in Bresenham (1965, 1977). For mid-
point methods, see Kappel (1985). Parallel methods for generating lines and circles are
discussed in Pang (1990) and in Wright {1990).

Additional programming examples and information on PHIGS primitives can be found in
Howard, et al. (1991}, Hopgood and Duce (1991), Gaskins (1992), and Blake (1993). For
information on GKS output primitive functions, see Hopgood et al. (1983) and Enderle,
Kansy, and Pfaff (1984).

EXERCISES

3-1.

3-2.

Implement the polyline function using the DDA algorithm, given any number (n) of
input points. A single point is to be plotted when n = 1.

Extend Bresenham'’s line algorithm to generate lines with any slope, taking symmetry
between quadrants into account, Implement the polyl ine function using this algorithm
as a routine that displays the set of straight lines connecting the n input points. For
n =1, the routine displays a single point.

3-3.

3-4.

3-5.

3-6.

3-7.
3-8.

3-9.

3-12.
3-13,

3-14.

3-15.

3-16.

317,

Devise a consistent scheme for implementing the polyline function, for any set of
input line endpoints, using a modified Bresenham line algorithm so that geometric
magnitudes are maintained (Section 3-10).

Use the midpoint method to derive decision parameters for generating points along a
straight-line path with slope in the range 0 << m < 1. Show that the midpoint decision
parameters are the same as those in the Bresenham line algorithm.

Use the midpoint method to derive decision parameters that can be used to generate
straight line segments with any slope.

Set up a parallel version of Bresenham's line algorithm for slopes in the range 0 < m
<1

Set up a parallel version of Bresenham's algorithm for straight lines of any slope.
Suppose you have a system with an 8-inch by 10-inch video monitor that can display
100 pixels per inch. If memory is organized in one-byte words, the starting frame-
buffer address is 0, and each pixel is assigned one byte of storage, what is the frame-
buffer address of the pixel with screen coordinates (x, y)?

Suppose you have a system with an 8-inch by 10-inch video monitor that can display
100 pixels per inch. f memory is organized in one-byte words, the starting frame-
buffer address is 0, and each pixel is assigned 6 bits of storage, what is the frame-
buffer address (or addresses) of the pixel with screen coordinates (x, y)?

. Implement the setPixel routine in Bresenham’s line algorithm using iterative tech-

niques for calculating frame-buffer addresses (Section 3-3).

. Revise the midpoint circie algorithm to display so that geometric magnitudes are

maintained (Section 3-10).

Set up a procedure for a parallel implementation of the midpoint circie algorithm.
Derive decision parameters for the midpoint ellipse algorithm assuming the start posi-
tion is (r,, 0) and points are to be generated along the curve path in counterclockwise
order.

Set up a procedure for a parallel implementation of the midpoint ellipse algorithm.
Devise an efficient algorithm that takes advantage of symmetry properties to display a
sine function.

Devise an efficient algorithm, taking function symmetry into account, to display a plot
of damped harmonic motion:

y = Ae *sin (wx% 6)

where w is the angular frequency and 6 is the phase of the sine function. Plot y as a
function of x for several cycles of the sine function or until the maximum amplitude is
reduced to A/10.

Using the midpoint method, and taking symmetry into account, develop an efficient
algorithm for scan conversion of the following curve over the interval —10 < x < 10:

1

3
X
12

y =

. Use the midpoint method and symmelry considerations to scan convert the parabola

y =100 ~ x*

over the interval —10 = x < 10.

. Use the midpoint method and symmeltry considerations to scan convert the parabola

X =Yy

forthe interval =10 < y = 10.

Exercises

141

Chapter 3

142

Output Primitives

3-20.

3-21

3-26.
3-27.

3-28.
3-29.
3-30.
3-31.

Set up a midpoint algorithm, taking symmetry considerations into account to scan
convert any paraboia of the form

y=ax! - b

with input values for parameters a, b, and the range of x.

. Write a program to scan convert the interior of a specified ellipse into a solid color.
3-22.

Devise an algorithm for determining interior regions for any input set of vertices using
the nonzero winding number rule and cross-product calculations to identify the direc-
tion of edge crossings

. Devise an algorithm for determining interior regions for any input set of vertices using,

the nonzero winding number rule and dot-product calculations to identify the direc-
tion of edge crossings.

. Write a procedure for filling the interior of any specificd set of “polygon” vertices

using the nonzero winding number rule to identify interior regions.

. Modify the boundasy-fill algorithm for a 4-connected region to avoid excessive stack-

ing by incorporating scan-line methods.
Write a boundary-fill procedure to fill an 8-connected region.

Explain how an ellipse displayed with the midpoint method could be properly filled
with a boundary-fill algorithm.

Develop and implement a flood-fill algorithm to fill the interior of any specified area.
Write a routine to implement the text function.
Write a routine to implement the polymarker function.

Write a program to display a bar graph using the polyline function. Input to the
program is to include :he data points and the labeling required for the x and y axes.
The data points are to be scaled by the program so that the graph is displayed across
the full screen area.

. Write a program to display a bar graph in any selected scieen area. Use the poly-

line function to draw the bars.

. Write a procedure to display a line graph for any input set of data points in any se-

lected area of the screen, with the input data set scaled to fit the selected screen area.
Data points are to be displayed as asterisks joined with straight line segments, and the
x and y axes are to be |labeled according to input specifications. {instead of asterisks.
small circles or some other symbols could be used to plot the data points.)

. Using a circle function, write a routine to display a pie chart with appropriate labei-

ing. Input to the routine is 1o include a data set giving the distribution of the data over
some set of intervals, the name of the pie chart, and the names of the intervals. Each
section label is to be displayed outside the boundary of the pie chart near the corre-
sponding pie section.

144

I n general, any parameter that affects the way a primitive is to be displayed is
referred to as an attribute parameter. Some attribute parameters, such as
color and size, determine the fundamental characteristics of a primitive. Others
specify how the primitive is to be displayed under special conditions. Examples
of attributes in this class include depth information for three-dimensional view-
ing and visibility or detectability options for interactive object-selection pro-
grams. These special-condition attributes will be considered in later chapters.
Here, we consider only those attributes that control the basic display properties
of primitives, without regard for special situations. For example, lines can be dot-
ted or dashed, fat or thin, and blue or orange. Areas might be filled with one
color or with a multicolor pattern. Text can appear reading from left to right,
slanted diagonally across the screen, or in vertical columns. Individual characters
can be displayed in different fonts, colors, and sizes. And we can apply intensity
variations at the edges of objects to smooth out the raster stairstep effect.

One way to incorporate attribute options into a graphics package is to ex-
tend the parameter list associated with each output primitive function to include
the appropriate attributes. A line-drawing function, for example, could contain
parameters to set color, width, and other properties, in addition to endpoint coor-
dinates. Another approach is to maintain a system list of current attribute values.
Separate functions are then included in the graphics package for setting the cur-
rent values in the attribute list. To generate an output primitive, the system
checks the relevant attributes and invokes the display routine for that primitive
using the current attribute settings. Some packages provide users with a combi-
nation of attribute functions and attribute parameters in the output primitive
commands. With the GKS and PHIGS standards, attribute settings are accom-
plished with separate functions that update a system attribute list.

4-1
LINE ATTRIBUTES

Basic attributes of a straight line segment are its type, its width, and its color. In
some graphics packages, lines can also be displayed using selected pen or brush
options. In the following sections, we consider how line-drawing routines can be
modified to accommodate various attribute specifications.

Line Type

Possible selections for the line-type attribute include solid lines, dashed lines,
and dotted lines. We modify a line-drawing algorithm to generate such lines by
setting the length and spacing of displayed solid sections along the line path. A
dashed line could be displayed by generating an interdash spacing that is equal
to the length of the solid sections. Both the length of the dashes and the interdash
spacing are often specified as user options. A dotted line can be displayed by

generating very short dashes with the spacing equal to or greater than the dash
size. Similar methods are used to produce other line-type variations.

To set line type attributes in a PHIGS application program, a user invokes
the function

setLinetype (1lt)

where parameter 1t is assigned a positive integer value of 1, 2, 3, or 4 to generate
lines that are, respectively, solid, dashed, dotted, or dash-dotted. Other values for
the line-type parameter 1t could be used to display variations in the dot-dash
patterns. Once the line-type parameter has been set in a PHIGS application pro-
gram, all subsequent line-drawing commands produce lines with this line type.
The following program segment illustrates use of the linetype command to
display the data plots in Fig. 4-1.

Section 4-1

Line Attributes

#include <stdio.h>
#include "graphics.h*

#define MARGIN_WIDTH 0.05 * WINDOW_WIDTH

int readData {char * inFile, float * data)
(

int fileError = FALSE;

FILE * fp;

int month;

if ((fp = fopen (inFile, °®r")) == NULL)
fileError = TRUE;
else {

for {(month=0; month<l2; month++)
fscanf (fp, "%f", &datal[month]);
fclose (fp);
}
return {(fileError});

}

void chartData (float * data, pLineType lineType)

{
wCPt2 pts(12];
float monthWidth = (WINDOW_WIDTH - 2 * MARGIN_WIDTH) / 12;
int i:

for (1i=0; 1<12; i++) {
pts[i]) .x = MARGIN_WIDTH + i * monthwidth + 0.5 * monthWidth:
ptsli] .y = data(i];
}
pSetLineType (lineType);
pPolyline (12, pts);
}

int main {(int argc, char ** argv)

{
long windowID = openGraphics (*argyv, WINDOW_WIDTH, WINDOW_HEIGHT) ;
float datall2];

setBackground (WHITE);

setColor (BLUE);

readData ("../data/datal960", data):
chartData (data, SOLID);

readData {"../data/datal970", data);
chartData (data, DASHED);

readData ("../data/datal980", data);
chartData (data, DOTTED);
sleep (10);

closeGraphice (windowlD) ;

145

Chapter 4

Attributes of Qutput Primitives

(b)

Figure 4-2
Unequal-length dashes
displayed with the same
number of pixels.

146

Figure 4-1

Piotting three data sets with three
differen: line types, as output by the
—— . cheértData procedure.

Raster line algorithms display line-type attributes by plotting pixel spans.
For the various dashed, dotted, and dot-dashed patterns, the line-drawing proce-
dure outputs sections of contiguous pixels along the line path, skipping over a
number of intervening pixels between the solid spans. Pixel counts for the span
length and interspan spacing can be specified in a pixel mask, which is a string
containing the digits 1 and 0 to indicate which positions to plot along the line
path. The mask 1111000, for instance, could be used to display a dashed line with
a dash length of four pixels and an interdash spacing uf three pixels. On a bilevel
system, the mask gives the bit values that should be loaded into the frame buffer
along the line path to display the selected line type.

Plotting dashes with a fixed number of pixels results in unequal-length
dashes for different line orientations, as illustrated in Fig. 4-2. Both dashes shown
are plotted with four pixels, but the diagonal dash is longer by a factor of V2. For
precision drawings, dash lengths should remain approximately constant for any
line orientation. To accomplish this, we can adjust the pixel counts for the solid
spans and interspan spacing according to the line slope. In Fig. 4-2, we can dis-
play approximately egual-length dashes by reducing the diagonal dash to three
pixets. Another method for maintaining dash length is to treat dashes as individ-
ual line segments. Endpoint coordinates for each dash are located and passed to
the line routine, which then calculates pixel positions along the dash path.

Line Width

Implementation of line- width options depends on the capabilities of the output
device. A heavy line on a video monitor could be displaved as adjacent parallel
lines, while a pen plotter nught require pen changes. As with other PHIGS attrib-
utes, a line-width command 1s used to set the current line-width value in the at-
tribute list. This value 15 then used by line-drawing algorithms to control the
thickness of lines generated with subsequent output primitive commands.

We set the line-width attribute with the command:

setlLinew:dthScaleFactor (lw)

Line-width parameter 1w is assigned a positive number to indicate the relative
width of the line to be displayed. A value of 1 specifies a standard-width line. On
a pen plotter, for instance, a user could set 1w to a value of 0.5 to plot a line
whose width is half that of the standard line. Values greater than 1 produce lines
thicker than the standard.

For raster implementation, a standard-width line is generated with single
pixels at each sample position, as in the Bresenham algorithm. Other-width lines
are displayed as positive integer multiples of the standard line by plotting addi-
tional pixels along adjacent parallel line paths. For lines with slope magnitude
less than 1, we can modify a line-drawing routine to display thick lines by plot-
ting a vertical span of pixels at each x position along the line. The number of pix-
els in each span is set equal to the integer magnitude of parameter 1w. In Fig. 4-3,
we plot a double-width line by generating a parallel line above the original line
path. At each x sampling position, we calculate the corresponding y coordina‘e
and plot pixels with screen coordinates (x, y) and (x, y+1). We display lines with
1w = 3 by alternately plotting pixels above and below the single-width line path.

For lines with slope magnitude greater than 1, we can plot thick lines with
horizontal spans, alternately picking up pixels to the right and left of the line
path. This scheme is demonstrated in Fig. 44, where a line width of 4 is plotted
with horizontal pixel spans.

Although thick lines are generated quickly by plotting horizontal or vertical
pixel spans, the displayed width of a line (measured perpendicular to the line
path) is dependent on its slope. A 45° line will be displayed thinner by a factor of
1/V2 compared to a horizontal or vertical line plotted with the same-length
pixel spans.

Another problem with implementing width options using horizontal or
vertical pixel spans is that the method produces lines whose ends are horizontal
or vertical regardless of the slope of the line. This effect is more noticeable with
very thick lines. We can adjust the shape of the line ends to give them a better ap-
pearance by adding line caps (Fig. 4-5). One kind of line cap is the butt cap ob-
tained by adjusting the end positions of the component parallel lines so that the
thick line is displayed with square ends that are perpendicular to the line path. If
the specified line has slope m, the square end of the thick line has slope —1/m.
Another line cap is the round cap obtained by adding a filled semicircle to each
butt cap. The circular arcs are centered on the line endpoints and have a diameter
equal to the line thickness. A third type of line cap is the projecting square cap.
Here, we simply extend the line and add butt caps that are positioned one-half of
the line width beyond the specified end points.

Other methods for producing thick lines include displaying the line as a
filled rectangle or generating the line with a selected pen or brush pattern, as dis-
cussed in the next section. To obtain a rectangle representation for the line

Figure 4-3
Double-wide raster line with slope |m| < 1 generated with
vertical pixel spans.

Section 4-1

Line Attributes

147

Chapter 4

Attributes of Gutput Primitives

148

o

9

@

Figure 4-4

Raster line with slope (m| >1

and line-width parameter 1w = 4
plotted with horizontal pixel spans.

boundary, we calculate the position of the rectangle vertices along perpendicu-
lars to the line path so that vertex coordinates are displaced from the line end-
points by one-half the line width. The rectangular line then appears as in Fig.
4-5(a). We could then add round caps to the filled rectangle or extend its length to
display projecting square caps.

Generating thick polylines requires some additional considerations. In gen-
eral, the methods we have considered for displaying a single line segment will
not produce a smoothly connected series of line segments. Displaying thick lines
using horizontal and vertical pixel spans, for example, leaves pixel gaps at the
boundaries between lines of different slopes where there is a shift from horizon-
tal spans to vertical spans. We can generate thick polylines that are smoothly
joined at the cost of additional processing at the segment endpoints. Figure 4-6
shows three possible methods for smoothly joining two line segments. A miter
join is accomplished by extending the outer boundaries of each of the two lines
until they meet. A round join is produced by capping the connection between the
two segments with a circular boundary whose diameter is equal to the line

{a) (b) (c)

Figure 4-5
Thick lines drawn with (a} butt caps, {(b) round caps, and (c) projecting
square caps.

(a} (b} {c}

Figure 4-6
Thick line segments connected with (a) miter join, (b) round join, and (c)
bevel join.

width. And a bevel join is generated by displaying the line segments with butt
caps and filling in the triangular gap where the segments meet. If the angle be-
tween two connected line segments is very small, a miter join can generate a long
spike that distorts the appearance of the polyline. A graphics package can avoid
this effect by switching from a miter join to a bevel join, say, when any two con-
secutive segments meet at a small enough angle.

Pen and Brush Options

With some packages, lines can be displayed with pen or brush selections. Op-
tions in this category include shape, size, and pattern. Some possible pen or
brush shapes are given in Fig. 4-7. These shapes can be stored in a pixel mask
that identifies the array of pixel positions that are to be set along the line path.
For example, a rectangular pen can be implemented with the mask shown in Fig.
4-8 by moving the center (or one corner) of the mask along the line path, as in
Fig. 4-9. To avoid setting pixels more than once in the frame buffer, we can sim-
ply accumulate the horizontal spans generated at each position of the mask and
keep track of the beginning and ending x positions for the spans across each scan
line.

Lines generated with pen (or brush) shapes can be displayed in various
widths by changing the size of the mask. For example, the rectangular pen line in
Fig. 4-9 could be narrowed with a 2 X2 rectangular mask or widened with a 4x4
mask. Also, lines can be displayed with selected patterns by superimposing the
pattern values onto the pen or brush mask. Some examples of line patterns are
shown in Fig. 4-10. An additional pattern option that can be provided in a paint
package is the display of simulated brush strokes. Figure 4-11 illustrates some
patterns that can be displayed by modeling different types of brush strokes.

Line Color

When a system provides color (or intensity) options, a parameter giving the cur-
rent color index is included in the list of system-attribute values. A polyline rou-
tine displays a line in the current color by setting this color value in the frame
buffer at pixel locations along the line path using the setPixel procedure. The
number of color choices depends on the number of bits available per pixel in the
frame buffer.

We set the line color value in FHIGS with the function

setPolylineColourIndex (lc)

Section 4-1

Line Attributes

149

Custom Document Brushes

L3

X
X
(et

Figurc 4-7
Pen and brush shapes for line display.

Nonnegative integer values, corresponding to allowed color choices, are assigned
to the line color parameter 1c. A line drawn in the background color is invisible,
and a user can erase a previously displayed line by respecifying it in the back-
ground color (assuming the line does not overlap more than one background
color area).

An example of the use of the various line attribute commands in an applica-
*ions program is given by the following sequence of statements:

setLinetype (2);
setLlinewicéthScaleFactor (2);
setPolylireColourIndex (5);
polyline {nl. wcpointsl):

setPolylineCclourIndex (6):
polyline (n?. wcpoints?2)

This program segment would display two figures, drawn with double-wide
dashed lines. The first is displayed in a color corresponding to code 5, and the
second in color 6.

150

SN
(a} it} N
Figure 4-8
(a) A pixel mask for a rectangular
pen, and (b) the associated array of
pixels displayed by centering the
mask over a specified pixel
position.
! 1
i 4
o <
’ - -
N -
Figure 4-9
_ Generating a line with the pen

shape of Fig. 4-8.

Figure 4-10

Curved lines drawn with a paint program using various shapes and
patterns. From left to right, the brush shapes are square, round,
diagonal line, dot pattern, and faded airbrush.

151

Chapter 4
Attributes of Output Primitives

152

Figure 4-11

A daruma doll, a symbol of good
fortune in Japan, drawn by
computer artist Koichi Kozaki using
a paintbrush system. Daruma dolls
actually come without eyes. One
eye is painted in when a wish is
made, and the other is painted in
when the wish comes true.

(Courtesy of Wacom Technology, Inc.)

4-2
CURVE ATTRIBUTES

Parameters for curve attributes are the same as those for line segments. We can
display curves with varying colors, widths, dot-dash patterns, and available pen
or brush options. Methods for adapting curve-drawing algorithms to accommo-
date attribute selections are similar to those for line drawing.

The pixel masks discussed for implementing line-type options are also used
in raster curve algorithms to generate dashed and dotted patterns. For example,
the mask 11100 produces the dashed circle shown in Fig. 4-12. We can generate
the dashes in the various octants using circle symmetry, but we must shift the
pixel positions to maintain the correct sequence of dashes and spaces as we move
from one octant to the next. Also, as in line algorithms, pixel masks display
dashes and interdash spaces that vary in length according to the slope of the
curve. If we want to display constant-length dashes, we need to adjust the num-
ber of pixels plotted in each dash as we move around the circle circumference. In-
stead of applying a pixel mask with constant spans, we plot pixels along equal
angular arcs to produce equal length dashes.

Raster curves of various widths can be displayed using the method of hori-
zontal or vertical pixel spans. Where the magnitude of the curve slope is less than
1, we plot vertical spans; where the slope magnitude is greater than 1, we plot
horizontal spans. Figure 4-13 demonstrates this method for displaying a circular
arc of width 4 in the first quadrant. Using circle symmetry, we generate the circle
path with vertical spans in the octant from x = 0 to x = y, and then reflect pixel
positions about theline y = x to obtain the remainder of the curve shown. Circle
sections in the other quadrants are obtained by reflecting pixel positions in the

first quadrant about the coordinate axes. The thickness of curves displayed with
this method is again a function of curve slope, Circles, ellipses, and other curves
will appear thinnest where the slope has a magnitude of 1.

Another method for displaying thick curves is to fill in the area between
two parallel curve paths, whose separation distance is equal to the desired width.
We could do this using the specified curve path as one boundary and setting up
the second boundary either inside or outside the original curve path. This ap-
proach, however, shifts the original curve path either inward or outward, de-
pending on which direction we choose for the second boundary. We can maintain
the original curve position by setting the two boundary curves at a distance of
one-half the width on either side of the specified curve path. An example of this
approach is shown in Fig. 4-14 for a circle segment with radius 16 and a specified
width of 4. The boundary arcs are then set at a separation distance of 2 on either
side of the radius of 16. To maintain the proper dimensions of the circular arc, as
discussed in Section 3-10, we can set the radii for the concentric boundary arcs at
r = 14 and r = 17. Although this method is accurate for generating thick circles,
in general, it provides only an approximation to the true area of other thick

| Figure 4-12

A dashed circular arc displayed
| with a dash span of 3 pixels and an
interdash spacing of 2 pixels.

Figure 4-13
Circular arc of width 4 plotted with
pixel spans.

Section 4-2

Curve Attributes

153

Chapter 4 ||

Attributes of Output Primitives

Figure 4-14

1 A circular arc of width 4 and radius
16 displayed by filling the region
between two concentric arcs.

Figure 4-15
Circular arc displayed with a
rectangular pen.

curves. For example, the inner and outer boundaries of a fat ellipse generated
with this method do not have the same foci.

Pen (or brush) displays of curves are generated using the same techniques
discussed for straight line segments. We replicate a pen shape along the line path,
as illustrated in Fig. 4-15 for a circular arc in the first quadrant. Here, the center of
the rectangular pen is moved to successive curve positions to produce the curve
shape shown. Curves displayed with a rectangular pen in this manner will be
thicker where the magnitude of the curve slope is 1. A uniform curve thickness
can be displayed by rotating the rectangular pen to align it with the slope direc-
tion as we move around the curve or by using a circular pen shape. Curves
drawn with pen and brush shapes can be displayed in different sizes and with
superimposed patterns or simulated brush strokes.

4-3
COLOR AND GRAYSCALE LEVELS

Various color and intensity-level options can be made available to a user, de-
pending on the capabilities and design objectives of a particular system. General-
purpose raster-scan systems, for example, usually provide a wide range of colors,
while random-scan monitors typically offer only a few color choices, if any. Color

154

options are numerically’coded with values ranging from 0 through the positive
integers. For CRT monitors, these color codes are then converted to intensity-
level settings for the electron beams. With color plotters, the codes could control
ink-jet deposits or pen selections.

In a color raster system, the number of color choices available depends on
the amount of storage provided per pixel in the frame buffer. Also, color informa-
tion can be stored in the frame buffer in two ways: We can store color codes di-
rectly in the frame buffer, or we can put the color codes in a separate table and
use pixel values as an index into this table. With the direct storage scheme, when-
ever a particular color code is specified in an application program, the corre-
sponding binary value is placed in the frame buffer for each component pixel in
the output primitives to be displayed in that color. A minimum number of colors
can be provided in this scheme with 3 bits of storage per pixel, as shown in Table
4-1. Each of the three bit positions is used to control the intensity level (either on
or off) of the corresponding electron gun in an RGB monitor. The leftmost bit
controls the red gun, the middle bit controls the green gun, and the rightmost bit
controls the blue gun. Adding more bits per pixel to the frame buffer increases
the number of color choices. With 6 bits per pixel, 2 bits can be used for each gun.
This allows four different intensity settings for each of the three color guns, and a
total of 64 color values are available for each screen pixel With a resolution of
1024 by 1024, a full-color (24-bit per pixel) RGB system needs 3 megabytes of
storage for the frame buffer. Color tables are an alternate means for providing ex-
tended color capabilities to a user without requiring large frame buffers. Lower-
cost personal computer systems, in particular, often use color tables to reduce
frame-buffer storage requirements.

Color Tables

Figure 4-16 illustrates a4 possible scheme for storing color values in a color
lookup table (or video lookup table), where frame-buffer values are now used
as indices into the color table. In this example, each pixel can reference any one of
the 256 table positions, and each entry in the table uses 24 bits to specify an RGB
color. For the color code 2081, a combination green-blue color is displayed for
pixel location (x, y). Systems employing this particular lookup table would allow

TABLE 4-1
THE EIGHT COLOR CODES FOR A THREE-BIT
PER PIXEL FRAME BUFFER

Stored Color Values Displa yed
Color in Frame Buffer Color

Code RED GREEN BLUE

0 0 0 0 Black

1 0 0 1 Blue

2 0 1 0 Green

3 0 1 1 Cyan

4 1 0 0 Red

5 1 0 1 Magenta
6 1 1 0 Yellow

7 1 1 1 White

Section 4-3

Color and Grayscale Levels

155

Chapter 4 a user to select any 256 colors for simultaneous display from a palette of nearly

Attributes of Output Primitives

156

used in each display.

A user can set color-table entries in a PHIGS applications program with the

function

setColourRepresentation (ws, ci, colorptr)

Parameter ws identifies the workstation output device; parameter ci specifies
the color index, which is the color-table position number (0 to 255 for the exam-
ple in Fig. 4-16); and parameter colorptr points to a trio of RGB color values (r,
8. b) each specified in the range from 0 to 1. An example of possible table entries

for color monitors is given in Fig. 4-17.

There are several advantages in storing color codes in a lookup table. Use of
a color table can provide a “reasonable” number of simultaneous colors without
requiring large frame buffers. For most applications, 256 or 512 different colors
are sufficient for a single picture. Also, table entries can be changed at any time,
allowing a user to be able to experiment easily with different color combinations
in a design, scene, or graph without changing the attribute settings for the graph-
ics data structure. Similarly, visualization applications can store values for some
physical quantity, such as energy, in the frame buffer and use a lookup table to
try out various color encodings without changing the pixel values. And in visual-
ization and image-processing applications, color tables are a convenient means
for setting color thresholds so that all pixel values above or below a specified
threshold can be set to the same color. For these reasons, some systems provide
both capabilities for color-code storage, so that a user can elect either to use color

tables or to store color codes directly in the frame buffer.

Figure 4-16

A color lookup table with 24 bits per entry accessed from a frame buffer with 8 bits per
pixel. A value of 196 stored at pixel position (x, y) references the location in this table
containing the value 2081. Each 8-bit segment of this entry controls the intensity level of
one of the three electron guns in an RGB monitor.

T

—— To Biue Gun

17 million colors. Compared to a full-color system, this scheme reduces the num-
ber of simultaneous colors that can be displayed, but it also reduces the frame-
buffer storage requirements to 1 megabyte. Some graphics systems provide 9 bits
per pixel in the frame buffer, permitting a user to select 512 colors that could be

WS =1 WS = 2
r Ca Color Ci Color
0 (0,0,00 0 [S PR PR
(0,0,02) 1 09,1, 1
: 2 08,11
192 {0, 0.03, 0.13}
Figure 4-17

Workstation color tables.

Grayscale

With monitors that have no color capability, color functions can be used in an ap-
plication program to set the shades of gray, or grayscale, for displayed primi-
tives. Numeric values over the range from 0 to 1 can be used to specify grayscale
levels, which are then converted to appropriate binary codes for storage in the
raster. This allows the intensity settings to be easily adapted to systems with dif-
fering grayscale capabilities.

Table 4-2 lists the specifications for intensity codes for a four-level gray-
scale system. In this example, any intensity input value near 0.33 would be stored
as the binary value 01 in the frame buffer, and pixels with this value would be
displayed as dark gray. If additional bits per pixel are available in the frame
buffer, the value of 0.33 would be mapped to the nearest level. With 3 bits per
pixel, we can accommodate 8 gray levels; while 8 bits per pixel would give us 256
shades of gray. An alternative scheme for storing the intensity information is to
convert each intensity code directly to the voltage value that produces this gray-
scale level on the output device in use.

When multiple output devices are available at an installation, the same
color-table interface may be used for all monitors. In this case, a color table for a
monochrome monitor can be set up using a range of RGB values as in Fig. 4-17,
with the display intensity commesponding to a given color index c1 calculated as

intensity = 0.5[min(r, g, b) + max(r, g, b)]
TABLE 4-2

INTENSITY CODES FOR A FOUR-LEVEL
GRAYSCALE SYSTEM

Intensity Stored Intensity Displayed
Codes Values in The Grayscale
Frame Buffer (Binary Code)
0.0 0 (00} Black
0.33 1 (8 Dark gray
0.67 2 (10) Light gray
1.0 3 (an White

Section 4-3

Color and Grayscale Levels

157

Hollow
{a)

Figure 3-18
Polygon fill styles.

158

4-4
AREA-FILL ATTRIBUTES

Options for filling a defined region include a choice between a solid color or a
patterned fill and choices for the particular colors and patterns. These fill options
can be applied to polygon regions or to areas defined with curved boundaries,
depending on the capabilities of the available package. In addition, areas can be
painted using various brush styles, colors, and transparency parameters.

Fill Styles

Areas are displayed with three basic fill styles: hollow with a color border, filled
with a solid color, or filled with a specified pattern or design. A basic fill style is
selected in a PHIGS program with the function

setInteriorStyle (fs)

Values for the fill-style parameter fs include hollow, solid, and pattern (Fig. 4-18).
Another value for fill style is hatch, which is used to fill an area with selected
hatching patterns—parallel lines or crossed lines—as in Fig. 4-19. As with line at-
tributes, a selected fill-style value is recorded in the list of system attributes and
applied to fill the interiors of subsequently specified areas. Fill selections for pa-
rameter fs are normally applied to polygon areas, but they can also be imple-
mented to fill regions with curved boundaries.

Hollow areas are displayed using only the boundary outline, with the inte-
rior color the same as the background color. A solid fill is displayed in a single
color up to and including the borders of the region. The color for a solid interior
or for a hollow area outline is chosen with

setInteriorColourindex (fc)

where fill-color parameter fc is set to the desired color code. A polygon hollow
fill is generated with a line-drawing routine as a closed polyline. Solid fill of a re-
gion can be accomplished with the scan-line procedures discussed in Section
3-11.

Other fill options include specifications for the edge type, edge width, and
edge color of a region. These attributes are set independently of the fill style or
fill color, and they provide for the same options as the line-attribute parameters
(line type, line width, and line color). That is, we can display area edges dotted or
dashed, fat or thin, and in any available color regardless of how we have filled
the interior.

o

Diagonal Diagonal
Hatch Fill Cross-Hatch Fill

Figure 4-19
Polygon fill using hatch patterns.

Pattern Fill
We select fill patterns with

setInteriorStyleIndex (pi)

where pattern index parameter pi specifies a table position. For example, the fol-
lowing set of statements would fill the area defined in the fi11Area command
with the second pattern type stored in the pattern table:

setInteriorStyle (pattern);
setInteriorStyleIndex (2);
fillAarea (n, points);

Separate tables are set up for hatch patterns. If we had selected hatch fill for the
interior style in this program segment, then the value assigned to parameter pi is
an index to the stored patterns in the hatch table.

For fill style pattern, table entries can be created on individual output de-
vices with

setPatternRepresentation (ws, p., nx, ny, cp)

Parameter pi sets the pattern index number for workstation code ws, and cp is a
two-dimensional array of color codes with nx columns and ny rows. The follow-
ing program segment illustrates how this function could be used to set the first
entry in the pattern table for workstation 1.

cpll,1] := 4; cpl2,2] := 4;

cpll,2) := 0; cpl2,1)

"
[S]

setPatternRepresentaticon (1, 1, 2, 2, cp);

Table 4-3 shows the first two entries for this color table. Color array cp in this ex-
ample specifies a pattern that produces alternate red and black diagonal pixel
lines on an eight-color system.

When a color array cp is to be applied to fill a region, we need to specify
the size of the area that is to be covered by each element of the array. We do this
by setting the rectangular coordinate extents of the pattern:

setPatternSize (dx, dy)

where parameters ax and dy give the coordinate width and height of the array
mapping. An example of the coordinate size associated with a pattern array is
given in Fig. 4-20. If the values for dx and dy in this figure are given in screen co-
ordinates, then each element of the color array would be applied to a 2 by 2
screen grid containing four pixels.

A reference position for starting a pattern fill is assigned with the statement

setPatternReferencePoint (positicn)
Parameter position is a pointer to coordinates (xp, yp) that fix the lower left

corner of the rectangular pattern. From this starting position, the pattern is then
replicated in the x and y directions until the defined area is covered by nonover-

TABLE 4-3

A WORKSTATION
PATTERN TABLE WITH
TWO ENTRIES, USING
THE COLOR CODES OF
TABLE 4-1

Index Pattern
(pi) (cp)

N

N == N
—_

VI . i
i 1
-4 -r--1-1-1
1] | 1
1 1 Ll b
dy:G-_l. b A -k -
I 1 1 i
* | : .
—| _l-—h-" -I—1
LI U L s L
Joe——-dx =8
Figure 4-20

A pattern array with 4
columns and 3 rows mapped
to an 8 by 6 coordinate
rectangle. 159

Chapter 4
Attributes of Qutput Primitives

lapping copies of the pattern array. The process of filling an area with a rectangu-
lar pattern is called tiling and rectangular fill patterns are sometimes referred to
as tiling pattemns. Figure 4-21 demonstrates tiling of a triangular fill area starting
from a pattern reference point.

To illustrate the use of the pattern commands, the following program exam-
ple displays a black-and-white pattern in the interior of a parallelogram fill area
(Fig. 4-22). The pattern size in this program is set to map each array element to a
single pixel.

{

#define WS 1
void patternFill ()

wcPt2 pts[4];
int bwPattern(3)(3) = {(1, 0, 0, O, 1, 1, 1, 0, 0 };

pSetPatternRepresentation (WS, 8, 3, 3, bwPattern);

pts[0].x = 10; pts(0).y = 10;
pts(l].x = 20; pts(l]l.y = 10;
pts(2].x = 28; pts(2].y = 18;
pts[3).x = 18; pts(3].y = 18;

pSetFillArealnteriorStyle (PATTERN):
pSetFillAreaPatternIndex {8):
pSetPatternReferencePoint (14, 11);

pFillArea (4, pts);

-

Start

Position 7/~

Figure 4-21

Tiling an area from a
designated start position.
Nonoverlapping adjacent
patterns are laid out to cover
all scan lines passing through
the defined area.

160

Pattern fill can be implemented by modifying the scan-line procedures dis-
cussed in Chapter 3 so that a Selected pattern is superimposed onto the scan
lines. Beginning from a specified start position for a pattern fill, the rectangular
patterns would be mapped vertically to scan lines between the top and bottom of
the fill area and horizontally to interior pixel positions across these scan lines.
Horizontally, the pattern array is repeated at intervals specified by the value of
size parameter dx. Similarly, vertical repeats of the pattern are separated by inter-
vals set with parameter dy. This scan-line pattern procedure applies both to poly-
gons and to areas bounded by curves.

'/ ’ /

J— __..__;_/'
Bl tht
Figure 4-22
A pattern array (a) superimposed on a parallelogram fill area to
produce the display (b).

Hatch fill is applied to regions by displaying sets of paraliel lines. The fill
procedures are implemented to draw either single hatching or cross hatching,
Spacing and slope for the hatch lines can be set as parameters in the hatch table.
On raster systems, a hatch fill can be specified as a pattern array that sets color
values for groups of diagonal pixels.

In many systems, the pattern reference point ‘xp, yp) 15 assigned by the sys-
tem. For instance, the reference point could be set automatically at a polygon ver-
tex. In general, for any fill region, the reference point can be chosen as the lower
left corner of the bounding rectangle (or bounding box) determined by the coordi-
nate extents of the region (Fig. 4-23). To simplify selection of the reference coordi-
nates, some packages always use the screen coordinate origin as the pattern start
position, and window systems often set the reference point at the coordinate ori-
gin of the window. Always setting (xp, yp) at the coordinate origin also simplifies
the tiling operations when each color-array element of a pattern is to be mapped
to a single pixel. For example, if the row positions in the pattern array are refer-
enced in reverse (that is, from bottom to top starting at 1), a pattern value is then
assigned to pixel position (x, y) in screen or window coordinates as

setPixel (x, y, cp{y mod ny + 1, x mod nx + 1))

where ny and nx specify the number of rows and number of columns in the pat-
tern array. Setting the pattern start position at the coordinate origin, however, ef-
fectively attaches the pattern fill to the screen or window background, rather
than to the fill regions. Adjacent or overlapping areas filled with the same pattern
would show no apparent boundary between the areas. Also, repositioning and
refilling an object with the same pattern can result in a shift in the assigned pixel
values over the object interior. A moving object would appear to be transparent
against a stationary pattern background, instead of moving with a fixed interjor
pattern.

It is also possible tc combine a fill pattern with background colors (includ-
ing grayscale) in various ways. With a bitmap pattern containing only the digits 1
and 0, the 0 values could be used as transparency indicators to let the back-
ground show through. Alternatively, the 1 and 0 digits can be used to fill an inte-
rior with two-color patterns. In general, color-fill patterns can be combined in
several other ways with background colors. The pattern and background colors
can be combined using Boolean operations, or the pattern colors can simply re-
Place the background colors. Figure 4-24 demonstrates how the Boolean and re-
place operations for a 2 by 2 fill pattern would set pixe] values on a binary (black-
and-white) system against a particular background pattern.

y
Ymex T -~
i :/ Bounding
i | Rectangle
Figure 4-23
Bounding rectangle for a region
Yorn T with coordinate extents x.,, X,
+ 4 x Ypuns a0d Y, in the x and v
Xmin Xmax directions.

Section 4-4

Area-Fil] Attributes

161

Chapter 4
Attributes of Output Primitives

162

ot dues

Figure 4-24

Combining a fill pattern with a backgrouna pattern using
Boolean operations, and, or, and xor (exclusive or), and using
simple replacement.

Soft Fill

Modified boundary-fill and flood-fill procedures that are applied to repaint areas
so that the fill color is combined with the background colors are referred to as
soft-fill or tint-fill algorithms. One use for these fill methods is to soften the fill
colors at object borders that have been blurred to antialias the edges. Another is
to allow repainting of a color area that was originally filled with a semitranspar-
ent brush, where the current color is then a mixture of the brush color and the
background colors “behind” the area. In either case, we want the new fill color to
have the same variations over the area as the current fill color.

As an example of this type of fill, the linear soft-fill algorithm repaints an
area that was originally painted by merging a foreground color F with a single
background color B, where F # B. Assuming we know the values for F and B, we
can determine how these colors were originally combined by checking the cur-
rent color contents of the frame buffer. The current RGB color P of each pixel
within the area to be refilled is some linear combination of F and B:

P=tF+ (1 -1HB -1)
where the “transparency” factor t has a value between 0 and 1 for each pixel. For

values of t less than 0.5, the background color contributes more to the interior
color of the region than does the fill color. Vector Equation 4-1 holds for each

RGB component of the colors, with
P = (Pg, Pc. Pp), F = (Fg. F¢. Fp), B = (Bg, B¢, Bp) 4-2)

We can thus calculate the value of parameter t using one of the RGB color com-
ponents as

P~ By
F.— B,

t = (4-3)

where k = R, G, or B; and F, # B;. Theoretically, parameter ¢ has the same value
for each RGB component, but roundoff to integer codes can result in different
values of t for different components. We can minimize this roundoff error by se-
lecting the component with the largest difference between F and B. This value of
t is then used to mix the new fill color NF with the background color, using either
a modified flood-fill or boundary-fill procedure.

Similar soft-fill procedures can be applied to an area whose foreground
color is to be merged with multiple background color areas, such as a checker-
board pattern. When two background colors B; and B, are mixed with fore-
ground color F, the resulting pixel color P is

P=1tF + ;B + (1 -t - t)B, (4-4)

where the sum of the coefficients t, t;, and (1 — {;, = t;} on the color terms must
equal 1. We can set up two simultaneous equations using two of the three RGB
color components to solve for the two proportionality parameters, t; and ;.
These parameters are then used to mix the new fill color with the two back-
ground colors to obtain the new pixel color. With three background colors and
one foreground color, or with two background and two foreground colors, we
need all three RCB equations to obtain the relative amounts of the four colors.
For some foreground and background color combinations, however, the system
of two or three RGB equations cannot be solved. This occurs when the color val-
ucs are all very similar or when they are all proporticnal to each other.

4-5
CHARACTER ATTRIBUTES

The appearance of displayed characters is controlled by attributes such as font,
size, color, and orientation. Attributes can be set both for entire character strings
(text) and for individual characters defined as marker symbols.

Texl Attributes

There are a great many text options that can be made available to graphics pro-
grammers. First of all, there is the choice of font (or typeface), which is a set of
characters with a particular design style such as New York, Courier, Helvetica,
London, Times Roman, and various special symbol groups. The characters in a

Section 4-5

Character Atiributes

lo3

Chapter 4

Attributes of Qutput Primitives

164

font and associated stvle is selected in a PHIGS program by setting an integer
code for the text font parameter t £ in the function

setTextFont tf)
Font options can be made available as predefined sets of grid patterns or as char-
acter sets designed with polylines and spline curves.

Color settings for Jdisplaved text are stored in the systesn attribute list and
used- by the procedures that load character definitions into the frame buffer.
When a character string is to be displayed, the current color is used to set pixel
values in the frame bufter corresponding to the character shapes and positions.
Control of text color (or intensity) is managed from an application program with

setTextCo.ourIndex (tc)
where text color parameter te specifies an allowable color code.

We can adjust text size by scaling the overall dimensions (height and width)
of characters or by scaling only the character width. Character size is specified by
printers and compositors in points, where 1 point is 0.013837 inch (or approxi-
mately 1/72 inch). For example, the text you are now reading is a 10-point font
Point measurements specify the size of the body of a character {Fig. 4-25), but dif-
ferent fonts with the same point specifications can have different character sizes,
depending on the design of the typeface. The distance between the bottomling and
the topline of the characler body is the same for all characters in a particular size
and typeface, but the body width may vary. Proportionally spaced fonts assign a
smaller body width to narrow characters such as i, j, 1, and f compared to broad
characters such as W or M. Character heigh: is defined as the distance between the
baseline and the capline of characters. Kerned characters, such as f and j in Fig.
4-25, typically extend beyond the character-body limits, and letters with descend-
ers (g, j, p, q. y) extend below the baseline. Each character is positioned within
the character body by a font designer to allow suitable spacing along and be-
tween print lines when text is displayed with character bodies touching,.

Text size can be adjusted without changing the width-to-height ratio of
characters with

serCharact erHeight (ch)

character

.

kern
— ~--top ‘/character
—I‘~cap——- - .‘:/ tody
character ‘
height ‘
-~ - base-—} ™= |-~~~ i
i ___ bottom / !
kern

Figure 4-25
Character body.

Height |

Height 2
Height 3

Parameter ch is assigned a real value greater than 0 to set the coordinate height
of capital letters: the distance between baseline and capline in user coordinates.
This setting also affects character-body size, so that the width and spacing of
characters is adjusted to maintain the same text proportions. For instance, dou-
bling the height also doubles the character width and the spacing between char-
acters. Figure 4-26 shows a character string displayed with three different charac-
ter heights.
The width only of text can be set with the function

Figure 4-26
The effect of different character-
height settings on displayed text.

setCharacterExpansionFactor (cw)

where the character-width parameter cw is set to a positive real value that scales
the body width of characters. Text height is unaffected by this attribute setting.
Examples of text displayed with different character expansions is given in Fig.
4-27.

Spacing between characters is controlled separately with

setCharacterSpacing (cs)

where the character-spacing parameter ¢s can be assigned any real value. The
value assigned to cs determines the spacing between character bodies along
print lines. Negative values for cs overlap character bodies; positive values in-
sert space to spread out the displayed characters. Assigning the value 0 to cs
causes text to be displayed with no space between character bodies. The amount
of spacing to be applied is determined by multiplying the value of cs by the
character height (distance between baseline and capline). In Fig. 4-28, a character
string is displayed with three different settings for the character-spacing para-
meter.

The orientation for a displayed character string is set according to the direc-
tion of the character up vector:

setCharacterUpVector {upvect)

Parameter upvect in this function is assigned two values that specify the x and y
vector components. Text is then displayed so that the orientation of characters
from baseline to capline is in the direction of the up vector. For example, with
upvect = (1, 1), the direction of the up vector is 45 and text would be displayed
as shownin Fig. 4-29. A procedure for orienting text rotates characters so that the
sides of character bodies, from baseline to capline, are aligned with the up vector.
The rotated character shapes are then scan converted into the frame buffer.

Section 4-5

Character Attributes

widh($
width 1.0

width 2.0

Figure 4-27

The effect of different
character-width settings on
displayed text.

Spacing 0.0
Spacing 0.5

Spacing 1.0

Figure 4-28

The effect of different
character spacings on
displayed text.

165

Chapter 4

Altributes of Output Primitives

\,
|
/
!
/

/

HORIZONTAL TEXT

Xm—~ r—)>ﬁ——|:urn<\

J

T

:

Figure 4-30

Text path attributes can be set
to produce horizontal or
vertical arrangements of
character strings.

jmiie]

P

gnires skring

Figure 4-31
Text displayed with the four
text-path options.

166

Figure 4-29

Direction of the up vector (a)
controls the orientation of
displayed text (b).

Up Vector
(a)

It is useful in many applications to be able to arrange character strings verti-
cally or horizontally (Fig. 4-30). An attribute parameter for this option is set with
the statement

setTextPath (tp)

where the text-path parameter tp can be assigned the value: right, left, up, or
down. Examples of text displayed with these four options are shown in Fig. 4-31.
A procedure for implementing this option must transform the character patterns
into the specified orientation before transferring them to the frame buffer.

Character strings can also be oriented using a combination of up-vector and
text-path specifications to produce slanted text. Figure 4-32 shows the directions
of character strings gencrated by the various text-path settings for a 45° up vec-
tor. Examples of text generated for text-path values dowr and right with this up
vector are illustrated in Fig. 4-33.

Another handy attribute for character strings is alignment. This attribute
specifies how text is to be positioned with respect to the start coordinates. Align-
ment attributes are set with

setTextAl igument (h, v)

where parameters h and 7 control horizontal and vertical alignment, respectively.
Horizontal alignment is set by assigning h a value of left, centre, or right. Vertical
alignment is set by assigning v a value of fop, cap, half, base, or bottom. The inter-
pretation of these alignment values depends on the current setting for the text
path. Figure 4-34 shows the position of the alignment settings when text is to be
displayed horizontally to the right or vertically down. Similar interpretations
apply to text path values of left and 1p. The “most natural” alignment for a par-
ticular text path is chosen by assigning the value normal to the h and v parame-
ters. Figure 4-35 illustrates common alignment positions tor horizontal and verti-
cal text labels.
A precision specification for text display is given with

sctTextPrec . sion (tpr)

where text precision parameter tpr is assigned one of the values: string, char, or
stroke. The highest-quality text is displayed when the precision parameter is set to
the value stroke. For this precision setting, greater detail would be used in defin-
ing the character shapes, and the processing of attribute selections and other

string-manipulation procedures would be carried out to the highest possible ac-
curacy. The lowest-quality precision setting, string, is used for faster display of
character strings. At this precision, many attribute selections such as text path are
ignored, and string-manipulation procedures are simplified to reduce processing
time.

Marker Attributes

A marker symbol is a single character that can be displayed in different colors
and in different sizes. Marker attributes are implemented by procedures that load
the chosen character into the raster at the defined positions with the specified
color and size.

We select a particular character to be the marker symbol with

setMarkerType {(mt)

where marker type parameter mt is set to an integer code. Typical codes for
marker type are the integers 1 through 5, specifying, respectively, a dot (), a ver-
tical cross (+), an asterisk (¥), a circle (o), and a diagonal cross (X). Displayed
marker types are centered on the marker coordinates.
We set the marker size with
setMarkerSizeScaleFactor (ms)

with parameter marker size ms assigned a positive number. This scaling parame-
ter is applied to the nominal size for the particular marker symbol chosen. Values

greater than 1 produce character enlargement; values less than 1 reduce the
marker size.

. .-~ bottom
left center right

-- top
-- cap

S

I --------- half

(I - base B

sy bottom Figure 4-34
left ! right

Alignment attribute values for

center horizontal and vertical strings.

Section 4-5
Character Attributes

Direction of
Character up Vector

(&)

2 =N
Text Path Directjon
(b}

Figure 4-32

An up-vector specification (a)
controls the direction of the
text path (b).

e}
4 ‘O
v 3
.
Py /\‘S ’Sf‘,
<
c’\/b ’ /P//L
7 (o
(a) (b)

Figure 4-33

The 45° up vector in Fig. 4-32
produces the display (a) for a
down path and the display (b)
for a right path.

167

o Al
o
.
“
A
¢
N
7 =4
O
T
T
G
L%
Digure 4-35

Character-string alighments.

168

NI

GNMEN
CENTIR

L ALIGNMENT

L

G

N

M

E

NoLEEe

© ALGNNEDLT

Marker color is specified with
setPolymarkerColourIndex (mc)

A selected color code for parameter mc is stored in the current attribute list and
used to display subsequently specified marker primitives.

4-6
BUNDLED ATTRIBUTES

With the procedures we have considered so far, each function references a single
attribute that specifies exactly how a primitive is to be displayed with that at-
tribute setting. Thesc spucifications are called individual (or unbundled) attrib-
utes, and they are meant to be used with an output device that is capable of dis-
playing primitives in the way specified. If an application program, employing,
individual attributes, is interfaced to several output devices, some of the devices
may not have the capability to display the intended attributes. A program using
individual color attributes, for example, mav have to be modified to produce ac-
ceptable output on a monochromatic monitor.

Individual attribute commands provide a simple and direct method for
specifying attributes when a single output device is used When several kinds of
output devices are available at a graphics installation, it is convenient for a user
to be able to say how attributes are to be interpreted on each of the different de-
vices. This is accomplished by setting up tables for each output device that lists
sets of attribute values that are to be used on that device to display each primi-
tive tvpe. A particular «ct of attribute values for a primitive on each output de-
vice is then chosen by specifying the appropriate table index. Attributes specified
in this manner arc called bundled attributes. The table for each primitive that de-
fines groups of attribute values to be used when displaying that primitive on a
particular output device 1s called a bundle table.

Attributes that mav be bundled into the workstation table entries are those
that do nut involve coordinate specifications, such as color and line type. The
choice between a bundled or an unbundled specification is made by setting a
switch called the aspect source flag for each of these attributes:

setIndivid.i.ASF (attributeptr, flagptr)
where parameter attr:buteptr points {o a list of attributes, and parameter
flagptr points to the corresponding list of aspect source flags. Each aspect

source flag can be assigned a value of individual or bundled. Attributes that may
be bundled are listed in the following sections.

Bundled Lire Attributes

Entries in the bundle tatle for line attributes on a specitied workstation are set
with the function

setPolylinelepresentation (ws, 1li, lt, lw, lc)

Parameter ws is the workstation identifier, and line index parameter 11 defines Section 4-6

the bundle table position. Parameters 1t, 1w, and lc are then bundled and as- Bundled Attributes
signed values to set the line type, line width, and line color specifications, respec-

tively, for the designated table index. For example, the following statements de-

fine groups of line attributes that are to be referenced as index number 3 on two

different workstations:

setPolylineRepresentation (1, 3, 2, 0.5, 1);
setPolylineRepresentation (4, 3, 1, 1, 7);
A polyline that is assigned a table index value of 3 would then be displayed
using dashed lines at half thickness in a blue color on workstation 1, while on
workstation 4, this same index generates solid, standard-sized white lines.

Once the bundle tables have been set up, a group of bundled line attributes
is chosen for each workstation by specifying the table index value:

setPolylineIndex (1i)

Subsequent polyline commands would then generate lines on each worksta-
tion according to the set of bundled attribute values defined at the table position
specified by the value of the line index parameter 11.

Bundted Area-Fill Attributes

Table entries for bundled area-fill attributes are set with
setInteriorRepresentaticn {(ws, fi, fs, pi, fc)

which defines the attribute list corresponding to fill index i on workstation ws.
Parameters fs, pi, and fc are assigned values for the fill style, pattern index,
and fill color, respectively, on the designated workstation. Similar bundle tables
can also be set up for edge attributes of polygon fill areas.

A particular attribute bundle is then selected from the table with the func-
tion

setInteriorIndex {(fi)
Subsequently defined fill areas are then displayed on each active workstation ac-
cording to the table entry specified by the fill index parameter £i. Other fill-area

attributes, such as pattern reference point and pattern size, are independent of
the workstation designation and are set with the functions previously described.

Bundled Text Attributes
The function

setTextRepresentation (ws, ti, tf, tp., te, ts, tc)

bundles values for text font, precision, expansion factor, size, and color in a table
position for workstation ws that is specified by the value assigned to text index

169

Chapter4 parameter ti. Other text attributes, including character up vector, text path,

Attributes of Output Primitives character height, and text alignment are set individually.
A particular text index value is then chosen with the function

setTextIndex (ti)

Each text function that is then invoked is displayed on each workstation with the
set of attributes referenced by this table position.

Bundled Marker Attributes
Table entries for bundied marker attributes are set up with

setPolymarkerRepresentation {(ws, mi, mt, ms, mc)

This defines the marker type, marker scale factor, and marker color for index mi
on workstation ws. Bundle table selections are then made with the function

setPolymarkerIndex (mi)

4-7
INQUIRY FUNCTIONS

Current settings for attributes and other parameters, such as workstation types
and status, in the system lists can be retrieved with inquiry functions. These
functions allow current values to be copied into specified parameters, which can
then be saved for later reuse or used to check the current state of the system if an
€ITOr OCCuUrs.

We check current attribute values by stating the name of the attribute in the
inquiry function. For example, the functions

inguirePelviinelndex (laszli)
and

inquirelIrteriorColourIndex (lastfco)
copy the current values for line index and fill color into parameters lastli and
lastfc. The following program segment illustrates reusing the current line ty pe

value after a set of lines are drawn with a new line type.

inquire¢Linetype (oldlu);

setLinectype (newlt);

setlLinetype {oldlt);

170

4-8
ANTIALIASING

Displayed primitives generated by the raster algorithms discussed in Chapter 3
have a jagged, or stairstep, appearance because the sampling process digitizes co-
ordinate points on an object to discrete integer pixel positions. This distortion of
information due to low-frequency sampling (undersampling) is called aliasing.
We can improve the appearance of displayed raster lines by applying antialias-
ing methods that compensate for the undersampling process.

An example of the effects of undersampling is shown in Fig. 4-36. To avoid
losing information from such periodic objects, we need to set the sampling fre-
quency to at least twice that of the highest frequency occurring in the object, re-
ferred to as the Nyquist sampling frequency (or Nyquist sampling rate) f;:

fs = 2fmax (4-5)

Another way to state this is that the sampling interval should be no larger than
one-half the cycle interval {called the Nyquist sampling interval). For x-interval
sampling, the Nyquist sampling interval Ax, is

Ax, = szq'tle (4-6)

where Axyge = 1/frax In Fig. 4-36, our sampling interval is one and one-half
times the cycle interval, so the sampling interval is at least three times too big,. 1f
we want to recover all the object information for this example, we need to cut the
sampling interval down to one-third the size shown in the figure.

One way to increase sampling rate with raster systems is simply to display
objects at higher resolution. But even at the highest resolution possible with cur-
rent technology, the jaggies will be apparent to some extent. There is a limit to
how big we can make the frame buffer and still maintain the refresh rate at 30 to
60 frames per second. And to represent objects accurately with continuous para-
meters, we need arbitrarily small sampling intervals. Therefore, unless hardware
technology is developed to handle arbitrarily large frame buffers, increased
screen resolution is not a complete solution to the aliasing problem.

NVVV

. ¥ * . + =— Sampling
Positions
(a)

Figure 4-36
Sampling the periodic shape in (a) at
)) the marked positions produces the

aliased lower-frequency
b representation in (b).

Section 4-8

Antialiasing

171

Chapter 4

Attributes of Qutput Primitives

With raster systeins that are capable of displaying more than two intensity
levels (color or gray scale), we can apply antialiasing methods to modify pixel in-
tensities. By appropriately varying the intensities of pixels along the boundaries
of primitives, we can smooth the edges to lessen the jagged appearance.

A straightforward antialiasing method is to increase sampling rate by treat-
ing the screen as if it were covered with a finer grid than is actually available. We
can then use multiple sample points across this finer grid to determine an appro-
priate intensity level for each screen pixel. This technique of sampling object
characteristics at a high resolution and displaying the results at a lower resolu-
tion is called supersampling (or postfiltering, since the general method involves
computing intensities at subpixel grid positions, then combining the results to
obtain the pixel intensities). Displayed pixel positions are spots of light covering
a finite area of the screen, and not infinitesimal mathematical points. Yet in the
line and fill-area algonithms we have discussed, the intensity of each pixel is de-
termined by the location of a single point on the object boundaryv. By supersam-
pling, we obtain intensity intormation from multiple points that contribute to the
overall intensity of a pixel.

An alternative to supersampling is to determine pixel intensity by calculat-
ing the areas of overlap of each pixel with the objects to be displaycd. Antialias-
ing by computing overlap areas is referred to as area sampling (or prefiltering,
since the intensity of the pixel as a whole is determined without calculating sub-
pixel intensities). Pixel overlap areas are obtained bv determining where object
boundaries intersect individual pixel boundaries.

Raster objects can also be antialiased by shifting, the display location of
pixel areas. This technique, called pixel phasing, is applied by “microposition-
ing” the electron beam in relation to object geometry.

Supersampling Straight Line Segments

Supersampling straight lines can be performed in several ways. For the gray-
scale display of a straight-line segment, we can divide cach pixel into a number
of subpixels and count the number of subpixels that are along the line path. The
intensity level for each pixel is then set to a value that is proportional to this sub-
pixel count. An example of this method is given in Fig 4-37. Each square pixel
area is divided into nine equal-sized square subpixels, and the shaded regions
show the subpixels that would be selected by Bresenham's algorithm. This
scheme provides for three intensity settings above zero, since the maximum
number of subpixels that can be selected within anvy pixel is three. For this exam-
ple. the pixel at position (10, 20) is set to the maximum tensity (level 3); pixels
at (11, 21) and (12, 21) are each set to the next highest intensity (level 2); and pix-
els at (11, 20) and (12, 22) are each set to the lowest intensity above zero (level 1).
Thus the line intensity 1s spread out over a greater number of pixels, and the
stairstep effect is smoothed by displaying a somewhat blurred line path in the
vicinity of the stair steps (between horizontal runs). If we want to use more inten-
sity levels to antialiase the line with this methad, we increase the number of sam-
pling positions across each pixel. Sixteen subpixels gives us four intensity levels
above zero; twenty-five subpixels gives us five levels; and so on,

In the supersampling example of Fig. 4-37, we considered pixel areas of fi-
nite size, but we treated the line as a mathematical entity with zero width. Actu-
ally, displayed lines have a width approximately equal to that of a pixel. If we
take the finite width of the line into account, we can perform supersampling by
setting each pixel intensity proportional to the number of subpixels inside the

| Figure 4-37
| ‘ Supersampling subpixel positions
- along a straight line segment whose
20 ' —_ left endpoint is at screen
) ' o coordinates (10, 20).

polygon representing tne line area. A subpixel can be considered to be inside the
line if its lower left corner is inside the polygon boundaries. An advantage of this
supersampling procedure is that the number of possible intensity levels for each
pixel is equal to the total number of subpixels within the pixel area. For the ex-
ample in Fig. 4-37, we can represent this line with finite width by positioning the
polygon boundaries parallel to the line path as in Fig. 4-38. And each pixel can
now be set to one of nine possible brightness levels above zero.

Another advantage of supersampling with a finite-width line is that the
total line intensity is distributed over more pixels. In Fig. 4-38, we now have the
pixel at grid position (10, 21) turned on (at intensity level 2), and we also pick up
contributions from pixels immediately below and immediately to the left of posi-
tion (10, 21). Also, if we have a color display, we can extend the method to take
background colors into account. A particular line might cross several different
color areas, and we can average subpixel intensities to obtain pixel color settings.
For instance, if five subpixels within a particular pixel area are determined to be
inside the boundaries for a red line and the remaining four pixels fall within a
blue background area, we can calculate the color for this pixel as

Pixelgior = (5 - red + 4 - blue)/9
The trade-off for these gains from supersampling a finite-width line is that
identifying interior subpixels requires more calculations than simply determining

which subpixels are along the line path. These calculations are also complicated
by the positioning of the line boundaries in relation to the line path. This posi-

21

| ’ R Figure 4-38
- I Supersampling subpixel positions
u) ! ,_.% in relation to the interior of a line of
11 . finite width.

Section 4-8

Antialiasing

173

Chaptes 4

Attnibutes of Quiput Primitives

Figure 4-39
Relative weights for a grid of
3 by 3 subpixels.

174

tioning depends on the slope of the line. For a 45° line, the line path is centered
on the polygon area; but for either a horizontal or a vertical line, we want the line
path to be one of the polygon boundaries. For instance, a horizontal line passing
through grid coordinates (10, 20) would be represented as the polvgon bounded
by horizontal grid lines v = 20 and y = 21. Similarly, the polygon representing a
vertical line through (10, 20) would have vertical boundaries along grid lines x =
10 and x = 11. For lines with slope | m | < 1, the mathematical line path is posi-
tioned propertionately closer to the lower polygon boundary; and for lines with
slope |m | > 1, this line path is placed closer to the upper polygon boundary.

Pixel-Weighting Masks

Supersampling algorithms are often implemented by giving more weight to sub-
pixels near the center of a pixel area, since we would expect these subpixels to be
more important in determining the overall intensity of a pixel. For the 3 by 3
pixel subdivisions we have considered so far, a weighting scheme as in Fig. 4-39
could be used. The center subpixel here is weighted four times that of the corner
subpixels and twice that of the remaining subpixels. intensities calculated for
each grid of nine subpixels would then be averaged so that the center subpixel is
weighted by a factor of 1/4; the top, bottom, and side subpixels are each
weighted by a factor of 1/8; and the corner subpixels are each weighted by a fac-
tor of 1/16. An atray of values specifying the relative imvortance of subpixels is
sometimes referred to as a “mask” of subpixel weights. Similar masks can be set
up for larger subpixel grids. Also, these masks are often extended to include con-
tributions from subpixels belonging to neighboring pixels, so that intensities can
be averaged over adjacent pixels.

Area Sampling Straight Line Segments

We perform area sampling for a straight line by setting each pixel intensity pro-
portional to the area of overlap of the pixel with the finite-width line. The line
can be treated as a rectangle, and the section of the line area between two adja-
cent vertical (or two adjacent horizontal) screen grid lines is then a trapezoid.
Overlap areas for pixels are calculated by determining how much of the trape-
zoid overlaps each pixel in that vertical column (or horizontal row). In Fig. 4-38,
the pixel with screen grid coordinates (10, 20) is about 90 percent covered by the
line area, so its intensity would be set to 90 percent of the maximum intensity.
Similarly, the pixel at (10 21) would be set to an intensitv of about 15 percent of
maximum. A method tfor estimating pixel overlap areas is illustmtedbe the su-
persampling example in Fig. 4-38. The total number of subpixels within the line
boundaries is approximately equal to the overlap area, and this estimation is im-
proved by using finer subpixel grids. With color displays, the areas of pixel over-
lap with diZferent color regions is calculated and the final pixel color is taken as
the average color of the various overlap areas.

Filtering Techniques

A more accurate method for antialiasing lines is to use filtering techniques. The
method is similar to applying a weighted pixel mask, but now we imagine a con-
tinuous weighting surface (or filter function) covering the pixel. Figure 4-40 shows
examples of rectangular, conical, and Gaussian filter functions. Methods for ap-
plying the filter function are similar to applying a weighting mask, but now we

integrate over the pixel surface to obtain the weighted average intensity. lo re-
duce computation, table lookups are commonly used to evaluate the integrals.

Pixel Phasing

On raster systems that can address subpixel positions within the screen grid,
pixel phasing can be used to antialias objects. Stairsteps along a line path or ob-
ject boundary are smoothed out by moving (micropositioning) the electron beam
to more nearly approximate positions specified by the object geometry. Systems
incorporating this technique are designed so that individual pixel positions can
be shifted by a fraction of a pixel diameter. The electron beam is typically shifted
by 1/4,1/2, or 3/4 of a pixel diameter to plot points closer to the true path of a
line or object edge. Some systems also allow the size of individual pixels to be ad-
justed as an additional means for distributing intensities. Figure 441 illustrates
the antialiasing effects of pixel phasing on a variety of line paths.

Compensating for Line Intensity Differences

Antialiasing a line to soften the stairstep effect also compensates for another
raster effect, illustrated in Fig. 4-42. Both lines are plotted with the same number
of pixels, yet the diagonal line is longer than the horizontal line by a factor of V2.
The visual effect of this is that the diagonal line appears less bright than the hori-
zontal line, because the diagonal line is displayed with a lower intensity per unit
length. A line-drawing algorithm could be adapted to compensate for this effect
by adjusting the intensity of each line according to its slope. Horizontal and verti-
cal lines would be displayed with the lowest intensity, while 45° lines would be
given the highest intensity. But if antialiasing techniques are applied to a display,

V-t

[

Figure 4-40

Common filter functions used to antialias line paths. The volume of
each filter is normalized to 1, and the height gives the relative weight at
any subpixel position.

Section 4-8

Antialiasing

175

Chapter 4

Attributes of Output Primitives

176

intensities are automatically compensated. When the finite width of lines is taken
into account, pixel intensities are adjusted so that lines display a total intensity
proportional to their length.

Antialiasing Area Boundaries

The antialiasing concepts we have discussed for lines can also be applied to the
boundaries of areas to remove their jagged appearance. We can incorporate these
procedures into a scan-line algorithm to smooth the area outline as the area is
generated.

If system capabilities permit the repositioning of pixels, area boundaries can
be smoothed by adjusting boundary pixel positions so that they are along the line
defining an area boundary. Other methods adjust each pixel intensity at a bound-
ary position according to the percent of pixel area that is inside the boundary. In
Fig. 4-43, the pixel at position (x, ¥) has about half its area inside the polygon
boundary. Therefore, the intensity at that position would be adjusted to one-half
its assigned value. At the next position (x + 1, y + 1) along the boundary, the in-
tensity is adjusted to about one-third the assigned value for that point. Similar
adjustments, based on the percent of pixel area coverage, are applied to the other
intensity values aronnd the boundary.

18) bi

Figure 4-41

Jagged lines (a) , plotted on the Merlin 9200 system, are smoothed

(b) with an antialiasing technjque called pixel phasing. This technique
increases the number of addressable points on the system from 768 X
576 to 3072 x 2304. (Courtesy of Megatek Corp.)

- Figure 4-42
Unequal-length lines displayed
-—— - with the same number of pixels in
[1 each line.

Supersampling methods can be applied by subdividing the total area and
determining the number of subpixels inside the area boundary. A pixel partition-
ing into four subareas is shown in Fig. 444. The original 4 by 4 grid of pixels is
turned into an 8 by 8 grid, and we now process eight scan lines across this grid
instead of four. Figure 4-45 shows one of the pixel areas in this grid that overlaps
an object boundary. Along the two scan lines we determine that three of the sub-
pixel areas are inside the boundary. So we set the pixel intensity at 75 percent of
its maximum value.

Another method for determining the percent of pixel area within a bound-
ary, developed by Pitteway and Watkinson, is based on the midpoint line algo-
rithm. This algorithm selects the next pixel along a line by determining which of
two pixels is ﬁoxr to the line by testing the location of the midposition between
the two pixels. As in the Bresenham algorithm, we set up a decision parameter p
whose sign tells us which of the next two candidate pixels is closer to the line. By
slightly modifying the form of p, we obtain a quantity that also gives the percent
of the current pixel area that is covered by an object.

We first consider the method for a line with slope m in the range from 0 to 1.
In Fig. 4-46, a straight line path is shown on a pixel grid. Assuming that the pixel
at position (x;, y,) has been plotted, the next pixel nearest the line at ¥ = x,+1 is
either the pixel at y, or the one at y, + 1. We can determine which pixel is nearer
with the calculation

Y = Ymig = (Mm@, + 1) + b] — (y + 0.5) “@-7
This gives the vertical distance from the actual y coordinate on the line to the

halfway point between pixels at position y; and y; + 1. If this difference calcula-
tion is negative, the pixel at yy is closer to the line. If the difference is positive, the

. ‘ Figure 4-43
. — Adjusting pixel intensities along an
I area boundary.

Section 4-8

Antialiasing

177

Chapter 4
Attributes of Output Primitives

T T T

| | I 1
ol el il St it Tl Bl Bl

! !) 1

T T T T

1 1 1]
il il it e il Bl Al Rl

) I] 1

T 1 T T

I ! I |
F-r -

| | 1 1

T T T T

1 i I 1
F-r == oo e

I ! I 1

Figure 4-44

A 4 by 4 pixel section of a
raster display subdivided into
an 8 by 8 grid.

Figure 4-45

A subdivided pixel area with
three subdivisions inside an
object boundary line.

Figure 4-46

Boundary edge of an area
passing through a pixel grid
section.

178

pixel at y; + 1 is closer. We can adjust this calculation so that it produces a posi-
tive number in the range from 0 to 1 by adding the quantity 1 — m:

p=Ilmx;+ 1)+ bl — (y, +05)+ 0 - m) (4-8)

Now the pixel at y, is nearer if p <1 — m, and the pixel at y;, + 1 is nearer if
p>1—m

Parameter p also measures the amount of the current pixel that is over-
lapped by the area. For the pixel at (x, y,) in Fig. 447, the interior part of the
pixel has an area that can be calculated as

area =mx, +b —y, +05 4-9)

This expression for the overlap area of the pixel at (x, y,) is the same as that for
parameter p in Eq. 4-8. Therefore, by evaluating p to determine the next pixel po-

"sition along the polygon boundary, we also determine the percent of area cover-

age for the current pixel.

We can generalize this algorithm to accommodate lines with negative
slopes and lines with slopes greater than 1. This calculation for parameter p could
then be incorporated into a midpoint line algorithm to locate pixel positions and
an object edge and to concurrently adjust pixel intensities along the boundary
lines. Also, we can adjust the calculations to reference pixel coordinates at their
lower left coordinates and maintain area proportions as discussed in Section 3-10.

At polygon vertices and for very skinny polygons, as shown in Fig. 4-48, we
have more than one boundary edge passing through a pixel area. For these cases,
we need to modify the Pitteway-Watkinson algorithm by processing all edges
passing through a pixel and determining the correct interior area.

Filtering techniques discussed for line antialiasing can also be applied to
area edges. Also, the various antialiasing methods can be applied to polygon
areas or to regions with curved boundaries. Boundary equations are used to esti-
mate area overlap of pixel regions with the area to be displayed. And coherence
techniques are used along and between scan lines to simplify the calculations.

SUMMARY

In this chapter, we have explored the various attributes that control the appear-
ance of displayed primitives. Procedures for displaying primitives use attribute
settings to adjust the output of algorithms for line-generation, area-filling, and
text-string displays.

The basic line attributes are line type, line color, and line width. Specifica-
tions for line type include solid, dashed, and dotted lines. Line-color specifica-
tions can be given in terms of RGB components, which control the intensity of
the three electron guns in an RGB monitor. Specifications for line width are given
in terms of multiples of a standard, one-pixel-wide line. These attributes can be
applied to both straight lines and curves.

To reduce the size of the frame buffer, some raster systems use a separate
color lookup table. This limits the number of colors that can be displayed to the
size of the iookup table. Full-color systems are those that provide 24 bits per pixel
and no separate color lookup table.

e
£, - Ln

Figure 4-47
Overlap area of a pixel rectangle, centered at position (x;, y;), with the
interior of a polygon area.

Fill-area attributes include the fill style and the nll color or the fill pattern.
When the fill style is to be solid, the fill color specifies the color for the solid fill of
the polygon interior. A hollow-fill style produces an interior in the background
color and a border in the fill color. The third type of fill is patterned. In this case, a
selected array pattern is used to fill the polygon interior.

An additional fill option provided in some packages is soft fill. This fill has
applications in antialiasing and in painting packages. Soft-fill procedures provide
a new fill color for a region that has the same variations as the previous fill color.
One example of this approach is the linear soft-fill algorithm that assumes that
the previous fill was a linear combination of foreground and background colors.
This same linear relationship is then determined from the frame-buffer settings
and used to repaint the area in a new color.

Characters, defined as pixel grid patterns or as outline fonts, can be dis-
played in different colors, sizes, and orientations. To set the orientation of a char-
acter string, we select a direction for the character up vector and a direction for
the text path. In addition, we can set the alignment of a text string in relation to
the start coordinate position. Marker symbols can be displayed using selected
characters of various sizes and colors.

Graphics packages can be devised to handle both unbundled and bundled
attribute specifications. Unbundled attributes are those that are defined for only
one type of output device. Bundled attribute specifications allow different sets of
attributes to be used on different devices, but accessed with the same index num-
ber in a bundle table. Bundle tables may be installation-defined, user-defined, or
both. Functions to set the bundle table values specify workstation type and the
attribute list for a given attribute index.

To determine current settings for attributes and other parameters, we can
invoke inquiry functions. In addition to retrieving color and other attribute infor-
mation, we can obtain workstation codes and status values with inquiry func-
tions.

Because scan conversion is a digitizing process on raster systems, displayed
primitives have a jagged appearance. This is due to the undersampling of infor-
mation which rounds coordinate values to pixel positions. We can improve the
appearance of raster primitives by applying antialiasing procedures that adjust
pixel intensities. One method for doing this is to supersample. That is, we con-
sider each pixel to be composed of subpixels and we calculate the intensity of the

Figure 4-48

Polygons with more than one

boundary line passing
through individual pixel
regions.

179

Chapter 4

Attributes of Output Primitives

180

subpixels and average the values of all subpixels. Alternatively, we can perform
area sampling and determine the percentage of area coverage for a screen pixel,
then set the pixel intensity proportional to this percentage. We can also weight
the subpixel contributions according fo position, giving higher weights to the
central subpixels. Another method for antialiasing is to build special hardware
configurations that can shift pixel positions.

Table 4-4 lists the attributes discussed in this chapter for the output primi-
tive classifications: line, fill area, text, and marker. The attribute functions that
can be used in graphics packages are listed for each category.

TABLE 4-4
SUMMARY OF ATTRIBUTES
Qutput Bundled-
Primitive Associated Attribute-Setting Attribute
Type Attributes Functions Functions
Line Type setLinetype setPolylinelndex
Width setLineWidthScaleFactor setPolylineRepresentation
Color setPolylineColourIndex
Fill Area Fill Style setInteriorStyle setInteriorIndex
Fill Color setInteriorColorIndex setInteriorRepresentation
Pattern setInteriorStylelIndex
setPatternRepresentation
setPatternSize
setPatternReferencePoint
Text Font setTextFont setText Index
Color setTextColourIndex setTextRepresentation
Size setCharacterHeight
setCharacterExpansionFactor
Orientation setCharacterUpVector
setTextPath
setTextAlignment
Marker Type setMarkerType setPolymarkerIndex
Size setMarkerSizeScaleFactor setPolymarkerRepresentation
Color setPolymarkerColourIndex
REFERENCES

Color and grayscale considerations are discussed in Crow (1978) and in Heckbert (1982).

Soft-filt techniques are given in Fishkin and Barsky (1984).

Antialiasing techniques™ are discussed in Pitteway and Watkinson (1980), Crow (1981),
Turkowski (1982), Korein and Badler (1983), and Kirk and Avro, Schilling, and Wu (1991),

Attribute functions in PHIGS are discussed in Howard et al. (1991), Hopgood and Duce
(1991), Gaskins (1992), and Blake (1993). For information on GKS workstations and atirib-
utes, see Hopgood et al. (1983) and Enderle, Kansy, and Pfaff (1384).

EXERCISES

4-1. Implement the line-type function by modifying Bresenham’s tine-drawing algorithm to
display either solid, dashed, or dotted lines.

4-2.
4-3.

4.4,
4-5.

4-6.

4-7.

4-8.

4-9.

4-10.

4-11.

4.13.
414,

4-16.

4-17.

4-20.
4-21,

Implement the line-type function with a midpoint hine algerithm to display either
solid, dashed, or dotted lines.

Devise a paratlel method for impiementing the line-type function

Devise a parallel method for implementing the line-width function.

A line specified by two endpoints and a width can be converted to a rectangular poly-
gon with four vertices and then displayed using a scan-line method. Develop an effi-
cient algorithm for computing the four vertices needed to define such a rectangle
using the line endpoints and line width

implement the line-width function in a line-drawing srogram so that any one of three
line widths can be displayed.

Write a program to output a line graph of three data sets defined over the same x coor-
dinate range. Input to the program is to include the three sets of data values, labeling
for the axes, and the coordinates for the display aiea on the screen. The data sets are
to be scaled to fit the specified area, each plotted line is to be displayed n a different
line type {solid, dashed, dotted), and the axes are to be labeled. (Instead of changing
the line type, the three data sets can be piotted in different colors.)

Set up an algorithm for displaving thick tines with either butt caps, round caps, or pre-
jecting square caps. These options can be provided in an option menu.

Devise an algorithm for displaying thick polylines with either a miter join, a round
join, or a bevel join. These options can be provided 11 an option menu.

Implement pen and brush menu options for a line-drawing procedure, including at
least two options: round and square shapes.

Modity a line-drawing algorithm so that the intensity of the output line is set according
to its slope. That is, by adjusting pixel intensities according to the value of the slope,
all I:nes are displayed with the same intensity per unit length.

2. Define and rmplement a function for controlling the line type tsolid, dashed, dotted) of

displayed ellipses.

Define and implement a function for setting the width of displayed ellipses.

Write a routine to display a bar graph in anv specified screen area. input is to include
the data set, labeling for the coordinate axes, and the coordinates for the screen area.
The data set is to be scaled to fit the designated screen area, and the bars are to be dis-
played in designated colors or patierns.

. Write a procedure 10 display two data sets defined cver the same x-coordinate range,

with the data values scaled 10 fit a specified region of the display screen. The bars for
one of the data sets are to be displaced horizontally to produce an overlapping bar
pattern for casy comparison of the twa sets of data. tse a different color or a different
fill pattern for the two sets of bars.

Devise an algorithm for implementing a color lookup table and the setColourRep-
resentation operation.

Suppose you have a system with an 8-inch by 10-inch video screen that can display
100 pixels per inch. If a color lookup table with 64 positions is used with this system,
what is the smallest possible size (in bytes) for the frame buffer?

. Consider an RGB raster system that has a 512-by-512 frame buffer with a 20 bits per

pixel and a color lookup table with 24 bits per pixe.. (a) How many distinct gray lev-
els can be displayed with this system? (b) How many distinct colors (including gray
levels) can be displayed? (c) How many colors can be displayed at any one time?
(d) What is the total memary size? () Explain two methods for reducing memory size
while maintaining the same color capabilities.

. Modify the scan-line algorithm to apply any specified rectangular fill pattern to a poly-

gon interior, starting from a designated pattern position.
Write a procedure to fill the interior of a given ellipse with a specified pattern.
Write a procedure to implement the secPacternRepresentat ion function.

fxercises

181

Chapter 4

Attributes of Qutput Primitives

182

4-22.

4-25,

4-26.

4-27.
4-28.

4-32.
4-33
4-34.

4-35.

Define and implement a procedure for changing the size of an existing rectangular till
pattern.

. Write a procedure 1o implement a soft-fill algorithm. Carefully define what the soft-fill

algorithm is to accomplish and how colors are to be combined.

. Devise an algorithm “or adjusting the height and width of « haracters defined as rectan-

gular grid patterns

implement routines for setting the character up vector and the text path for controlling
the display of character strings.

Write a program 1o align text as specified by input values for the alignment parame-
ters.

Develop procedures for implementing the marker attribute functions.

Compare attribute-implementation procedures needed by systems that employ bun-
dled attributes to those needed by systems using unbundled aftributes.

. Develop procedures for storing and accessing attributes in unbundled system attribute

tables. The procedures are to be designed to store designated attribute values in the
system tables, to pass attributes to the appropriate output routines, and to pass attrib-
utes to memory locations specified in inquiry commands.

. Set up the same procedures described in the previous exercise for bundled system at-

tribute tables.

. Implement an antialiasing procedure by extending Bresenham’s line aigorithm to ad-

just pixel intensities in the vicinity of a line path.

Implement an antialiasing procedure for the midpoint line algorithm.

Develop an algorithi for antialiasing elliptical boundaries.

Modify the scan-line algorithm for area fill to incorporate antialiasing. Use coherence
techniques to reduce calculations on successive scan lines

Write a program to implement the Pitteway-Watkinoon arualiasing algorithm
as a scan-line procedure to fill a polygon interior. Use the routine
setPixel (%, y, intensity) toload the imensity value into the frame buffer at
location (x, y).

184

W ith the procedures for displaying output primitives and their attributes,
we can create a variety of pictures and graphs. In many applications,

there is also a need for altering or manipulating displays. Design applications
and facility layouts are created by arranging the orientations and sizes of the
component parts of the scene. And animations are produced by moving the
“camera” or the objects in a scene along animation paths. Changes in orientation,
size, and shape are accomplished with geometric transformations that alter the
coordinate descriptions of objects. The basic geometric transformations are trans-
lation, rotation, and scaling. Other transformations that are often applied to ob-
jects include reflection and shear. We first discuss methods for performing geo-
metric transformations and then consider how transformation functions can be
incorporated into graphics packages.

5-1
BASIC TRANSFORMATIONS

Here, we first discuss general procedures for applying translation, rotation, and
scaling parameters to reposition and resize two-dimensional objects. Then, in
Section 5-2, we consider how transformation equations can be expressed in a
more convenient matrix formulation that allows efficient combination of object
transformations.

Translation

A translation is applied to an object by repositioning it aiong a straight-line path
from one coordinate location to another. We translate a two-dimensional point by
adding translation distances, {, and t,, to the original coordinate position (x, y) to
move the point to a new position (x', v*) (Fig. 5-1).

X'=x+t, V=Yt (5-1}

The translation distance pair (t,, t.) is called a translation vector or shift vector.

We can express the translation equations 5-1 as a single matrix equation by
using column vectors to represent coordinate positions and the translation vec-
tor:

P=[x’} P’=[I],}, T=[t’} (5-2)
X3 X5 t,

This allows us to write the two-dimensional translation equations in the matrix
form:

PP=P+T (3-3)

Sometimes matrix-transformation equations are expressed in terms of coordinate
row vectors instead of column vectors. In this case, we would write the matrix
representations as P = [x y} and T = [l, t,). Since the column-vector representa-
tion for a point is standard mathematical notation, and since many graphics
packages, for example, GKS and PHIGS, also use the column-vector representa-
tion, we will follow this convention.

Translation is a rigid-body transformation that moves objects without defor-
mation. That is, every point on the object is translated by the same amount. A
straight line segment is translated by applying the transformation equation 5-3 to
each of the line endpoints and redrawing the line between the new endpoint po-
sitions. Polygons are translated by adding the translation vector to the coordinate
position of each vertex and regenerating the polygon using the new set of vertex
coordinates and the current attribute settings. Figure 5-2 illustrates the applica-
tion of a specified translation vector to move an object from one position to an-
other.

Similar methods are used to translate curved objects. To change the position
of a circle or ellipse, we translate the center coordinates and redraw the figure in
the new location. We translate other curves (for example, splines) by displacing
the coordinate positions defining the objects, then we reconstruct the curve paths
using the translated coordinate points.

Figure 5-2
7 {—; Moviqg a polygc?n from positio‘n (a)
5 10 15 20 to position (b) with the translation
ib) vector (-5.50, 3.75).

e

Figure 5-1
Translating a point from

position P to'position P’ with

translation vector T.

o

P
.__—__‘_—.
x!
Figure 5-3
Rotation of an object through

angle 6 about the pivot point
(x5 Y7

Figure 5-4

Rotation of a point from
position (x, y) to position
{x’, y) through an angle 6
relative to the coordinate
origin. The original angular
displacement of the point
from the x axis is ¢.

186

Rotation

A two-dimensional rotation is applied to an object by repositioning it along a cir-
cular path in the xy plane. To generate a rotation, we specify a rotation angle 6
and the position (x,, y,) of the rotation point (or pivot point) about which the ob-
ject is to be rotated (Fig. 5-3). Positive values for the rotation angle define coun-
terclockwise rotations about the pivot point, as in Fig. 5-3, and negative values
rotate objects in the clockwise direction. This transformation can also be de-
scribed as a rotation about a rotation axis that is perpendicular to the xy plane
and passes through the pivot point.

We first determine the transformation equations for rotation of a point posi-
tion P when the pivot point is at the coordinate origin. The angular and coordi-
nate relationships of the original and transformed point positions are shown in
Fig. 5-4. In this figure, r is the constant distance of the point from the origin, angle
¢ is the original angular position of the point from the horizontal, and 6 is the ro-
tation angle. Using standard trigonometric identities, we can express the trans-
formed coordinates in terms of angles # and ¢ as

x'=rcos{¢p+ 60)=rcosdcos §~rsin¢gsind

(5-4)
y'=rsin{¢ + 6 =rcos$siné + rsin ¢ cos 9
The original coordinates of the point in polar coordinates are
X = rCos @, y=rsin ¢ (5-5)

Substituting expressions 5-5 into 5-4, we obtain the transformation equations for
rotating a point at position (x, y} through an angle 8 about the origin:
x'=xcosf—ysing
¥y =xsin@+ycosd (5-0)

With the column-vector representations 5-2 for coordinate positions, we can write
the rotation equations in the matrix form:

where the rotation matrix is

5-8

| cos @ —sin@
"1 sing cos 6

When coordinate positions are represented as row vectors instead of col-
umn vectors, the matrix product in rotation equation 5-7 is transposed so that the
transformed row coordinate vector [x’ '] is calculated as

P'T=(R-P)
—_ PT . RT

where PT = |1 y], and the transpose R’ of matrix R is obtained by interchanging
rows and columns. For a rotation matrix, the transpose is obtained by simply
changing the sign of the sine terms.

Rotation of a point about an arbitrary pivot position is iltustrated in Fig. 5-5.
Using the trigonometric relationships in this figure, we can generalize Eqs. 5-6 to
obtain the transformation equations for rotation of a point about any specified ro-
tation position (x,, y,):

fl

x"=x,+ (- x)cos ¥~ (y- y,)sin b

v =y + QG —x)sinf+(y- y)cos (5-9

These general rotation equations differ from Eqgs. 5-6 by the inclusion of additive
terms, as well as the multiplicative factors on the coordinate values. Thus, the
matrix expression 5-7 could be modified to include pivot coordinates by matrix
addition of a column vector whose elements contain the additive (translational)
terms in Eqs. 5-9. There are better ways, however, to formulate such matrix equa-
tions, and we discuss in Section 5-2 a more consistent scheme for representing the
transformation equations.

As with translations, rotations are rigid-body transformations that move
objects without deformation. Every point on an object is rotated through the
same angle. A straight line segment is rotated by applying the rotation equations
5-9 to each of the line endpoints and redrawing the line between the new end-
point positions. Polygons are rotated by displacing each vertex through the speci-
fied rotation angle and regenerating the polygon using the new vertices. Curved
lines are rotated by repositioning the defining points and redrawing the curves.
A circle or an ellipse, for instance, can be rotated about a noncentral axis by mov-
ing the center position through the arc that subtenas the specified rotation angle.
An ellipse can be rotated about its center coordinates by rotating the major and
minor axes.

Scaling

A scaling transformation alters the size of an object. This operation can be car-
ried out for polygons by multiplying the coordinate values (x, y) of each vertex
by scaling factors s, and s, to produce the transformed coordinates {x', y'):

X=X s, y'=y'sy (5-10)

Scaling factor s, scales objects in the x direction, while s, scales in the y direction.
The transformation equations 5-10 can also be written in the matrix form:

x'y |so0 X .
“|o S . v 6-11)
or
PP=S-P (5-12)

where S is the 2 by 2 scaling matrix in Eq. 5-11.

Any positive numeric values can be assigned to the scaling factors s, and s,
Values less than 1 reduce the size of objects; values greater than 1 produce an en-
largement. Specifying a value of 1 for both s, and s, leaves the size of objects un-

changed. When s, and s, are assigned the same value, a uniform scaling is pro-

Section 5-1

Basic Transformations

Figure 5-5

Rotating a point from
position (x, y) to position
x;/y") through an angle 8
about rotation point (x, , y,).

Chapter 5

Twao-Dimensional Geometric
Transformations

(a)
{b)
Figure 5-6
Turning a square (a) into a

rectangle (b) with scaling
factorss, = 2and s, = 1.

Figure 5-7

A line scaled with Eq 5-12
using s, = 5, = 0.5 is reduced
insize and moved closer to
the coordinate ongin.

i ° P,
ixy, yy

Figure 5-8

Scaling relative to a chosen
fixed point (x,,). Distances
from each polygon vertex to
the fixed point are scaled by
transformation equations
5-13.

188

duced that maintains relative object proportions. Unequai values for s, and s, re-
sult in a differential scaling that is often used in design applications, where pic-
tures are constructed from a few basic shapes that can be adjusted by scaling and
positioning transformations (Fig. 5-6).

Objects transformed with Eq. 5-11 are both scaled and repositioned. Scaling
factors with values less than 1 move objects closer to the coordinate origin, while
values greater than 1 move coordinate positions farther from the origin. Figure
5-7 iltustrates scaling a line by assigning the value 0.5 to both s, aud s, in Eq.
5-11. Both the line length and the distance from the origin are reduced by a
factor of 1/2.

We can control the location of a scaled object by choosing a position, called
the fixed point, that is to remain unchanged after the scaling transformation. Co-
ordinates for the fixed point (xy, y,) can be chosen as one of the vertices, the object
centroid, or any other position (Fig. 5-8). A polygon is then scaled relative to the
fixed point by scaling the distance from each vertex to the fixed point. For a ver-
tex with coordinates (x, vy}, the scaled coordinates (x’, y') are calculated as

xt=aprlx-xps,, Yy =yt ly - s, (5-13)

We can rewrite these scaling transformations to separate the multiplicative and
additive terms:
x'=x-s, + x(l-s)

(5-14)
y =yostyll=sy)

where the additive terms x(1 — 5,) and y,(1 — $,) are constant for all points in the
object.

Including coordinates for a fixed point in the scaliny, equations is similar to
including coordinates for a pivot point in the rotation equations. We can set up a
column vector whose elements are the constant terms in Eqs. 3-14, then we add
this column vector to the product S - P in Eq. 5-12. In the next section, we discuss
a matrix formulation for the transformation equations that involves only matrix
multiplication.

Polygons are scaled by applying transformations 3-14 to each vertex and
then regenerating the polygon using the transformed vertices. Other objects are
scaled by applying the scaling transformation equations to the parameters defin-
ing the objects. An ellipse in standard position is resized by scaling the semima-
jor and semiminor axes and redrawing the ellipse about the designated center co-
ordinates. Uniform scaling of a circle is done by simplv adjusting the radius.
Then we redisplay the circle about the center coordinates using the transformed
radius.

5-2
MATRIX RFPRESENTATIONS AND HOMOGENEOUS
COORDINATES

Many graphics applications involve sequences of geometric transformations. An
animation, for example, might require an object to be translated and rotated at
each increment of the motion. In design and picture construction applications,

we perform translations, rotations, and scalings to fit the picture components into
their proper posithons. Here we consider how the matrix representations dis-
cussed in the previous sections can be reformulated so that such transformation
sequences can be efficiently processed.

We have seen in Section 5-1 that each of the basic transformations can be ex-
pressed in the general matrix form

PP=M, -P+M, (5-15)

with coordinate positions P and P’ represented as ¢3lumn vectors, Matrix M, isa
2 by 2 array containing multiplicative factors, and M, is a two-element column
matrix containing translational terms. For translation, M, is the identity matrix.
For rotation or scaling, M, contains the translational terms associated with the
pivot point or scaling fixed point. To produce a sequence of transformations with
these equations, such as scaling followed by rotation then translation, we must
calculate the transformed coordinates one step at a time. First, coordinate posi-
tions are scaled, then these scaled coordinates are rotated, and finally the rotated
coordinates are translated. A more efficient approach would be to combine the
transformations so that the final coordinate positions are obtained directly from
the initial coordinates, thereby eliminating the calculation of intermediate coordi-
nate values. To be able to do this, we need to reformulate Eq. 5-15 to eliminate the
matrix addition associated with the translation terms in M,.

We can combine the multiplicative and translational terms for two-dimen-
sional geometric transformations into a single matrix representation by expand-
ing the 2 by 2 matrix representations to 3 by 3 matrices. This aliows us to express
all transformation equations as matrix multiplications, providing that we also ex-
pand the matrix representations for coordinate positions. To express any two-di-
mensional transformation as a matrix multiplication, we represent each Cartesian
coordinate position (x, y) with the homogeneous coordinate triple {x,, y,, A,
where

Xy Yy
X =,

y =7 (5-16)

Thus, a gencral homogeneous coordinate representation can also be written as (h-
x. by, h). For two-dimensional geometric transformations, we can choose the ho-
mogencous parameter i to be any nonzero value. Thus, there is an infinite num-
ber of equivalent homogeneous representations for each coordinate point (x, y).
A convenient choice is simply to set h = 1. Each two-dimensional position is then
represented with homogeneous coordinates (x, y, 1). Other values for parameter h
are needed, for example, in matrix formulations of three-dimensional viewing
transformations.

The term homogeneous coordinates is used in mathematics to refer to the ef-
tect of this representation on Cartesian equations. When a Cartesian point (x, y) is
converted to a homogeneous representation (x,, y,, /), equations containing x
and vy, such as f(x, y) = 0, become homogeneous equations in the three parame-
ters x4, ., and h. This just means that if each of the three parameters is replaced
by any value v times that parameter, the value © can be factored out of the equa-
tions.

Expressing positions in homogeneous coordinates allows us to represent all
geometric transformation equations as matrix muitiplications. Coordinates are

Section 5-2

Matrix Representations and
Homogeneous Coordinates

189

Chapter 5

190

Two-Dimensional Geometric
Transformations

represented with three-element column vectors, and transformation operations
are written as 3 by 3 matrices. For translation, we have

x’ 1 0 ¢,
yv]=1t0 1 t,{-|v (5-17)
1 0 0 1 1
which we can write in the abbreviated form
P =T, t) P (5-18)

with T(t,, t,) as the 3 by 3 translation matrix in Eq. 5-17. The inverse of the trans-
lation matrix is obtained by replacing the translation parameters ¢, and t, with
their negatives: —t, and —t,.

Similarly, rotation transformation equations about the coordinate origin are
now written as)

X cosf —sinfd O x
y | =] sin@ cos6 0 |-y (5-19)
1 0 0 1111
or as
P'=R(6) P 5-20)

The rotation transformation operator R(8) 1s the 3 by 3 matrix in Eq. 5-19 with
rotation parameter 6. We get the inverse rotation matrix when 8 is replaced
with — 6.

Finally, a scaling transformation relative to the coordinate onigin is now ex-
pressed as the matrix multiplication

X s, 0 0O X
¥y =10 s 0O y (3-21)
1 0 1 1
or
P'=S(s,,s) P (5-22)

where S(s,, s,) is the 3 by 3 matrix in Eq. 5-21 with parameters s, and s,. Replac-
ing these parameters with their multiplicative inverses (1/5, and 1/s,) yields the
inverse scaling matrix. '

Matrix representations are standard methods for implementing transforma-
tions in graphics systems. In many systems, rotation and scaling functions pro-
duce transformations with respect to the coordinate origin, as in Egs. 5-19 and
5-21. Rotations and scalings relative to other reference positions are then handled
as a succession of transformation operations. An alternate approach in a graphics
package is to provide parameters in the transformation functions for the scaling
fixed-point coordinates and the pivot-point coordinates General rotation and
scaling matrices that include the pivot or fixed point are then set up directly
without the need to invoke a succession of transformation functions.

5-3
COMPOSITE TRANSFORMATIONS

With the matrix representations of the previous section, we can set up a matrix
for any sequence of transformations as a composite transformation matrix by
calculating the matrix product of the individual transformations. Forming prod-
ucts of transformation matrices is often referred to as a concatenation, or compo-
sition, of matrices. For column-matrix representation of coordinate positions, we
form composite transformations by multiplying matrices in order from right to
left. That is, each successive transformation matrix premultiplies the product of
the preceding transformation matrices.

Translations
If two successive translation vectors (f,, t,;) and (t,,, t,5) are applied to a coordi-
nate position P, the final transformed location P' is calculated as
P'=Tlty, ty) ATl 0y P
ATt t) - Tlty,) - P
where P and P" are represented as homogeneous-coordinate column vectors. We
can verify this result by calculating the matrix product for the two associative

groupings. Also, the composite transformation matrix for this sequence of trans-
lations is

10 ¢y, 10 ty, L0ty +ty,
0 1 1 }-10 1 H =0 1 t,+1, (5-241
0 0 1 0 0 1 00 1
or
Tt t2) Tl t,) = Tl + oty T 1) (5-23

which demonstrates that two successive translations are additive.

Rotations
Two successive rotations applied to point P produce the transformed position
P' = R(8,) - {R(§)) - P

= [R(&) - R(#)) - I (5-200

By multiplying the two rotation matrices, we can verify that two successive rota-
tions are additive:

R(6,) - R(8) = R(G;, +) (5-27)

so that the final rotated coordinates can be calculated with the composite rotation
matrix as

P'=R(, + 6) P (528

Section 5-3

Composite Transformations

191

Chapter 5

Two-Dimensional Geometric
Transformations

Scalings

Concatenating transformation matrices for two successive scaling operations pro-
duces the following composite scaling rmatrix:

s 0 0 sqm 0 0 Sq * Sp 0 0
0 s9 0}-1]0 s, O0]= 0 Sy S O (5-29)
0 0 1 0 0 1 0 0 1
or
S(sy2, 5y2) - S(511, 51) = S(5x1 * 822, Sy1 547) (5-30)

The resulting matrix in this case indicates that successive scaling operations are
multiplicative. That is, if we were to triple the size of an object twice in succes-
sion, the final size would be nine times that of the original.

General Pivot-Point Rotation

With a graphics package that only provides a rotate function for revolving objects
about the coordinate origin, we can generate rotations about any selected pivot
point (x,, y,) by performing the following sequence of translate-rotate-translate
operations:

1. Translate the object so that the pivot-point position is moved to the coordi-
nate origin.

2. Rotate the object about the coordinate origin.

3. Translate the object so that the pivot point is returned to its original posi-
tion.

This transformation sequence is illustrated in Fig. 5-9. The composite transforma-

8.1 tc}

Dt i « Ummin Transiation ol Rouston Transisnion of
of Object snd Object 90 that sbout Object 80 that
Pivot Point Pivot Point Origin the Pivot Point

(X, v,) s &t Is Returnad

Origin to Position

(x,.v)
Figure 5-9

A transformation sequence for rotating an object about a specified pivot point using the
rotation matrix R(#) of transformation 5-19.

192

tion matnx for this sequence is obtained with the concatenation

1 0 X, cos 6 -sin¢ 0 1 0 - X,
0 1y |} siné cosf O 1 (0O 1 -y,
0 0 1 0 0 1 0 0 1
cosf§ —siné x(1 — cos 9 + y, sin 8
=] sin 6 cos @yl —cos A — x,sin @ (530
0 0 I

which can be expressed in the form
T(x, y) RO -Ti-x, —y)= Rlx,y, & (H-30

where T(-x,, —y,) = T Y, y,). In general, a rotate function can be set up to ac-
cept parameters for pivot-point coordinates, as well as the retation angle, and to
generate automatically the rotation matrix of Eq. 5-31.

General Fixed-Point Scaling

Figure 5-10 illustrates a transformation sequence tc produce scaling with respect
to a selected fixed position (x,, y,) using a scaling function that can only scale rela-
“1ve to the coordinate origin.

. Translate object so that the fixed point coincides with the coordinate origin.
. Scale the object with respect to the coordinate origin.

w N

. Use the inverse translation of step 1 to return the object to its original posi-
tion.

Concatenating the matrices for these three operations produces the required scal-
ing matrix

1 0 x g 0 0 1 0 -x s, 0 x(1-s)
0 1 y 6 s, 0110 1T -y |l-[0 s wd-=s) (5-33
0 0 1 0 0 1 0 0 1 0 0 1
or
T(x;, yp) - S(s,, 5,) - T(=x;, —yp) = S(x, yp, 5, 8,) (5-34)

This transformation is automatically generated on systems that provide a scale
function that accepts coordinates for the fixed point.

General Scaling Directions

Parameters s, and s, scale objects along the x and y directions. We can scale an ob-
ject in other directions by rotating the object to align the desired scaling direc-
tions with the coordinate axes before applying the scaling transformation.
Suppose we want to apply scaling factors with values specified by parame-
ters s, and s, in the directions shown in Fig. 5-11. To accomplish the scaling with-

Section 5-3

Composite Transformations

193

Fah

ib} o o

Ongmal Postron 'ransiate Object Scale Object Translate Object
of Object and so that Fixed Point writh Respect so thet the Fixed Point
Fixed Polm {x,, v} s at Origin to Origin Is Returned to
Position (x,, v,
Figure 5-10

A transformation sequence for scaling an object with respect to a specified fixed position
using the scaling matrix S(s,, 5,) of transformation 5-21.

i

5

Figure 5-11

Scaling parameters s; and
5, are to be applied in
orthogonal directions
defined by the angular
displacement .

194

out changing the orientation of the object, we first perform a rotation so that the
directions for s, and s, coincide with the x and y axes, respectively. Then the scal-
ing transformation is applied, followed by an opposite rotation to return points
to their original orientations. The composite matrix resulting from the product of
these three transformations is

R7'(6) - S(sy, 5) - R(6)

s, cos? 6+ s,8in* 6 (s, — s)) cos Bsin@ 0
=| (s —sy)cos Bsin @ s,sin? 6+ s,cos?6¢ O (5-35)
0 0 1

As an example of this scaling transformation, we turn a unit square into a
parallelogram (Fig. 5-12) by stretching it along the diagonal from (0, 0) to (1, 1).
We rotate the diagonal onto the y axis and double its length with the transforma-
tion parameters 6 = 45°, 5, =1, and 5, = 2.

In Eq. 5-35, we assumed that scaling was to be performed relative to the ori-
gin. We could take this scaling operation one step further and concatenate the
matrix with translation operators, so that the composite matrix would include
parameters for the specification of a scaling fixed position.

Concatenation Properties

Matrix multiplication is associative. For any three matrices, A, B, and C, the ma-
trix product A - B - C can be performed by first multiplying A and B or by first
multiplying B and C:

A B-C=(A-B)-C=A-B-O (5-36)

Therefore, we can evaluate matrix products using either a left-to-right or a right-
to-left associative grouping.

On the other hand, transformation products may not be commutative: The
matrix product A - B is not equal to B - A, in general. This means that if we want

Figure 5-12
A square (a) is converted to a parallelogram (b} using the composite
transformation matrix 5-35, withs; = 1,5, = 2, and 8 = 45°.

to translate and rotate an object, we must be careful abou! the order in which the
composite matrix is evaluated (Fig. 5-13). For some special cases, such as a se-
quence of transformations ali of the same kind, the multiplication of transforma-
tion matrices is commutative. As an example, two successive rotations could be

performed in either order and the final position would be the same. This commu-

tative property holds also for two successive translations or two successive scal-
ings. Another commutative pair of operations is rotation and uniform scaling
(s, = sy).

General Composite Transformations and Computational Efficiency

A general two-dimensional transformation, representing a combination of trans-
lations, rotations, and scalings, can be expressed as

X TSy TSy 175, x
Y| =] e 15, trs, ||y (5-37)
1 0 0 1 1

The four elements rs; are the multiplicative rotation-scaling terms in the transfor-
mation that involve only rotation angles and scaling factors. Elements frs, and
trs, are the translational terms containing combinations of translation distances,
pivot-point and fixed-point coordinates, and rotation angles and scaling parame-
ters. For example, if an object is to be scaled and rotated about its centroid coordi-
nates (x., y,) and then translated, the values for the elements of the composite
transformation matrix are

T, ty) ‘Rx, v, 0) - Slx, vy, s, sy)

sycos @ —s,sin@ x(1 — s, cos) + y,5, sin 0+ ¢,
=| s5sin® s,cos8 ydl —s,cos6) — xs,sin 6+ ¢, (5-38)
0 0 1

Although matrix equation 5-37 requires nine multiplications and six addi-
tions, the explicit calculations for the transformed coordinates are

Section 5-3

Composite Transformations

Chapter 5

196

Two-Dimensional Geometric
Transformations

L/ . ey |
Final Final
N - Position -~ Position

(’ b "’ XS N I"'_'l

el 5 —4

(" Ll [Neo o

(a) (b)
Figure 5-13
Reversing the order in which a sequence of transformation: is
performed may affect the transformed position of an object. In (1), an
object is first translated, then rotated In (b), the object is rotated first,
then translated.
X' = xcrsg oy rsy tolrs, YT XIS, Ty IS, Hrs, [CIRED]

Thus, we actually only need to perform four muliiplications and four additions
to transform coordinate positions. This is the maximum number of computations
required for any transformation sequence, once the individual matrices have
been concatenated and the elements of the composite matrix evaluated. Without
concatenation, the individual transformations would be applied one at a time
and the number of calculations could be significantly increased. An efficient im-
plementation for the transformation operations, therefore, is to formulate trans-
formation matrices, concatenate any transformation sequence, and calculate
transformed coordinates using Eq. 5-39. On parallel systems, direct matrix multi-
plications with the composite transformation matrix of Ec. 5-37 can be equally ef-
ficient.

A general rigid-body transformation matrix, involving only translations
and rotations, can be expressed in the form

'
13 rn,r Ty
O (540
0o o 1

where the four elements r, are the multiplicative rotation terms, and elements tr,
and tr, are the translational terms. A rigid-body change in coordinate position is
also sometimes referred to as a rigid-motion transformation. All angles and dis-
tances between coordinate positions are unchanged by the transformation. In ad-
dition, matrix 5-40 has the property that its upper-left 2-by-2 submatrix is an or-
thogonal matrix. This means that if we consider each row of the submatrix as a
vector, then the two vectors (r,,, ry) and (r,,, r,.) form an orthogonal set of unit
vectors: Each vector has unit length

N
R

2 2 = 2 4+ p2 =
rn+rn_rw'ry_n-'] (2~

and the vectors are perpendicular (their dot product is 0):

,.

21
N
(193

Foelyx ¥ Tyl = 0

Therefore, if these unit vectors are transformed by the rotatign submatrix, (ry, 7y}
is converted to a unit vector along the x axis and (r,,, r,,} is transformed into a
unit vector along the y axis of the coordinate system:

Ty Ty O r,,w 1
e Ty O try =10 (5-43)
0 0 1 L 1 1

- - - W
T Ty 0 Tyr
T Ty O]ry|=t1 (5-44)
0 0 1 1 | 1

As an example, the following rigid-body transformation first rotates an object
through an angle 6 about a pivot point (x,, ¥,) and then translates:

T(t,, t) Rx, y, 6)

cos @ -—sinf@ x(l-cosf) +ysin6+¢,
=|sin@ cos® yll-—cos®) - xsinf+t, (5-45)
0 0 1

Here, orthogonal unit vectors in the upper-left 2-by-2 submatrix are (cos 6,
~sin 6) and (sin 6, cos 8), and

cos@ -—siné 0 cos 8 1
sin @ cos® 0}|-| —-singf=1]0 (5-46)
0 0 1 1 1

Similarly, unit vector (sin 6, cos 6) is converted by the transformation matrix in
Eq. 5-46 to the unit vector (0, 1) in the y direction.

The orthogonal property of rotation matrices is useful for constructing a ro-
tation matrix when we know the final orientation of an object rather than the
amount of angular rotation necessary to put the object into that position. Direc-
tions for the desired orientation of an object could be determined by the align-
ment of certain objects in a scene or by selected positions in the scene. Figure 5-14
shows an object that is to be aligned with the unit direction vectors u' and v'. As-
suming that the original object orientation, as shown in Fig. 5-14(a), is aligned
with the coordinate axes, we construct the desired transformation by assigning
the elements of u' to the first row of the rotation matrix and the elements of v' to
the second row. This can be a convenient method for obtaining the transforma-
tion matrix for rotation within a local (or “object”) coordinate system when we
know the final orientation vectors. A similar transformation is the conversion of
object descriptions from one coordinate system to another, and in Section 5-5, we
consider how to set up transformations to accomplish this coordinate conversion.

Since rotation calculations require trignometric evaluations and several
multiplications for each transformed point, computational efficiency can become
an important consideration in rotation transformations. In animations and other
applications that involve many repeated transformations and small rotation an-
gles, we can use approximations and iterative calculations to reduce computa-

Section 5-3

Composite Transformations

197

Chapter 5

198

Two-Dimensional Geometric
Transformations

{a) (b}

Figure 5-14

The rotation matrix for revolving an object from position (a) to position
(b) can be constructed with the values of the unit orientation vectors u’
and v' relative tc the original orientation.

tions in the composite transformation equations. When the rotation angle is
small, the trigonometric functions can be replaced with approximation values
based on the first few terms of their power-series expansions. For small enough
angles (less than 10°), cos 6 is approximately 1 and sin 6 has a value very close to
the value of 6 in radians. If we are rotating in small angular steps about the ori-
gin, for instance, we can set cos #to 1 and reduce transtormation calculations at
each step to two multiplications and two additions for each set of coordinates to
be rotated:

Y =x-ysin§, y' =xsinf+y (5-47)

where sin 6 is evaluated once for all steps, assuming the rotation angle does not
change. The error introduced by this approximation at each step decreases as the
rotation angle decreases. But even with small rotation angles, the accumulated
error over many steps can become quite large. We can control the accumulated
error by estimating the error in x* and y' at each step and resetting object posi-
tions when the error accumulation becomes too great.

Composite transformations often involve inverse matrix calculations. Trans-
formation sequences for general scaling directions and for reflections and shears
(Section 5-4), for example, can be described with inverse rotation components. As
we have noted, the inverse matrix representations for the basic geometric frans-
formations can be generated with simple procedures. An inverse translation ma-
trix is obtained by changing the signs of the translation distances, and an inverse
rotation matrix is obtained by performing a matrix transpose (or changing the
sign of the sine terms). These operations are much simpler than direct inverse
matrix calculations.

An implementation of composite transformations is given in the following
procedure. Matrix M is initialized to the identity matrix. As each individual
transformation is specified, it is concatenated with the total transformation ma-
trix M. When all transformations have been specified, this composite transforma-
tion is applied to a given object. For this example, a polygon is scaled and rotated
about a given reference point. Then the object is translated. Figure 5-15 shows the
original and final positions of the polygon transformed by this sequence.

Section 5-3

y
200 Composite Transformations
150
ref pt
100 (100, 100)

50 100 150 200 X 50 100 150 200 X

(a) {b}

Figure 5-15

A polygon (a) is transformed into
(b) by the composite operations in
the following procedure.

rﬂinclude <math.h>
#include "graphics.h*

typedef float Matrix3x3(31(3];
Matrix3x3 theMatrix;

void matrix3x3SetIdentity (Matrix3x3 m)
{

int i.3;

for {i=0; i<3:; i++) for (3=0; J<3; j++) m{i]1(3} = (i == J):
}

/* Multiplies matrix a times b, putting result in b */
void matrix3x3PreMultiply {Matrix3x3 a, Matrix3x3 b)
{

int r,c:

Matrix3x3 tmp:

for (r = 0; r <
for (c = 0; ¢
tmp(r]jc] =
alr]i0]*plo)lc) » alr}{li*pllllc) + alrli{2]*pl2]lc]:

3; r++)
< 3; c++t)

for (r = 0; r < 3; r++)
for (c = 0; ¢ < 3; ct++)
birllc) - tmplr](cl:
}

void translate2 {int tx, int ty)
{

Matrix3x3 m;

matrix3x3SetIdentity (m):

m{0})[{2] = tx;

m{l}[2]) = ty:

matrix3x3PreMultiply (m, theMatrix);

199

}

void scale2 (float sx, Ioat sy, wcPt2 refpt;

{
Matrix3x3 m:

matrixix3SetIdentity ({(m});

m{0! (0} = sx;
mi{0)[2] = (1 - sx) * refpt.x;
m(1]{1] = sy;

m(1)[2) = (1 - sy) * refpt.y;
matrix3x3PreMultiply (m, theMatrix);
}

void rotate2 {float a, wcPt2 refPr)
{
Matrix3x3 m;

matrix3x3SetIdentity (m):
a = pToRadians (a);

m{0) {0} = cosf (a};
m(0] (1] = -sini (a};
m{0) (2] = rcfPt.x * (1 - cosf (a)) +

m[1])[0] = sinf (a);:
m(l) (1] = cosf (a);
m[l]{2) = refPt.y * (1 - cosf (a)) -
matrix3x3iPreMultiply (m, theMatrix);

}

void transformPoints2 (int npts, wcPt2
{

int k;

float tmp:

for tk = 0; k < npts; k++) {
tmp = theMatrix[0]{0] * pts[k].x +
pts[k] .y 4+ theMatrix([0Q])(2];

ptsik] .y =
pts{k] .y + theMatrix[1])[2];
pts(k].x = tmp;

}
)

void main (int arge, char ** argv)

{
wcPt2 pts(3) = { 50.0, 50.0, 150.0,
wcPt2 refPt = (100.0, 100.0};
long windowID = openGraphics (*argv,

setBackground (WHITE};
setColoxr (BLUE):

pFillArea (3, pts):
matrix3x3SetIdentity (theMatrix):;
scalez (0.5, 0.3, refpt);
rotate2 (90.0, refPt);
translatez (0, 150);
transformPoints2 (3, pts),
pFillAarea (3.pts);

sleep 110);

closeGraphics (windowlD);

L

refPt.y *

refPt.x *

*pts)

sinf (a});

sinf (a);

theMatrix (0] (1] *

50.0,

200,

100.0,

350}

theMatrix({1}{0) * ptsik).x + theMatrix(1l)[1])

150.0} 5

L

5-4
OTHER TRANSFORMATIONS

Basic transformations such as translation, rotation, and scaling are included in
most graphics packages. Some packages provide a few additional transforma-
tions that are useful in certain applications. Two such transformations are reflec-
tion and shear.

Reflection

A reflection is a transformation that produces a mirror image of an object. The
mirror image for a two-dimensional reflection is generated relative to an axis of
reflection by rotating the object 180° about the reflection axis. We can choose an
axis of reflection in the xy plane or perpendicular to the xy plane. When the re-
flection axis is a line in the xy plane, the rotation path about this axis isin a plane
perpendicular to the xy plane. For reflection axes that are perpendicular to the xy
plane, the rotation path is in the xy plane. Following are examples of some com-
mon reflections.

Reflection about the line y = 0, the x axis, is accomplished with the transfor-
mation matrix

(5-48)

o
'
o - O
-0 O

This transformation keeps x values the same, but “flips” the y values of coordi-
nate positions. The resulting orientation of an object after it has been reflected
about the x axis is shown in Fig. 5-16. To envision the rotation transformation
path for this reflection, we can think of the flat object moving out of the xy plane
and rotating 180° through three-dimensional space about the x axis and back into
the xy plane on the other side of the x axis.

A reflection about the y axis flips x coordinates while keeping y coordinates
the same. The matrix for this transformation is

o o =
o = o

0
0 (5-49)
1

Figure 5-17 illustrates the change in position of an object that has been reflected

about the line x = 0. The equivalent rotation in this case is 180° through three-di-

mensional space about the y axis.

We flip both the x and y coordinates of a point by reflecting relative to an
axis that is perpendicular to the xy plane and that passes through the coordinate
origin. This transformation, referred to as a reflection relative to the coordinate
origin, has the matrix representation:

-1 o0
0 -1 0 {5-50)
0 0 1

Section 5-4
Other Transformations

1
12 A
/I A
J/ \ Original
A e
/ \ Position
! \
2 ‘I—{—-—-—l 3
\ x
2’ 3
Reflected
Position
1
Figure 5-16

Reflection of an object about
the x axis.

y
Original Reflected
Position Position
2|-\\ 2
CC
37 3
x

Figure 5-17
Reflection of an object about
the y axis.

201

Refiected
Position

3

NS
N
J
3

Original
Position

Figure 5-18

Reflection of an object relative
to an axis perpendicular to
the xy plane and passing
through the coordinate origin.

y=x
Y ,.\3 Origipa| /7
-~ \ Position 7/
i \ /
47 \ 7/
~~ | Ve
27> \ y;
7 Ret
~d1 eflected
7 1’ Position
Ve
Ve
// 3
7/
7/
Ve 2
// x
Figure 53-20

Reflection of an object with
respect to the line y = x.

202

y
3
Py 2
Yorr T _— .
2" “"-:71 /
5\ S
\ Ve
N
A4
V4
3
},
X 1t X
Figure 5-19

Reflection of an object relative to an axis perpendicular to
the xy plane and passing through point P,,.

An example of reflection about the origin is shown in Fig. 5-18. The reflection ma-
trix 5-50 is the rotation matrix R(8) with 6 = 180°. We are simply rotating the ob-
ject in the xy plane half a revolution about the origin.

Reflection 5-50 can be generalized to any reflection point in the xy plane
(Fig. 5-19). This reflection is the same as a 180° rotation in the xy plane using the
reflection point as the pivot point.

If we chose the reflection axis as the diagonal line v = x (Fig. 5-20), the re-
flection matrix is

o = O
o O =
- o O

We can derive this matrix by concatenating a sequence of rotation and coordi-
nate-axis reflection matrices. One possible sequence is shown in Fig. 5-21. Here,
we first perform a clockwise rotation through a 45° angle, which rotates the line y
= x onto the x axis. Next, we perform a reflection with respect to the x axis. The
final step is to rotate the line y = x back to its original position with a counter-
clockwise rotation through 45°. An equivalent sequence of transformations is first
to reflect the object about the x axis, and then to rotate counterclockwise 90°.

To obtain a transformation matrix for reflection about the diagonal v = —x,
we could concatenate matrices for the transformation sequence: (1) clockwise ro-
tation by 45°, (2) reflection about the y axis, and (3) counterclockwise rotation by
45°. The resulting transformation matrix is

0 -1 ©
-1 0 0 (5-52)
0 0 1

Figure 5-22 shows the original and final positions for an object transformed with
this reflection matrix.

Reflections about any line y = mx + b in the vy plane can be accomplished
with a combination of translate-rotate-reflect transformations. In general, we first
translate the line so that it passes through the origin. Then we can rotate the line
onto one of the coordinate axes and reflect about that axis. Finally, we restore the
line to its original position with the inverse rotation and translation transforma-
tions.

We can implement reflections with respect to the coordinate axes or coordi-
nate origin as scaling transformations with negative scaling factors. Also, ele-
ments of the reflection matrix can be set to values other than *1. Values whose
magnitudes are greater than 1 shift the mirror image farther from the reflection
axis, and values with magnitudes less than 1 bring the mirror image closer to the
reflection axis.

Shear

A transformation that distorts the shape of an object such that the transformed
shape appears as if the object were composed of internal layers that had been
caused to slide over each other is called a shear. Two common shearing transfor-
mations are those that shift coordinate x values and those that shift y values.

An x-direction shear relative to the x axis is produced with the transforma-
tion matrix

1 sh, O
0 1 o0 (5-53)
0 0 1

which transforms coordinate positions as
x'=x+sh, -y, y =y (5-54)

Any real number can be assigned to the shear parameter sh.. A coordinate posi-
tion (x, y) is then shifted horizontally by an amount proportional to its distance (y
value) from the x axis (y = 0). Setting sh, to 2, for example, changes the square in
Fig. 5-23 into a parallelogram. Negative values for sh, shift coordinate positions
to the left.

We can generate x-direction shears relative to other reference lines with

1 sh, —sh.:yu
0 1 0 (5-55)
0 0 1

with coordinate positions transformed as
X' =X+ Sh Y = Yeog), y =y (5-56)

An example of this shearing transformation is given in Fig. 5-24 for a shear para-
meter value of 1/2 relative to the line y = —1.

Section 5-4

Other Transformations

(a)

(c)

Figure 5-21

Sequence of transformations
to produce reflection about
the line y = x: (a) clockwise
rotation of 45°, (b) reflection
about the x axis;and (¢)
counterclockwise rotation
bv 45°.

203

N 2 Reflected
N o
~ Position
~
N
NV p
\\ 3
2emmm—== 1 N
R '
~]
\‘ 1
Original "~ : N
Position 13 \\
N
. ye—x
Figure 5-22

Reflection with respect to the

liney = —x.

204

{b)

Figure 5-23
A unit square (a) is converted to a parallelogram (b) using the x-
direction shear matrix 5-53 with sh, = 2.

A y-direction shear relative to the line x = x, is generated with the trans-
formation matrix

1 0 0
shy 1 =shy X (5-57)
0 0 1

which generates transformed coordinate positions
x' =x, y' = shy(x — Xty (5-58)

This transformation shifts a coordinate position vertically by an amount propor-
tional to its distance from the reference line x = x,. Figure 5-25 illustrates the
conversion of a square into a parallelogram with sh, = 1/2 and x = —1.

Shearing operations can be expressed as sequences of basic transformations.
The x-direction shear matrix 5-53, for example, can be written as a composite
transformation involving a series of rotation and scaling matrices that would
scale the unit square of Fig. 5-23 along its diagonal, while maintaining the origi-
nal lengths and orientations of edges parallel to the x axis. Shifts in the positions
of objects relative to shearing reference lines are equivalent to translations.

{0, 1} 1,1 (1. 1) 2,1

(0, 0} 1,0 x Toron Gzo x

Ym=“1'f Yer=-1T

(a) (b}

Figure 5-24
A unit square (a) is transformed to a shifted parallelogram (b)
with sh, = 1/2 and y = — 1 in the shear matrix 5-55.

v 2
{0, 3/2)
(1, 1)
(0, 172
Xeat -1 X
(b}
Figure 5-25
A unit square (a) is turned into a shifted parallelogram (b) with
parameter values sh, = 1/2 and x,, = ~1 in the y-direction using

shearing transformation 5-57.

5-5
TRANSFORMATIONS BETWEEN COORDINATE SYSTEMS

Graphics applications often require the transformation of object descriptions
from one coordinate system to another. Sometimes objects are described in non-
Cartesian reference frames that take advantage of object symmetries. Coordinate
descriptions in these systems must then be converted to Cartesian device coordi-
nates for display. Some examples of two-dimensional non-Cartesian systems are
polar coordinates, elliptical coordinates, and parabolic coordinates. In other
cases, we need to transform between two Cartesian systems. For modeling and
design applications, individual objects may be defined in their own local Carte-
sian references, and the local coordinates must then be transformed to position
the objects within the overall scene coordinate system. A facility management
program tor office layouts, for instance, has individual coordinate reference de-
scriptions for chairs and tables and other furniture that can be placed into a floor
plan, with multiple copies of the chairs and other items in different positions. In
other applications, we may simply want to reorient the coordinate reference for
displaying a scene. Relationships between Cartesian reference systems and some
&Smmon non-Cartesian systems are given in Appendix A. Here, we consider
transformations between two Cartesian frames of reference.

Figure 5-26 shows two Cartesian systems, with the coordinate origins at (0,
0) and (xy, o) and with an orientation angle 6 between the x and x” axes. To trans-
form object descriptions from xy coordinates to x'y’ coordinates, we need to set
up a transformation that superimposes the x'y’ axes onto the xy axes. This is
done in two steps:

1. Translate so that the origin (x,, yp) of the x’y’ system is moved to the ofigin
of the xy system.
2. Rotate the x” axis onto the x axis.

Translation of the coordinate origin is expressed with the matrix operation
-x,

1 0
T(=%, -y =| 0 1 -y, (5-59)
0 0 1

Section 5-5

Transformations between
Coordinate Systems

205

Chapter 5

206

Two-Dimensional Ceometric
Transformations

y axis
g
<
N
Yo Figure 5-26
A Cartesian x'y’ system positioned
+ at (x,, y,) with orientation 8 in an xy
o Xo xaxis Cartesian system.

and the orientation of the two systems after the translation operation would ap-
pear as in Fig. 5-27. To get the axes of the two systems into coincidence, we then
perform the clockwise rotation

cos@ sing 0
R(-¢)=] —-sinB <cos8 O (5-60)
0 0 1

Concatinating these two transformations matrices gives us the complete compos-
ite matrix for transforming object descriptions from the xy system to the x'y’ sys-
tem:

My, = R(=6) T(~Xo, ~¥0) (5-67)

An alternate method for giving the orientation of the second coordinate sys-
tem is to specify a vector V that indicates the direction for the positive y’ axis, as
shown in Fig. 5-28. Vector V is specified as a point in the xy reference frame rela-
tive to the origin of the xy system. A unit vector in the y” direction can then be
obtained as

v
vz—,—v—'=(v,,vy) (5-

1
[on}
(-

And we obtain the unit vector u along the x” axis by rotating v 90° clockwise:

u = (v, ~v)

= (u,,u,) (5-63)

Figure 5-27
Position of the reference frames
shown in Fig. 5-26 after translating
L the origin of the x 'y " system to the
T xaxis eoordinate origin of
gin of the xy system.

Section 5-5

Transformations between
Coordinate Systems

Figure 5-28

Cartesian system x 'y " with origin at
Py = (x4 ¥o) and ¥’ axis parallel to

x axis vector V.

In Section 5-3, we noted that the elements of any rotation matrix could be ex-
pressed as elements of a set of orthogonal unit vectors. Therefore, the matrix to
rotate the x 'y’ system into coincidence with the xy system can be written as

u, u, 0
R={v v 0 (5-64)
0 0 1

As an example, suppose we choose the orientation for they"axisas V = (-1, 0),
then the x’ axis is in the positive y direction and the rotation transformation ma-’
trix is

|
(= =]
o o =
-0 o

Equivalently, we can obtain this rotation matrix from 5-60 by setting the orienta-
tion angle as 6 = 90°.

In an interactive application, it may be more convenient to choose the direc-
tion for V relative to position Py than it is to specifv it relative to the xy-coordi-
nate origin. Unit vectors u and v would then be oriented as shown in Fig. 5-29.
The components of v are now calculated as

PI_PO

v= ——
ng"Pgl

(5-65)

and u js obtained as the perpendicular to v that forms a right-handed Cartesian
system.

y axis

Figure 5-29

A Cartesian x 'y system defined
with two coordinate positions, Py
and P, within an 1y reference
frame.

207

Chapter 5

208

Two-Dimensional Geometric
Transformations

5-6

AFFINE TRANSFORMATIONS

A coordinate transformation of the form

X' =aux tagyth, y=a,x+ayth, (5-66)

is called a two-dimensional affine transformation. Each of the transformed coor-
dinates x' and y " is a linear function of the original coordinates x and y, and para-
meters a; and b, are constants determined by the transformation type. Affine
transformations have the general properties that parallel lines are transformed
into parallel lines and finite points map to finite points.

Translation, rotation, scaling, reflection, and shear are examiples of two-di-
mensional affine transformations. Any general two-dimensional affine transfor-
mation can always be expressed as a composition of these five transformations.
Another affine transformation is the conversion of coordinate descriptions from
one reference system to another, which can be described as a combination of
translation and rotation. An affine transformation involving only rotation, trans-
lation, and reflection preserves angles and lengths, as well as parallel lines. For
these three transformations, the lengths and angle between two lines remains the
same after the transformation.

5-7
TRANSFORMATION FUNCTIONS

Graphics packages can be structured so that separate commands are provided to
a user for each of the basic transformation operations, as in procedure trans-
formObject. A composite transformation is then set up by referencing individ-
ual functions in the order required for the transformation sequence. An alternate
formulation is to provide users with a single transformation function that in-
cludes parameters for each of the basic transformations. The output of this func-
tion is the composite transformation matrix for the specified parameter values.
Both options are useful. Separate functions are convenient for simple transforma-
tion operations, and a composite function can provide an expedient method for
specifying complex transformation sequences.

The PHIGS library provides users with both options. Individual commands
for generating the basic transformation matrices are

translate (trans_ateVector, matrixTranslate)
rotate (theta, matrixRotate)
scale (scaleVector, matrixScale)

Bach of these functions produces a 3 by 3 transformation matrix that can then be
used to transform coordinate positions expressed as homogeneous column vec-
tors. Parameter translateVector is a pointer to the pair of translation dis-
tances f, and t,. Similatly, parameter scaleVector specifies the pair of scaling
values s, and s,. Rotate and scale matrices (matrixTranslate and matrix-
Scale) transform with respect to the coordinate origin.

We concatenate transformation matrices that have been previously set up
with the function

composeMatrix (matrix2, matrixl, matrixOut)

where elements of the composite output matrix are calculated by postmultiply-
ing matrix2 by matrix1. A composite transformation matrix to perform a com-
bination scaling, rotation, and translation is produced with the function

buildTransformationMatrix (referencePoint, translateVector,
theta, scaleVector, matrix)

Rotation and scaling are carried out with respect to the coordinate position speci-
fied by parameter referencePoint. The order for the transformation sequence
is assumed to be (1) scale, (2) rotate, and (3) translate, with the elements for the
composite transformation stored in parameter matrix. We can use this function
to generate a single transformation matrix or a composite matrix for two or three
transformations (in the order stated). We could generate a translation matrix by
setting scaleVector = (1, 1), theta = 0, and assigning x and y shift values to
parameter translateVector. Any coordinate values could be assigned to pa-
rameter referencePoint, since the transformation calculations are unaffected
by this parameter when no scaling or rotation takes place. But if we only want to
set up a translation matrix, we can use function translate and simply specify
the translation vector. A rotation or scaling transformation matrix is specified by
setting translateVector = (0, 0) and assigning appropriate values to parame-
ters referencePoint, theta, and scaleVector. To obtain a rotation matrix,
we set scaleVector = (1, 1); and for scaling only, we set theta = 0. If we want
to rotate or scale with respect to the coordinate origin, it is simpler to set up the
matrix using either the rotate or scale function.

Since the function buildTransformationMatrix always generates the
transformation sequence in the order (1) scale, (2) rotate, and (3) translate, the fol-
lowing function is provided to allow specification of other sequences:

composeTransformationMatrix (matrixIn, referencePoint,
translateVector, theta, scaleVector, matrixOut)

We can use this function in combination with the buildTransformationMa-
trix function or with any of the other matrix-construction functions to compose
any transformation sequence. For example, we could set up a scale matrix about
a fixed point with the buildTransformationMatrix function, then we could
use the composeTransformationMatrix function to concatenate this scale
matrix with a rotation about a specified pivot point. The composite rotate-scale
sequence is then stored in matrixoOut.

After we have set up a transformation matrix, we can apply the matrix to
individual coordinate positions of an object with the function

transformPoint (inPoint, matrix, outPoint)

where parameter inPoint gives the initial xy-coordinate position of an object
point, and parameter outPoint contains the corresponding transformed coordi-
nates. Additional functions, discussed in Chapter 7, are available for performing
two-dimensional modeling transformations.

Section 5-7

Transformation Functions

209

Chapter 5

Two-Dimensional Ceometric
Transformations

Pmn
ol
, |
| .
.
(a)
Pl 1
: 1
. .
) |
I
| .
Tt 1
I
']
l‘ . i
O
PD
(b}
Figive 5-30

Translating an object from
screen position (a) to position
(b) by moving a rectangular
block of pixel values.

Coordinate positions P

and

min

P .. specify the limits

of the rectangular block to
be moved, and P, is the
destination reference
position,

210

5-8
RASTER METHODS FOR TRANSFORMATIONS

The particular capabilities of raster systems suggest an alternate method for
transforming objects. Raster systems store picture information as pixel patterns
in the frame buffer. Therefore, some simple transformations can be carried out
rapidly by simply moving rectangular arrays of stored pixel values from one lo-
cation to another within the frame buffer. Few arithmetic operations are needed,
so the pixel transformations are particularly efficient.

Raster functions that manipulate rectangular pixel arrays are generally re-
ferred to as raster ops. Moving a block of pixels from one location to another is
also called a block transfer of pixel values. On a bilevel svstem, this operation is
called a bitBlt (bit-block transfer), particularly when the function is hardware
implemented. The term pixBit is sometimes used for block transfers on multi-
level systems (multiple bits per pixel).

Figure 5-30 illustrates translation performed as a block transfer of a raster
area. All bit settings in the rectangular area shown are copied as a block into an-
other part of the raster. We accomplish this translation by first reading pixel in-
tensities from a specified rectangular area of a raster into an array, then we copv
the array back into the raster at the new location. The original object could be
erased by filling its rectangular area with the background intensity (assuming the
object does not overlap other objects in the scene).

Typical raster functions often provided in graphics packages are:

® copy - move a pixel block from one raster area to another.
® read - save a pixel block in a designated array.
* write - transfer a pixel array to a position in the frame buffer.

Some implementations provide options for combining pixel values. In replace
mode, pixel values are simply transfered to the destination positions. Other op-
tions for combining pixel values include Boolean operations (aud, or, and exclr.-
sive or) and binary arithmetic operations. With the exclusive or mode, two succes-
sive copies of a block to the same raster area restores the values that were
originally present in that area. This technique can be used to move an object
across a scene without destroying the background. Another option for adjusting
pixel values is to combine the source pixels with a specified mask. This allows
only selected positions within a block to be transferred or shaded by the patterns
defined in the mask.

‘_n

S~ s
S ouN
PN A

™

Figure 5-31

Rotating an array of pixel values. The original array
orientation 15 shown in (a), the array orientation after a
90° counterclockwise rotation is shown in (k), and the
array orientation after a 180° rotation is shown in (c).

Rotated _ Destination
Pixel Araas
Pixel
Array

1 Destination
1 Pixel Array

Figure 5-32

A raster rotation for a rectangular
block of pixels is accomplished by
mapping the destination pixel areas
onto the rotated block.

Rotations in 90-degree increments are easily accomplished with block trans-
fers. We can rotate an object 90° counterclockwise by first reversing the pixel val-
ues in each row of the array, then we interchange rows and columns. A 180° rota-
tion is obtained by reversing- the order of the elements in each row of the array,
then reversing the order of the rows. Figure 5-31 demonstrates the array manipu-
lations necessary to rotate a pixel block by 90° and by 180°.

For array rotations that are not multiples of 90°, we must perform more
computations. The general procedure is illustrated in Fig. 5-32. Each destination
pixel area is mapped onto the rotated array and the amount of overlap with the
rotated pixel areas is calculated. An intensity for the destination pixel is then
computed by averaging the intensities of the overlapped source pixels, weighted
by their percentage of area overlap.

Raster scaling of a block of pixels is analogous to the cell-array mapping
discussed in Section 3-13. We scale the pixel areas in the original block using
specified values for s, and s, and map the scaled rectangle onto a set of destina-
tion pixels. The intensity of each destination pixel is then assigned according to
its area of overlap with the scaled pixel areas (Fig. 5-33).

l'"'I"'l’"‘T"l""‘l“"l""l“‘|
1 1 1 1 [1 | H
botomd-—d==g--t--F ==k~ Destinstion
1 | I] t i 1 | H Pixel Array
Lol odobo Loy
1 | | [1) H
b] | ! |] 1) \
1 1 i R S P -
i] ' ' 1 1 1 ':
Scaled T T M] 1 1)
PSR SO B B oE T ey S S
Aray - P11 -! oo
1 1] | 1
ohinat da il o B 2 SRR SR B R
| L +] 1 | 1
LY L I R B B
(xp, ¥
Figure 5-33

Mapping destination pixel areas onto a scaled array of
pixel values. Scaling factors s, = 5, = 0.5 are applied
relative to fixed point (x;, y,).

Section 5-8

Raster Methods for
Transformations

Chapter 5

212

Two-Dimensional Geomelric
Transformations

SUMMARY

The basic geometric transformations are translation, rotation, and scaling. Trans-
lation moves an object in a straight-line path from one position to another. Rota-
tion moves an object from one position to another in a circular path around a
specified pivot paint (rotation point). Scaling changes the dimensions of an object
relative to a specified fixed point.

We can express two-dimensional geometric transformations as 3 by 3 ma-
trix operators, so that sequences of transformations can be concatenated into a
single composite matrix. This is an efficient formulation, since it allows us to re-
duce computations by applying the composite matrix to the initial coordinate po-
sitions of an object to obtain the final transformed positions. To do this, we also
need to express two-dimensional coordinate positions as three-element column
or row matrices. We choose a column-matrix representation for coordinate points
because this is the standard mathematical convention and because many graph-
ics packages also follow this convention. For two-dimensional transformations,
coordinate positions ate then represented with three-element homogeneous coor-
dinates with the third (homogeneous) coordinate assigned the value 1.

Composite transformations are formed as multiplications of any combina-
tion of translation, rotation, and scaling matrices. We can use combinations of
translation and rotation for animation applications, and we can use combinations
of rotation and scaling to scale objects in any specified direction. In general, ma-
trix multiplications are not commutative. We obtain different results, for exam-
ple, if we change the order of a translate-rotate sequence. A transformation se-
quence involving only translations and rotations is a rigid-body transformation,
since angles and distances are unchanged. Also, the upper-left submatrix of a
rigid-body transformation is an orthogonal matrix. Thus, rotation matrices can be
formed by setting the upper-left 2-by-2 submatrix equal to the elements of two
orthogonal unit vectors. Computations in rotationgl transformations can be re-
duced by using approximations for the sine and cosine functions when the rota-
tion angle is small. Over many rotational steps, however, the approximation error
can accumulate to a significant value.

Other transformations include reflections and shears. Reflections are trans-
formations that rotate an object 180° about a reflection axis. This produces a mir-
ror image of the object with respect to that axis. When the reflection axis is per-
pendicular to the xy plane, the reflection is obtained as a rotation in the xy plane.
When the reflection axis is in the xy plane, the reflection is obtained as a rotation
in a plane that is perpendicular to the xy plane. Shear transformations distort the
shape of an object by shifting x or i coordinate values by an amount proportional
to the coordinate distance from a shear reference line.

Transformations between Cartesian coordinate systems are accomplished
with a sequence of translate-rotate transformations. One way to specify a new co-
ordinate reference frame is to give the position of the new coordinate origin and
the direction of the new y axis. The direction of the new x axis is then obtained by
rotating the y direction vector 90° clockwise. Coordinate descriptions of objects in
the old reference frame are transferred to the new reference with the transforma-
tion matrix that superimposes the new coordinate axes onto the old coordinate
axes. This transformation matrix can be calculated as the concatentation of a
translation that moves the new origin to the old coordinate origin and a rotation
to align the two sets of axes. The rotation matrix is obtained from unit vectors in
the x and y directions for the new system.

Two-dimensional geometric transformations are affine transformations.
That is, they can be expressed as a linear function of coordinates x and y. Affine
transformations transform parallel lines to parallel lines and transform finite
points to finite points. Geometric transformations that do not involve scaling or
shear also preserve angles and lengths.

Transformation functions in graphics packages are usually provided only
for translation, rotation, and scaling. These functions include individual proce-
dures for creating a translate, rotate, or scale matrix. and functions for generating
a composite matrix given the parameters for a transformation sequence.

Fast raster transformations can be performed by moving blocks of pixels.
This avoids calculating transformed coordinates for an object and applying scan-
conversion routines to display the object at the new position. Three common
raster operations (bitBlts or pixBits) are copy, read, and write. When a block of
pixels is moved to a new position in the frame buffer, we can simply replace the
old pixel values or we can combine the pixel values using Boolean or arithmetic
operations. Raster translations are carried out by copying a pixel block to a new
location in the frame buffer. Raster rotations in multiples of 90° are obtained by
manipulating row and column positions of the pixel values in a block. Other
rotations are performed by first mapping rotated pixel areas onto destination po-
sitions in the frame buffer, then calculating overlap areas. Scaling in raster trans-
formations is also accomplished by mapping transformed pixel areas to the
frame-buffer destination positions.

REFERENCES

For additional information on homogeneous coordinates in computer graphics, see Blinn
(1977 and 1978).

Transformation functions in PHICS are discussed in Hopgood and Duce (1991), tHoward et
al. (1991), Gaskins (1992), and Blake (1993). For information on GKS transformation func-
tions, see Hopgood et al. (1983) and Enderle, Kansy, and Pfaff (1984).

EXERCISES

5-1 Write a program to continuously rotate an object about a pivot point. Smatl angles are
to be used for each successive rotation, and approximations to the sine and cosine
functions are to be used to speed up the calculations. The rotation angle for each step
is to be chosen so that the object makes one complete revolution in less than 30 sec-
onds. To avoid accumulation of coordinate errors, reset the original coordinate values
for the object at the start of each new revolution.

5-2 Show that the composition of two rotations is additive by concatinating the matrix
representations for R(8,) and R(8,) to obtain

R(6;) - R(8) = R(6; + &)

5-3 Write a set of procedures to implement the buildTransformationMatrix and the
composeTransformationMatrix functions to produce a composite transforma-
tion matrix for any set of input transformation parameters.

5-4 Write a program that applies any specified sequence of transformations to a displayed
object. The program is to be designed so that a user selects the transformation se-
quence and associated parameters from displayed menus, and the composite transfor-

Exercises

213

Chapter 5

214

Two-Dimensional Geomes:'c
Transforma. ons

5-5

5-6

5-7

5-8

5-9

5-10

5-1

5-1.

[

g

5-17

5-19

mation is then calculated and used to transform the object. Display the original object
and the transformed object in different colors or different fill patterns.

Modify the transtormation matrix (5-35), for scaling in an arbitrary direction, to in-
clude coordinates for any specified scaling fixed point (x, yo.

Prove that the multiplication of transformation matrices for each of the following se-
quence of operations is commutative:

{a) Two successive rotations.

(b) Two successive trans|ations.

{c) Two successive scalings.

Prove that a uniform scaling (s, = s,) and a rotatiort form a commutative pair of opera-
tions but that, in general, scaling and rotation are not commutative operations.
Multiply the individual scale, rotate, and translate matrices in Eq. 5-38 to verify the el-
ements in the composite transformation matrix.

Show that transformation matrix (5-51), for a reflection about the line y = x, is equiva-
lent to a reflection relative to the x axis followed by a counterclockwise rotation of
90°.

Show that transformation matrix (5-52), for a reflection about the line y = —x, is
equivalent to a reflection relative to the y axis followed by a counterclockwise rotation
of 90°.

Show that tworsuccessive reflections about either of the coordinate axes is equivalent
to a single rotation about the coordinate origin.

Determine the form of the transformation matrix for a reflection about an arbitrary line
with equation y = mx + b

Show that two successive reflections about any line passing through the coordinate
origin is equivalent to a single rotation about the origin

Determine a sequence of basic transformations that are equivalent 1o the x-direction
shearing matrix (5-53).

Determine a sequence of basic transformations that are equivalent to the y<direction
shearing matrix (5-57)

Set up a shearing procedure to display italic characters, given a vector font definitior,
That is, all character shapes in this font are defined with straight-line segments, and
italic characters are formed with shearing transformations. Determine an appropriate
value for the shear parameter by comparing italics and plain text in some available
font. Define a simple vector fon! for input to your routine.

Derive the following equations for transforming a coordinate point P = (x, yi in one
Cartesian system to the coordinate values (x', y) in another Cartesian system that is ro-
tated by an angle 8, as in Fig. 5-27. Project point P onto each of the four axes and
analyse the resulting right triangles.

X'=xcos §+ ysin 8, y'= —=xsin 8+ vcas @

Write a procedure to compute the elements of the matrix for transforming object de-
scriptions from one Cartesian coordinate system to another. The second coordinate
system is o be defired with an arigin point Py and a vector V that gives the direction
for the positive y' axis of this system.

Set up procedures for implementing a block transfer of a rectangular area of a frame
buffer, using one furction to read the area into an array and another function to cop-
the array into the designated transfer area,

Determine the results of performing two successive block transfers into the same arez
of a frame buffer using the various Boolean operations.

What are the results of performing two successive block transfers into the same area o1
a frame buffer using the binary arithmetic operations?

5-22 Implement a routine to perform block transfers in a trame buifer using any specified
Boolean operation or a replacement (copy) operation Evercises

5-23 Write a routine to implement rotations in increments of 90° in frame-buffer block
transfers.

5-24 Wirite a routine to implement rotations by any specified angle in a frame-buffer block
transler.

5-25 Write a routine to implement scaling as a raster transformation of a pixel block.

215

CHAPTER

Two-Dimensional Viewing

Viewing Coordinate
Window

\\] Normalized Space

Viewport

/A ' I ws2
/ A h Window

~
I

ws1
Window ws2 Viewport

ws1 Viewport

Monitor 1 Monitor 2

216

W e now consider the formal mechanism for displaying views of a picture
on an output device. Typically, a graphics package allows a user to
specify which part of a defined picture is to be displayed and where that part is
to be placed on the display device. Any convenient Cartesian coordinate system,
referred to as the world-coordinate reference frame, can be used to define the pic-
ture. For a two-dimensional picture, a view is selected by specifying a subarea of
the total picture area. A user can select a single area for display, or several areas
could be selected for simuitaneous display or for an animated panning sequence
across a scene. The picture parts within the selected areas are then mapped onto
specified areas of the device coordinates. When multiple view areas are selected,
these areas can be placed in separate display locations, or some areas could be in-
serted into other, larger display areas. Transformations from world to device co-
ordinates involve translation, rotation, and scaling operations, as well as proce-
dures for deleting those parts of the picture that are outside the limits of a
selected display area.

6-1
THE VIEWING PIPELINE

A world-coordinate area selected for display is called a window. An area on a
display device to which a window is mapped is called a viewport. The window
defines what is to be viewed; the viewport defines where it is to be displayed.
Often, windows and viewports are rectangles in standard position, with the rec-
tangle edges parallel to the coordinate axes. Other window or viewport geome-
tries, such as general polygon shapes and circles, are used in some applications,
but these shapes take longer to process. In general, the mapping of a part of a
world-coordinate scene to device coordinates is referred to as a viewing transfor-
mation. Sometimes the two-dimensional viewing transformation is simply re-
ferred to as the window-to-viewport transformation or the windowing transformation.
But, in general, viewing involves more than just the transformation from the win-
dow to the viewport. Figure 6-1 illustrates the mapping of a picture section that
falls within a rectangular window onto a designated rectangular viewport.

In computer graphics terminology, the term window originally referred to an
area of a picture that is selected for viewing, as defined at the beginning of this
section. Unfortunately, the same term is now used in window-manager systems
to refer to any rectangular screen area that can be moved about, resized, and
made active or inactive. In this chapter, we will only use the term window to

217

Window
Viewpoint
Y¥max |
YWein =
— L Ju
meln Xwnwx vawn Xvﬂ’\.l)(
World Coordinates Device Coordinates

Figuere 6-1
A viewinyg transformation using standard rectang,es for the window and viewport.

refer to an area of a world-coordinate scene that has been selected for displav.
When we consider graphical user interfaces in Chapter & we will discuss screen
windows and window-manager systems.

Some graphics packages that provide window and viewport operations
allow only standard rectangles, but a more general approach is to allow the rec-
tangular window to have any orientation. In this case, we carry out the viewing
transformation in several steps, as indicated in Fig. 6-2. First, we construct the
scene in world coordinates using the output primitives and atiributes discussed
in Chapters 3 and 4. Next, to obtain a particular orientation for the window, we
can set up a two-dimensional viewing-coordinate system in the world-coordi-
nate plane, and define a window in the viewing-coordinate system. The viewing-
coordinate reference frame is used to provide a method for setting up arbitrarv
orientations for rectangular windows. Once the viewing reference frame is estab-
lished, we can transform descriptions in world coordinates to viewing coordi-
nates. We then define a viewport in normalized coordinates (in the range from 0
to 1) and map the viewing-coordinate description of the scene to normalized co-
ordinates. At the final step, all parts of the picture that he outside the viewport
are clipped, and the contents of the viewport are transferred to device coordi-
nates. Figure 6-3 illustrates a rotated viewing-coordinate reference frame and the
mapping to normalized coordinates.

By changing the position of the viewport, we can view objects at different
positions on the display area of an output device. Also, by varying the size of
viewports, we can change the size and proportions of displayed objects. We
achieve zooming effects by successively mapping different-sized windows on a

Construct 7 Convert Map Viewing Map Normalized
World-Coordinate World- Coordinates to Viewportto
MC Scene Using WC Coordinates vC Normalized NVC Device &~
—™ Modealing-Coordinate §—> to —— Viewing Coordinates " } Coordinates "+
Transformations Viewing using Window-Viewport_ |
Coordinates Specifications g

Figure 6-2
The two-dimensional viewing-transformation pipeline.

218

&,
IQ‘P
y world 14
_—~Window
Yo _~Viewpoint
+
[
s,
—t ha —
Xo x world 0 1
World Coordinates Normalized

Device Coordinates

Figure 6-3
Setting up a rotated world window in viewing coordinates and the
corresponding normalized-coordinate viewport.

fixed-size viewport. As the windows are made smaller, we zoom in on some part
of a scene to view details that are not shown with larger windows. Similarly,
more overview is obtained by zooming out from a section of a scene with succes-
sively larger windows. Panning effects are produced by moving a fixed-size win-
dow across the various objects in a scene.

Viewports are typically defined within the unit square (normalized coordl—
nates). This provides a means for separating the viewing and other transforma-
tions from specific output-device requirements, so that the graphics package is
largely device-independent. Once the scene has been transferred to normalized
coordinates, the unit square is simply mapped to the display area for the particu-
lar output device in use at that time. Different output devices can be used by pro-
viding the appropriate device drivers.

When all coordinate transformations are completed, viewport clipping can
be performed in normalized coordinates or in device coordinates. This allows us
to reduce computations by concatenating the various transformation matrices.
Clipping procedures are of fundamental importance in computer graphics. They
are used not only in viewing transformations, but also in window-manager sys-
tems, in painting and drawing packages to eliminate parts of a picture inside or
outside of a designated screen area, and in many other applications.

6-2
VIEWING COORDINATE REFERENCE FRAME

This coordinate system provides the reference frame for specifying the world-
coordinate window. We set up the viewing coordinate system using the proce-
dures discussed in Section 5-5. First, a viewing-coordinate origin is selected at
some world position: Py = (%, yo). Then we need to establish the orientation, or
rotation, of this reference frame. One way to do this is to specify a world vector V
that defines the viewing y, direction. Vector V is called the view up vector.

Given V, we can calculate the components of unit vectors v = (v,, v,) and
u = (u,, u,) for the viewing y, and x, axes, respectively. These unit vectors are
used to form the first and second rows of the rotation matrix R that aligns the
viewing x,y, axes with the world x,y,, axes.

Section 6-2

Viewing Coordinate Reference

Frame

219

Chapter 6

Two-Dimensional Viewing

y
world world fview

YQ'.\

Figure 6-4

A viewing-coordinate frame is moved into coincidence with the world
frame in two steps: (a) translate the viewing origin to the world origin,
then (b) rotate to align the axes of the two systems.

We obtain the matrix for converting world-coordinate positions to viewing
coordinates as a two-step composite transformation: First, we translate the view-
ing origin to the world origin, then we rotate to align the two coordinate refer-
ence frames. The composite two-dimensional transformation to convert world
coordinates to viewing coordinates is

Myucve =R-T (6-1)
where T is the translation matrix that takes the viewing origin point P, to the

world origin, and R is the rotation matrix that aligns the axes of the two reference
frames. Figure 6-4 illustrates the steps in this coordinate transformation.

6-3
WINDOW-TO-VIEWPORT COORDINATE TRANSFORMATION

Once object descriptions have been transferred to the viewing reference frame,
we choose the window extents in viewing coordinates and select the viewport
limits in normalized coordinates (Fig. 6-3). Object descriptions are then trans-
ferred to normalized device coordinates. We do this using a transformation that
maintains the same relative placement of objects in normalized space as they had
in viewing coordinates. [f a coordinate position is at the center of the viewing
window, for instance, it will be displayed at the center of the viewport.

Figure 6-5 illustrates the window-to-viewport mapping. A point at position
(xw, yw) in the window 1s mapped into position (xv, yv) in the assoctated view-
port. To maintain the same relative placement in the viewport as in the window,
we require that

XV =Xy XW — XUy,
Wmax ~ XVmin AWmax ™ XW,

min

YU — YUnin - YW~ Y,
YUmax ~ ¥V YOmax ~ YWmin

6-2)

YW T
yvmu
® (xv, yv)
(xw, yw) °
YWoan T
+ +
melﬂ xwmu

Figure 6-5

A point at position (xw, yw) in a designated window is mapped to
viewport coordinates (xv, yv) so that relative positions in the two areas
arethe same.

Solving these expressions for the viewport position (xv, yv), we have

AV = AV, + (W — XW, 5%

(6-3)
Y0 = YOmin + (yw - Wmm)sy
where the scaling factors are
sx = rUmax - xvmm
xwmax - xwmm
6-4)

sy = yvmax — yvmin
YWmax ~ YW

Equations 6-3 can also be derived with a set of transformtions that converts the
window area into the viewport area. This conversion is performed with the fol-
lowing sequence of transformations:

1. Perform a scaling transformation using a fixed-point position of (xwyp,
YW,n) that scales the window area to the size of the viewport.

2. Translate the scaled window area to the position of the viewport.

Relative proportions of objects are maintained if the scaling factors are the
same (sx = sy). Otherwise, world objects will be stretched or contracted in either
the x or y direction when displayed on the output device.

Character strings can be handled in two ways when they are mapped to a
viewport. The simplest mapping maintains a constant character size, even
though the viewport area may be enlarged or reduced relative to the window.
Ttis method would be employed when text is formed with standard character
fonts that cannot be changed. In systems that allow for changes in character size,
string definitions can be windowed the same as other primitives. For characters
formed with line segments, the mapping to the viewport can be carried out as a
sequence of line transformations.

From normalized coordinates, object descriptions are mapped to the vari-
ous display devices. Any number of output devices can be open in a part‘cular
application, and another window-to-viewport transformation can be performed
for each open output device. This mapping, called the workstation transforma-

Section 6-3

Window-to-Viewport Coordinate

Transformation

221

Chapter 6

222

Two-Dimensional Viewing

Viewing Coordinate

Window
\ ; Normalized Space
EES- Viewport
LA @ we
Window

Monitor 1 Monitor 2

Figure 6-6
Mapping selected parts of a scene in normalized coordinates to
different video monitors with workstation transformations.

tion, is accomplished by selecting a window area in normalized space and a
viewport area in the coordinates of the display device. With the workstation
transformation, we gain some additional control over the positioning of parts of
a scene on individual output devices. As illustrated in Fig. 6-6, we can use work-
station transformations to partition a view so that different parts of normalized
space can be displayed on different output devices.

6-4
TWO-DIMENSIONAL VIEWING FUNCTIONS

We define a viewing reference system in a PHIGS application program with the
following function:

evaluateViewOrientationMatrix (x0, y0, xV, y\.
error, viewMatrix)

where parameters x0 and y0 are the coordinates of the viewing origin, and para-
meters xV and yV are the world-coordinate positions for the view up vector. An
integer error code is generated if the input parameters are in error; otherwise, the
viewMatrix for the world-to-viewing transformation is calculated. Any number
of viewing transformation matrices can be defined in an application.

To set up the elements of a window-to-viewport mapping matrix, we in-
voke the function

2valuateViewMappingMatrix (xwmin, xwmax, ywnmin, y»max,
xvmin, xwvmax, yvmin, yvmax, error, viewMappingMatrix)

Here, the window limits in viewing coordinates are chosen with parameters
xwmin, xwmaXx, ywmin, and ywmax; and the viewport limits are set with the nor-

malized coordinate positions xvmin, xvmax, yvmin, yvmax. As with the
viewing-transformation matrix, we can construct several window-viewport pairs
and use them for projecting various parts of the scene to different areas of the
unit square.

Next, we can store combinations of viewing and window-viewport map-
pings for various workstations in a viewing table with

setViewRepresentation {(ws, viewlIndex, viewMatrix,
viewMappingMatrix, xclipmin, =xclipmax, yclipmin,
yclipmax, clipxy)

where parameter ws designates the output device (workstation), and parameter
viewIndex sets an integer identifier for this particular window-viewport pair.
The matrices viewMatrix and viewMappingMatrix can be concatenated and
referenced by the viewIndex. Additional clipping limits can also be specified
here, but they are usually set to coincide with the viewport boundaries. And pa-
rameter clipxy is assigned either the value nociip or the value clip. This allows
us to turn off clipping if we want to view the parts of the scene outside the view-
port. We can also select noclip to speed up processing when we know that all of
the scene is included within the viewport limits.
The function

s2tViewindex (viewlIndex)

selects a particular set of options from the viewing table. This view-index selec-
tion is then applied to subsequently specified output primitives and associated
attributes and generates a display on each of the active workstations.

At the final stage, we apply a workstation transformation by selecting a
workstation window-viewport pair:

setWorkstationWindow (ws, xwsWindmir, xwsWindmax,
ywsWindmin, ywsWindmax)

setWorkstationViewport (ws. xwsVPortmin, XwsVPortmax,
ywsVPortmin, ywsVPortmax)

where parameter ws gives the workstation number. Window-coordinate extents
are specified in the range from 0 to 1 (normalized space), and viewport limits are
in integer device coordinates.

If a workstation viewport is not specified, the unit square of the normalized
reference frame is mapped onto the largest square area possible on an output de-
vice. The coordinate origin of normalized space is mapped to the origin of device
coordinates, and the aspect ratio is retained by transforming the unit square onto
a square area on the output device.

Example 6-1 Two-Dimensional Viewing Example

As an example of the use of viewing functions, the following sequence of state-
ments sets up a rotated window in world coordinates and maps its contents to
the upper right corner of workstation 2. We keep the viewing coordinate origin at
the world origin, and we choose the view up direction for the window as (1, 1).
This gives us a viewing-coordinate system that is rotated 45° clockwise in the
world-coordinate reference frame. The view index is set to the value 5.

Section 6-4

Two-Dimensional Viewing
Functions

223

Chapter 6

224

Two-Dimensional Viewing

evaluateViewOrientationMatrix (¢, 0, 1, 1,
viewError, viewMat);
evaluateViewMappingMatrix (-60.5, 41.24, -20.75, 82.5, 0.5,
0.8, (.7, 1.0, viewMapError, viewMapMat);
setViewRepresentation (2, 5, viewMat, viewMapMmat, 0.5, 0.8,
0.7, 1.0, <lipl);
setViewlndex (5);

Similarly, we could set up an additional transformation with view index 6 that
would map a specified window into a viewport at the lower left of the screen.
Two graphs, for example, could then be displayed at opposite screen comners
with the following statements.

setViewIndex (5);
polyline (3, axes);
polyline (15, datal}:
setViewIndex (6);
polyline (3, axes);
polyline (25, datal);

View index 5 selects a viewport in the upper right of the screen display, and view
index 6 selects a viewport in the lower left corner. The function polyline (3,
axes) produces the horizontal and vertical coordinate reference for the data plot
in each graph.

6-5
CLIPPING OPERATIONS

Generally, any procedure that identifies those portions of a picture that are either
inside or outside of a specified region of space is referred to as a clipping algo-
rithm, or simply clipping. The region against which an object is to clipped is
called a clip window.

Applications of clipping include extracting part of a defined scene for view-
ing; identifying visible surfaces in three-dimensional views; antialiasing line seg-
ments or object boundaries; creating objects using solid-modeling procedures;
displaying a multiwindow environment; and drawing and painting operations
that allow parts of a picture to be selected for copying, moving, erasing, or dupli-
cating. Depending on the application, the clip window can be a general polygon
or it can even have curved boundaries. We first cansider clipping methods using
rectangular clip regions, then we discuss methods for other clip-region shapes.

For the viewing transformation, we want to display only those picture parts
that are within the window area (assuming that the clipping flags have not been
set to noclip). Everything outside the window is discarded. Clipping algorithms
can be applied in world coordinates, so that only the contents of the window in-
terior are mapped to device coordinates. Alternatively, the complete world-coor-
dinate picture can be mapped first to device coordinates, or normalized device
coordinates, then clipped against the viewport boundaries. World-coordinate
clipping removes those primitives outside the window from further considera-
tion, thus eliminating the processing necessary to transform those primitives to
device space. Viewport clipping, on the other hand, can reduce calculations by al-
lowing concatenation of viewing and geometric transformation matrices. But

viewport clipping does require that the transformation to device coordinates be Section 6-7

performed for all objects, including those outside the window area. On raster Line Clipping
systems, clipping algorithms are often combined with scan conversion.

In the following sections, we consider algorithms for clipping the following
primitive types

¢ Point Clipping

¢ Line Clipping (straight-line segments)
» Area Clipping (polygons)

Curve Clipping

Text Clipping

Line and polygon clipping routines are standard components of graphics pack-
ages, but many packages accommodate curved objects, particularly spline curves
and conics, such as circles and ellipses. Another way to handle curved objects is
to approximate them with straight-line segments and apply the line- or polygon-
clipping procedure.

6-6
POINT CLIPPING

Assuming that the clip window is a rectangle in standard position, we save a
point P = (x, y) for display if the following inequalities are satisfied:
TWein S X = XWpyy,
6-5)
Wmin = y = ywm.:x

where the edges of the clip window (YW, YW, ... YWin, Y&,y can be either the
world-coordinate window boundaries or viewport boundaries. If any one of
these four inequalities is not satisfied, the point is clipped (not saved for display).

Although point clipping is applied less often than line or polygon clipping,
some -applications may require a point-clipping procedure. For example, point
clipping can be applied to scenes involving explosions or sea foam that are mod-
eled with particles (points) distributed in some region of the scene.

6-7
LINE CLIPPING

Figure 6-7 illustrates possible relationships between line positions and a standard
rectangular clipping region. A line<clipping procedure involves several parts.
First, we can test a given line segment to determine whether it lies completely in-
side the clipping window. If it does not, we try to determine whether it lies com-
pletely outside the window. Finally, if we cannot identify a line as completely in-
side or completely outside, we must perform intersection calculations with one
or more clipping boundaries. We process lines through the “inside-outside” tests
by checking the line endpoints. A line with both endpoints inside all clipping
boundaries, such as the line from P, to P,, is saved. A line with both endpoints
outside any one of the clip boundaries (line P,P, in Fig. 6-7) is outside the win-

i)

Window Windaw

P,

? e,
|
e Py
P)
Befare Clipping After Ciipping
(a) (b)

Figure 6-7

Line clipping against a rectangular clip window.

226

dow. All other lines cross one or more clipping boundaries, and may require cal-
culation of multiple intersection points. To minimize calculations, we try to de-
vise clipping algorithms that can efficiently identify outside lines and reduce in-
tersection calculations.

For a line segment with endpoirtts (¥, ¥;) and (x,. 2} and one or both end-
points autside the clipping rectangle, the parametric representation

yoooxy 4ty <oxg) .
(6-6)
y=ytulyy—y), Osu=d

could be used to determine values of parameter u for intersections with the clip-
ping boundary coordinates. If the value of ¥ for an intersection with a rectangle
boundary edge is outside the range 0 to 1, the line does not enter the interior of
the window at that boundary. If the value of « is within the range from O to 1, the
line segment does indeed cross into the clipping area. This method can be ap-
plied to each clipping boundary edge in turn to determine whether any part of
the line segment is to be displayed. Line segments that are parallel to window
edges can be handled as special cases.

Clipping line segments with these parametric tests requires a good deal of
computation, and faster approaches to clipping are possible. A number of effi-
cient jine clippers have been developed, and we survey the major algorithms in
the next sections. Some algorithms are designed explicitly for two-dimensional
pictures and some are easily adapted to three-dimensional applications.

Cohen-Sutherland Line Clipping

This is one of the oldest and most popular line-clipping procedures. Generally,
the method speeds up the processing of line segments by performing initial tests
that reduce the number ol intersections that must be calculated. Everv line end-

point in a picture is assigned a four-digit binary code, called a region code, that
identifies the location of the point relative to the boundaries of the clipping rec-
tangle. Regions are set up in referehce to the boundaries as shown in Fig. 6-8.
Each bit position in the region code is used to indicate one of the four relative co-
ordinate positions of the point with respect to the clip window: to the left, right,
top, or bottom. By numbering the bit positions in the region code as 1 through
4 from right to left, the coordinate regions can be correlated with the bit posi-
tions as

bit 1: left
bit 2: right
bit 3: below
bit 4: above

A value of 1 in any bit position indicates that the point is in that relative position;
otherwise, the bit position is set to 0. If a point is within the clipping rectangle,
the region code is 0000. A point that is below and to the left of the rectangle has a
region code of 0101.

Bit values in the region code are determined by comparing end point coordi-
nate values (x, y) to the clip boundaries. Bit 1 is set to 1 if x < xtwy;,. The other
three bit values can be determined using similar comparisons. For languages in
which bit manipulation is possible, region-code bit values can be determined
with the following two steps: (1) Calculate differences between endpoint coordi-
nates and clipping boundaries. (2) Use the resultant sign bit of each difference
calculation to set the corresponding value in the region code. Bit 1 is the sign bit
of x — xw ;. bit 2 is the sign bit of xw,, — x; bit 3 is the sign bit of y — ywg,,; and
bit 4 is the sign bit of yw,,,, — y.

Once we have established region codes for all line endpoints, we can
quickly determine which lines are completely inside the clip window and which
are clearly outside. Any lines that are completely contained within the window
boundaries have a region code of 0000 for both endpoints, and we trivially accept
these lines. Any lines that have a 1 in the same bit position in the region codes for
each endpoint are completely outside the clipping rectangle, and we trivially re-
ject these lines. We would discard the line that has a region code of 1001 for one
endpoint and a code of 0101 for the other endpoint. Both endpoints of this line
are left of the clipping rectangle, as indicated by the 1 in the first bit position of
each region code. A method that can be used to test lines for total clipping is to
perform the logical and operation with both region codes. If the result is not 0000,
the line is completely outside the clipping region.

Lines that cannot be identified as completely inside or completely outside a
clip window by these tests are checked for intersection with the window bound-
aries. As shown in Fig. 6-9, such lines may or may not cross into the window in-
terior. We begin the clipping process for a line by comparing an outside endpoint
to a clipping boundary to determine how much of the line can be discarded.
Then the remaining part of the line is checked against the other boundaries, and
we continue until either the line is totally discarded or a section is found inside
the window. We set up our algorithm to check line endpoints against clipping
boundaries in the order left, right, bottom, top.

To illustrate the specific steps in clipping lines against rectangular bound-
aries using the Cohen—Sutherland algorithm, we show how the lines in Fig. 6-9
could be processed. Starting with the bottom endpoint of the line from P, to P,,

Section 6-7

Line Clipping

Figure 6-8

Binary region codes assigned
to line endpoints according to
relative position with respect

to the clipping rectangle.

227

Chapter 6

Two-Dimensional Viewing

P;

NP3 Window

!

)

|

’ Figure 6-9

| Lines extending from one

i P coordinate region to another may

P, ! pass through the clip window,
P \ P or they may intersect clipping
3|| ! boundaries without entering the

window.

we check P, against the left, right, and bottom boundaries in turn and find that
this point is below the clipping rectangle. We then find the intersection point P,
with the bottom boundary and discard the line section from P, to P}, The line
now has been reduced to the section from P; to P,. Since P, is outside the clip
window, we check this endpoint against the boundaries and find that it is to the
left of the window. Intersection point P, is calculated, but this point is above the
window. So the final intersection calculation yields P;, and the line from P| to P
is saved. This completes processing for this line, so we save this part and go on to
the next line. Point P, in the next line is to the left of the clipping rectangle, so we
determine the intersection P and eliminate the line section from P, to P;. By
checking region codes for the line section from P} to P, we find that the remain-
der of the line is below the clip window and can be discarded also.

Intersection points with a clipping boundary can be calculated using the
slope-intercept form of the line equation. For a line with endpoint coordinates (x,,
y1) and (x,, y»), the y coordinate of the intersection point with a vertical boundary
can be obtained with the calculation

y=yn+mx-x) (6-7)
where the x value is set either to xw,,;, or to xw,,, and the slope of the line is cal-

culated as m = (y; ~ y;}/(x;, — x;). Similarly, if we are looking for the intersection
with a horizontal boundary, the x coordinate can be calculated as

x:n+y;% (6-8)

with y set either to yw., or to yw,,,,.

The following procedure demonstrates the Cohen-Sutherland line-clipping
algorithm. Codes for each endpoint are stored as bytes and processed using bit
manipulations.

#$define ROUND(a)

{({int) (a+0.5})

/* Bit masks encode a point's position relative to the clip edges. A
point ‘s status is encoded by OR'ing together appropriate bit masks.

*/
tdefine LEFT_EDGE

228

Ox1

#define RIGHT EDGE 0Ox2
#defne BOTTOM_EDGE 0Ox4
#define TOP EDGE Ox8

% Points encoded as 0000 are completely Inside the clip rectangle;
all others are outside at least one edge. If OR'ing two codes is
FALSE (no bits are set in either code), the line can be Accepted. If
the AND operation between two codes is TRUE, the line defined by those
endpoints is completely outside the clip region and can be Rejected.

Y

#define INSIDE(a) (ta)
#define REJECT(a,b) (a&b)
#define ACCEPT(a.b) (!{(alb))

unsigned char encode (wcPtZ pt. dcPt winMin, dcPt winMax)
{
unsigned char code=0x(C0;

Lf (pr.x < winMin.x)
code = code | LEFT_EDGE;

it (pt.x » winMax.x)

code = code | RIGHT_EDGE;
if (pt.y < winMin.y)

code = code | BOTTOM_EDGE:
if (pt.y > winMax.y)

code = code | TOP_EDGE;

return {code);

vo1d swapPts (wcPt2 * pl, wcPt2 * p2)
(

wCPLZ tmp;

tmp = *pl; *pl = *p2; *p2 = tmp;

vo.d swapCudes {unsigned char * ¢l, unsigrec¢ char * ¢2)
{

unsigned char tmp;

tmp = *cl; *cl = *c2; *c2 = tmp;
}

vo.d cliplLine (dcPt winMin, dJdcPt winMax, wckt2 pl, wcPu2 p2)
{

unsigned c¢har codel, code?;

int done = FALSE, draw = FALSE:

float m:

while (!done) ({
codel = encode (pl, winMin, winMax);
code2 = encode (p2, winMin, winMax);
if (ACCEPT (codel, code2))
done = TRUE;
draw = TRUE:
)
else
if (REJECT (codel, codel2)}
done = TRUE;
else |
/* Ensure that pl is outside window */
if (INSIDE (codei)) {

229

swapPts (&pl, &p2);
swapCodes (&codel, &codel);
}
/* Use slope {m) to find line-clipEdge intersections */
if (p2.x !'= pl.x)
m = (p2.y - pl.y] / (p2.x - pl.x);
if {codel & LEFT_EDGE)} {
pl.y += (winMin.x - pl.x) * m;
pl.x = winMin.x;
}
else
if {codel & RIGHT_EDGE) {
pPl.y += (winMax.x - pl.x) * m;
pl.x = winMax.x;
}
else
if (codel & BOTTOM_EDGE) {
/* Need to update pl.x for non-vertical lines only */
it (p2.x t= pl.x)
pl.x += (winMin.y - pl.y) / m;
pl.y = winMin.y;
)
else
if (codel & TOP_EDGE} {
if {p2.x != pl.x)
pl.x += (winMax.y - pl.y) / ©u;
rl.y = winMax.y;
1

)
}
if (draw)
lineDDA (ROUND(pl.x), ROUND(pl.y), ROUND(p2.x), ROUND(p2.y))};

Liang-Barsky Line Clipping

Faster line clippers have been developed that are based on analysis of the para-
metric equation of a line segment, which we can write in the form

x =Xy + ubx 6-9)
y =y, + uldy, 0=u=1

where Ax = x, — x; and Ay = y, — y,. Using these parametric equations, Cyrus
and Beck developed an algorithm that is generally more efficient than the
Cohen-Sutherland algorithm. Later, Liang and Barsky independently devised an
even faster parametric line-clipping algorithm. Following the Liang-Barsky ap-
proach, we first write the point-clipping conditions 6-5 in the parametric form:

AW = X + UDX = xW,,

{6-10)
yzumin = yl + uAy = yu)max
Each of these four inequalities can be expressed as
up, < q,, k=1,2,3,4 (6-11)

230

where parameters p and q are defined as

p, = - Ax, g4y = Xy T ATy,

p, = Ax, G2 = XWama Xy 617
ps = —Ay, 43 = Y1 = ¥nin

P4 = AV/ ‘74 = .Vu’max }11

Any line that is parallel to one of the clipping boundaries has p, = 0 for the value
of k corresponding to that boundary (k =1, 2, 3, and 4 correspond to the left,
right, bottom, and top boundaries, respectively). If, for that value of k, we also
find g, < 0, then the line is completely outside the boundary and can be elimi-
nated from further consideration. If g, =0, the line is inside the parallel clipping
boundary.

When p; - 0, the infinite extension of the line proceeds from the outside to
the inside of the infinite extension of this particular clipping boundary. If p, > 0,
the line proceeds from the inside to the outside. For a nonzero value of p,, we can
calculate the value of 1 that corresponds to the point where the infinitely ex-
tended line intersects the extension of boundary k as

u = (6-13)

For each line, we can calculate values for parameters u; and u, that define
that part of the line that lies within the clip rectangle. The value of u, is deter-
mined by looking at the rectangle edges for which the line proceeds from the out-
side to the inside (p < 0). For these edges, we calculale r, = g,/p;. The value of u,
is taken as the largest of the set consisting of 0 and the various values of r. Con-
versely, the value of u; is determined by examining the boundaries for which the
line proceeds from inside to outside (p > 0). A value of r, is calculated for each of
these boundaries, and the value of u, is the minimum of the set consisting of 1
and the calculated r values. If 4, > u,, the line is completely outside the clip win-
dow and it can be rejected. Otherwise, the endpoints of the clipped line are calcu-
lated from the two values of parameter .

This algorithm is presented in the following procedure. Line intersection
parameters arce initialized to the values u; =0 anc u,; = 1. For each clipping
boundary, the appropriate values for p and g are calculated and used by the func-
tion clipTest to determine whether the line can be rejected or whether the intersec-
tion parameters are to be adjusted. When p < (), the parameter r is used to update
uy;; when p > (0, parameter r is used to update u,. If updating 1, or u, results in
Uy > Uy, we reject the line. Otherwise, we update the appropriate u parameter
only if the new value results in a shortening of the ine. When p = 0 and q < 0,
we can discard the hine since it is parallel to and outside of this boundary. If the
line has not been rejected after all four values of p and g have been tested, the
endpoints of the clipped line are determined from values of u; and u,.

Section 6-7

Line Clipping

#include "graphics. h*
#define ROUND (a) (1int) (a+d.5))

int clipTest (float p, float q, float * ul, flear * u2)

231

float r;
int retVal = TRUE;

if (p < 0.0} (
Y = q / p;
if (r > *u2:
H retvVal = FALSE;

else
if (r » *ul)
*ul = 1
}
else

if (p » 0.0) {
r=qg/ p;
if {(r < *ul)
retVal = FALSE;
else if {(r < *u2)
*u2 = r;
}
else
/* p = 0, so line is parallel to this ¢lipping edge */
if (g < 0.0}
/* Line is outside clipping edge
retVal = FALSE;

return (retval);
> (
void cliplLine (dcPt winMin, dcPt winMax, wcF:2Z pl, wcPt2 p2)
{

float ul = 0 0, u2 = 1.0, dx = p2.x - pl.x dy;

if (clipTest (-dx, pl.x - winMin.x, &ul, &u2j) [
if (¢clipTest (dx, winMax.x - pl.x, &ul, &u2)) {
dy = p2.y - pl.y:
if (clipTest {(-dy, pl.y - winMin.y, &ul, &u2))
1f {clipTest (dy, winMax.y - pl.y, &uvi. &u2)) { ;
if (u2 < 1.0} { !
p2.x = pl.x + u2 * dx; i
pz.y = pl.y + u2 * dy; !
)
1f {ul » 0.0) {
pl.x = ul * dx; ,
pl.y += ul * dy: I
|

}
lineDDA (ROUND{pl.x), ROUND(pl.y)} ROUND(p2.x}, ROUND(p2.y));

In general, the Liang-Barsky algorithm is more efficient than the
Cohen—Sutherland algorithm, since intersection calculations are reduced. Each
update of parameters u, and u, requires only one division; and window intersec-
tions of the line are computed only once, when the final values of u; and u, have
been computed. In contrast, the Cohen-Sutherland algorithm can repeatedly cal-
culate intersections along a line path, even though the line may be completely
outside the clip window. And, each intersection calculation requires both a divi-
sion and a multiplication. Both the Cohen-Sutherland and the Liang-Barsky al-

gorithms can be extended to three-dimensional clipping (Chapter 12).
232

Nicholl-Lee-Nicholl Line Clipping

By creating more regions around the clip window, the Nicholl-Lee-Nicholl (or
NLN) algorithm avoids multiple clipping of an individual line segment. In the
Cohen-Sutherland method, for example, multiple intersections may be calcu-
lated along the path of a single line before an intersection on the clipping rectan-
gle is located or the line is completely rejected. These extra intersection calcula-
tions are eliminated in the NLN algorithm by carrying out more region testing
before intersection positions are calculated. Compared to both the Cohen-Suther-
land and the Liang-Barsky algorithms, the Nicholl-Lee-Nicholl algorithm per-
forms fewer comparisons and divisions. The trade-off is that the NLN algorithm
can only be applied to two-dimensional clipping, whereas both the Liang-Barsky
and the Cohen-Sutherland methods are easily extended to three-dimensional
scenes.

For a line with endpoints P, and P,, we first determine the position of point
P, for the nine possible regions relative to the clipping rectangle. Only the three
regions shown in Fig. 6-10 need be considered. If P, lies in any one of the other
six regions, we can move it to one of the three regions in Fig. 6-10 using a sym-
metry transformation. For example, the region directly above the clip window
can be transformed to the region left of the clip window using a reflection about
the line y = —x, or we could use a 90° counterclockwise rotation.

Next, we determine the position of P, relative to P,. To do this, we create
some new regions in the plane, depending on the location of P,. Boundaries of
the new regions are half-infinite line segments that start at the position of P, and
pass through the window corners. If P, is inside the clip window and P, is out-
side, we set up the four regions shown in Fig. 6-11. The intersection with the ap-
propriate window boundary is then carried out, depending on which one of the
four regions (L, T, R, or B) contains P,. Of course, if both P, and P, are inside the
clipping rectangle, we simply save the entire line.

If P, is in the region to the left of the window, we set up the four regions, L,
LT, LR, and LB, shown in Fig. 6-12. These four regions determine a unique bound-
ary for the line segment. For instance, if P, is in region L, we clip the line at the
left boundary and save the line segment from this intersection point to P,. But if
P, is in region LT, we save the line segment from the left window boundary to the
top boundary. If P, is not in any of the four regions, L, LT, LR, or LB, the entire
line is clipped.

Section 6-7

Line Clipping

F.ir Corner |

e}

Figure 6-10
Three possible positions for a line endpoint P, in the NLN line-clipping algorithm.

3

A //
~ P
\ e
L AN o A
x
PNl
P ~.
/ ~
P % .~
,
.
4
Figure 6-11

The four clipping regions
used in the NLN algorithm
when P, is inside the clip
window and P, is outside.

234

s LT
///:__ »—’—’-
Py - { LA
\\\ L DR -
.
S, 1B Figure 6-12
N The four clipping regions used in
S the NLN algorithm when P, is
h directly left of the clip window.

For the third case, when P; is to the left and above the clip window, we use
the clipping regions in Fig. 6-13. In this case, we have the two possibilites shown,
depending on the position of P, relative to the top left corner of the window. If P,
is in one of the regions T, L, TR, TB, LR, or LB, this determines a unique clip-
window edge for the intersection calculations. Otherwise, the entire line is re-
jected.

To determine the region in which P, is located, we compare the slope of the
line to the slopes of the boundaries of the clip regions. For example, if P, is left of
the clipping rectangle (Fig. 6-12), then P, is in regjon LT if

slope P\Prg < slope P,P, < slope PP, (6-14)

or

YroW Y2V W T W (6-15)
Xg— X7 X2 — X, X <X
And we clip the entire line if
Uy =yl = x) < —x)y, —y) (6-10)

The coordinate difference and product calculations used in the slope tests
are saved and also used in the intersection calculations. From the parametric
equations

x=x, +(x; - x)u
y=yF - yu

an x-intersection position on the left window boundary is x = x, with i =
(x, — x,)/{x; — xy), so that the y-intersection position is

Y-u

X

y=y+ (xp, — 1)) (e-17)

IR Tl p
VA N T YC\: ————————————
| = N
Y -~ ~
] ~ e \ \\\\
T : VT
e AN \ U N
v ~ \ ~ ~ L
R or \ ~
\ N TR 1 ~
| \ \\ \ \\
Ui .. \ L ~
v A
1 \\
T
] Y
\ N \
! LB
L La T8 N \
¢ ' \
(a) (b)
Figure 6-13

The two possible sets of clipping regions used in the NLN algorithm when P, 1s above and
-0 the left of the clip window.

And an intersection position on the top boundary has y = y; and u =
(yr — y))/(y, — yy), with

X - x
x=x + 2

Yo~

(yT' _Vl.l (G-1&8

Line Chpping Using Nonrectangular Clip Windows

In some applications, it is often necessary to clip lines against arbitrarily shaped
polvgons. Algorithms based on parametric line equations, such as the
Liang~-Barsky method and the earlier Cyrus-Beck approach, can be extended eas-
ily to convex polygon windows. We do this by modifying the algorithm to in-
clude the parametric equations for the boundaries of the clip region. Preliminary
screening of line segments can be accomplished by processing lines against the
coordinate extents of the clipping polygon. For concave polygon-clipping re-
gions, we can still apply these parametric clipping procedures if we first split the
concave polygon into a set of convex polygons.

Circles or other curved-boundary clipping regions are also possible, but less
commonly used. Clipping algorithms for these areas are slower because intersec-
tion calculations involve nonlinear curve equations. At the first step, lines can be
clipped against the bounding rectangle (coordinate extents) of the curved clip-
ping region. Lines that can be identified as completely outside the bounding rec-
tangle are discarded. To identify inside lines, we can calculate the distance of line
endpoints from the circle center. If the square of this distance for both endpoints
of a line 15 less than or equal to the radius squared, we can save the entire line.
The remaining lines are then processed through the intersection calculations,
which must solve simultaneous circle-line equations.

Splitting Concave Polvgons

We can identify a concave polygon by calculating the cross products of succes-
sive edge vectors in order around the polygon perimeter. If the z component of

235

Chapter 6

Two-Dimensional Viewing

Figure 6-15
Splitting a concave polygon
using the vector method.

236

€, x Ej), >0
{E; X Ey), >0
(E; > E), <O
{E, X Eg), >0
(E, > Eg), >0

(E¢ > Ey), >0

Figure 6-14
Identifying a concave polygon by calculating cross
products of successive pairs of edge vectors.

some cross products is positive while others have a negative z component, we
have a concave polygon. Otherwise, the polygon is convex. This is assuming that
no series of three successive vertices are collinear, in which case the cross product
of the two edge vectors for these vertices is zero. If all vertices are collinear, we
have a degenerate polygon (a straight line). Figure 6-14 illustrates the edge-
vector cross-product method for identifying concave polygons.

A vector method for splitting a concave polygon in the xy plane is to calculate
the edge-vector cross products in a counterclockwise order and to note the sign
of the z component of the cross products. If any z component turns out to be neg-
ative (as in Fig. 6-14), the polygon is concave and we can split it along the line of
the first edge vector in the cross-product pair. The following example illustrates
this method for splitting a concave polygon.

Example 6-2: Vector Method for Splitting Concave Polygons

Figure 6-15 shows a concave polygon with six edges. Edge vectors for this poly-
gon can be expressed as
E =(1,0,0), E,=(1,1,0)
E,=(1,-1,0), E, = (0,2,0)
Es =(-3,0,0), E,= (0, -2,0
where the z component is 0, since all edges are in the xy plane. The cross product
E,Ax E, for two successive edge vectors is a vector perpendicular to the xy plane
with z component equal to E.E;, — E,Ej,.
E, xE,=1(0,0,1), E, X E;= (0,0, -2)
E, X E; =(0,0,2), E, X E; =(0,0,6)
E, x E; = (0,0, 6), E, X E =(,0,2
Since the cross product E, X E; has a negative z component, we split the polygon

along the line of vector E;. The line equation for this edge has aslope of 1and ay
intercept of ~1. We then determine the intersection of this line and the other

Vs Figure 6-16
Splitting a concave polygon using
the rotational method. After

V2 Vs ¥ rotating V; onto the x axis, we find
that V, is below the x axis. So we
split the polygon along the line

Va of VZV;.

polygon edges to split the polygon into two pieces. No other edge cross products
are negative, so the two new polygons are both convex.

We can also split a concave polygon using a rotational method. Proceeding
counterclockwise around the polygon edges, we translate each polygon vertex V,
in turn to the coordinate origin. We then rotate in a clockwise direction so that
the next vertex V,,, is on the x axis. If the next vertex, V,,,, is below the x axis, the
polygon is concave. We then split the polygon intc two new polygons along the x
axis and repeat the concave test for each of the two new polygons. Otherwise, we
continue to rotate vertices on the x axis and to test for negative y vertex values.
Figure 6-16 illustrates the rotational method for splitting a concave polygon.

6-8
POLYGON CLIPPING

To clip polygons, we need to modify the line-clipping procedures discussed in
the previous section. A polygon boundary processed with a line clipper may be
displayed as a series of unconnected line segments (Fig. 6-17), depending on the
orientation of the polygon to the clipping window. What we really want to dis-
play is a bounded area after clipping, as in Fig. 6-18. For polygon clipping, we re-
quire an algorithm that will generate one or more closed areas that are then scan
converted for the appropriate area fill. The output of a polygon clipper should be
a sequence of vertices that defines the clipped polygon boundaries.

Figure 6-17
77777777777777 ! Display of a polygon processed by a
Before Clipping After Clipping line-clipping algorithm

Section 6-8

Polygon Clipping

237

Chapter 6

238

Two-Dimensional Viewing

Onginal
Pofygon

Figure 6-19

"

Figure 618
Display of a correctly clipped
Before Clipping After Clippin olygon.

g polyg

Sutherland-Hodgeman Polvgon Clipping

We can correctly clip a polygon by processing the polygon bound ry as a whole
against each window edge. This could be accomplished by processing ali poly-
gon vertices against each clip rectangle boundary in turn. Beginning with the ini-
tial set of polygon vertices, we could first clip the polygon against the left rectan-
gle boundary to produce a new sequence of vertices. The new set of vertices
could then be successively passed to a right boundary clipper, a bottom bound-
ary clipper, and a top boundary clipper, as in Fig. 6-19. At each step, a new se-
quence of output vertices is generated and passed to the next window boundary
clipper.

There are four possible cases when processing vertices in sequence around
the perimeter of a polygon. As each pair of adjacent polygon vertices is passed to
a window boundary clipper, we make the following tests: (1) If the first vertex is
outside the window boundary and the second vertex is inside, both the intersec-
tion point of the polygon edge with the window boundary and the second vertex
are added to the output vertex list. (2) If both input vertices are inside the win-
dow boundary, only the second vertex is added to the output vertex list. (3) If the
first vertex is inside the window boundary and the second vertex is outside, only
the edge intersection with the window boundary is added to the output vertex
list. (4) If both input vertices are outside the window boundary, nothing is added
to the output list. These four cases are illustrated in Fig. 6-20 for successive pairs
of polygon vertices. Once all vertices have been processed for one clip window
boundary, the output list of vertices is clipped against the next window bound-
ary.

Clip Clip
Bottom Top

Clipping a polygon against successive window boundaries.

) Q) udAtms

)
(XeWwm 342p ‘UTHM 3dop ‘g eBpg d £3dOM} @pisSur 3url

¥ HO03 N 2uyap4
!abpa { dol ‘wo3lzog ‘aybry ‘3za7 } umua japadKiy

‘Krepunoq mopuim

STy} 10§ ISI| XaHaA jndjno
2wt syunod ays [aqey o3
pasn AIe SIQLINU PAWLL] |
xapaa yiim Sunuels ‘moputm
e jo Arepunoq 1331 3
isure@e uodLjod e Suiddy)
1z-9 24n814

‘Arepunoq yoea jsutede paddip sjutod jsef pue jsiy
ayy 4q pauyap sauy sdip sunnor Buisop e ‘passadord uaaq aaey saduIaA uo3Ljod
I[e 13y ‘Arepunoq yey) 1surede paddip 1urod 1511 oY) A1epUNOG MOpUIM YIED 10§
sa10)s JuTod 151y Aere ay] ‘sjurod jo Aerre 1ndino ayj ojur paIajua udy) st saue
-punoq mopuim [e jsutede Suiddip saarains jeyy juiod Luy -a8eis Suiddip xau
ay) 03 passed s1 31 ‘mopuim ay) apisut st d J] -adeis Suiddip 1xau ayy 03 passed pue
paje[nd[ed Sl UONDIISIAUIT 3Y} ‘ATepunoq MOpUIM SIY] SISO [Alepunoq]s pue
d syutodpua Aq pauyap aulf ay) J| Arepunoq mopuim isiy ayy jsurede Juiddip
10§ aunnol JutoddTTo ayl 0) d xapIaa Ydoea sassed aunnol urew ay | -Arepunoq
mopuim-dip yoea 10j paddipd sem jeyy jurod juadal jsow ayj SpIodads ‘s ‘AeLie
uy ‘yoeoidde Suiddip aurnadid ay) sayensuowap ainpasord Buimoroy ayl

'sraddip Arepunogq jo
auradid e y3nouyy zz-9 “31g ur sadniaa uo8£jod ay jo uoissardord ay) arensnyyr
am “gz-9 "8 ul ‘mopum dip e yym sjputod uonssiajur syt pue uo3£[od e smoys
7z-9 am3ig -aunpadid ay) ur anuyuod jou ssop jutod ay) ‘esimasyi0 staddip Lie
-punoq moj [ie 4q A7RpuUnoq MOpulm B U0 I0 3PISUl 3¢ 0] PaUTULI3IP Uadq uaadq
sey 11 1235 A[uo s xauaa ndino ayy o) pappe st (Jutod UOLISIIUT pajeMI[ed
e 10 xapaa ndut ue 1ay319) jutod v -saunnor uiddi> yo aunadid e pue sossasord
a13uis e 10 siossadord [pesed yym auop aq ued sgz 1 Jaddmp Arepunoq jxau
ay) 0} uo sadydA paddmd ayy Suissed pue days yoea je saoysaa enpiarpur Suid
-dip £ dunis 4q s3s1] xamaa Indino djerpauLIaul aY) JjeRUTWI[R URd 3py Alepunoq
mopuim yoea jsurede paddip s1 uo84jod e se saon194 jo 3s1p Indino ue 105 93e103s
dn Bunyes sainbaz paquosap isnl asey am se wiyirod[e ayi Suyuawapdwg

‘A1epUNOq MOpUIM JX3U 3Yj Joj ssadoxd ayy yead
-a1 pnom am ‘sputod paaes aay ayy Surs) jutod uoydasIduL BYy) 24aeS pue puy
3Mm 0§ “IPISINO S X2UIA [BUY pub [IXIS Y] ‘paes are os[e 43y} pue ‘apisul aq
0} PAUIULIZPP ' G PUE § SIS € XIHIA pue juiod UOUIISISUL 3Y) YJOq dAES
PUE UOTIDISISNT 3y} S}B[NI[ED dM ‘IPISUL SI YoM ‘¢ XapaA 0} Suofe Butsopy Aie
-punoq ayj Jo IPISINO Y] UO 3q O} PUNOJ AL 7 PUE | SO ‘ATepunog mopuim
131 ayy surele 1z-9 Sy ul eare ayy Surssasoid Aq poyiawr sTy) Ajensn{[l Sz

‘Krepunoq mopuim a1 ay) jsureSe saonaaa uo3£jod jo sired jo Surssasord aaissadrong

07-9 24n814

Figure 6-22

A polygon overlapping a
rectangular clip window.
‘n o — - —- : — out
' - v, _ v,
Vs - \E -_ Vs
v, —_—— V) ——— (Vg —— eV (Ve V)
\ A a— v,
—_— A R v
Figure 6-23

Processing the vertices of the polygon in Fig. 6-22 through a boundary-clipping pipeline.
After all vertices are processed through the pipeline, the vertex list for the clipped polygon
is (V3, V3, V,, Vil

case Left: if (p.x < wMin.x) return (FALSE); break;
case Right: if (p.x > wMax.x) return (FALSE}:; break;
case Bottom: if (p.y < wMin.y) return (FALSE); break;
case Top: if (p.y » wMax.y) return (FALSE): break;

}
return (TRUE);
}

int cross (wcPt2 pl, wcPt2 p2, Edge b, dcPt wMin, dcPt wMax)
{
if (inside (pl, b, wMin, wMax) == inside (p2, b, wMin, wMax))
return (FALSE):
else return (TRUE)};
)

wcPt2 intersect (wcPt2 pl, wcPt2 p2, Edge b, dcPt wMin, dcPt wMax)
{

wcPt2 iPt;

float m;

if (pl.x != p2.x}) m = (pl.y - p2.y) / (pl.x - p2.x);
switch (b) ¢
case Left:
iPt.x = wMin.x;
iPt.y = p2.y + (wMin.x - p2.x) * m;
break; ’
case Right:
iPt.x = wMax.x;

240

iPt.y = p2.y + (wMax.x - p2.x) * m;
break;
case Bottom:
iPt.y = wMin.y;
if (pl.x !'= p2.x) iPt.x = p2.x + (wMin.y - p2.y) / m;
else iPt.x = p2.x;
break;
case Top:
iPt.y = wMax.y:
if (pl.x != p2.x) iPt.x = p2.x + {(wMax.y - p2.y) / m;
else iPt.x = p2.x;
break;
)
return (iPt);

}

void clipPoint (wcPt2 p, Edge b, dcPt wMin, dcPt wMax,
wcPt2 * pOut, int * cnt, wcPt2 * first[], wcPt2 * s)
{
wcPt2 iPL;

/* If no previous point exists for this edge, save this point. */
if (‘first(bl)
first (b] = &p;
else
/* Previous point exists. If 'p' and previous point cross edge,
find intersection. <Clip against next boundary, if any. If
no more edges, add intersection to output list. */
if (cross {p, si{b], b, wMin, wMax}) {
iPt = intersect (p, s(bl, b, wMin, wMax);
if (b < Top)
clipPoint (iPt, b+l, wMin, wMax, pOut, cnt, frst, s);

else {
pout (*cnt] =_.iPt; ({*cnt)++;
}
}
s(b] = p; /* Save 'p' as most recent point for this edge */

/* For all, if point is ‘'inside’' proceed to next clip edge, if any */
if (inside (p, b, wMin, wMax))
if (b < Top)
clipPoint (p, b+l, wMin, wMax, pOut, cnt, first, s};

else {
pOut [*cnt] = p; (*cnt)++;
}
}
void closeClip (dcPt wMin, dcPt wMax, wcPt2 * pOut,
int * cnt, wcPt2 * first(], wcPt2 * s)
{
wcPt2 i;
Edge b;

for (b = Left: b <= Top; b++) {
if (cxoss (s[b), *first(b], b, wMin, wMax)) {
i = intersect (s{b), *first(b], b, wMin, wMax);
if (b < Top)
clipPoint (i, b+l, wMin, wMax, pOut, cnt, first, s);
else {
pOut(*cnt] = i; (*cnt)++;
}

}

l

}

/* ‘fAirst’ holds pointer to first point processed against a clip
edge. ‘s' holds most recent point proce:ssed against an edge */
wcPt2 * first [N_EDGE]

int i, cnt = 0;

int clipPolygon (dcPt wMin, dcPt wkMax, int n, wcPt2 * pIn, wcPt2 * pOut}

for (i=0; i<n; i++)

clipPoint (pIa[i]).

closeClip (wMin,
return (cnt);

wMax,

Left, wMin, wMax, pOut. &cnt, first, s);

(0, 0, 0, 0} s{N_EDGEI};

pout, &cnt, first, s)-

242

Convex polygons are correctly clipped by the Sutherland-Hodgeman algo-
rithm, but concave polygons may be displayed with extraneous lines, as demon-
strated in Fig. 6-24. This occurs when the clipped polygon should have two or
more separate sections. But since there is only one output vertex list, the last ver-
tex in the list is always joined to the first vertex. There are several things we
could do to correctly display concave polygons. For one, we could split the con-
cave polygon into two or more convex polygons and process each convex poly-
gon separately. Another possibility is to modify the Sutherland-Hodgeman ap-
proach to check the final vertex list for multiple vertex points along any clip
window boundary and correctly join pairs of vertices. Finally, we could use a
more general polygon clipper, such as either the Weiler-Atherton algorithm or
the Weiler algorithm described in the next section.

Woeiler—Atherton Polygcn Clipping

Here, the vertex-processing procedures for window boundaries are modified so
that concave polygons are displayed correctly. This clipping procedure was de-
veloped as a method for identifying visible surfaces, and so it can be applied
with arbitrary polygon-clipping regions.

The basic idea in this algorithm is that instead of always proceeding around
the polygon edges as vertices are processed, we sometimes want to follow the
window boundaries. Which path we follow depends on the polygon-processing
direction (clockwise or counterclockwise) and whether the pair of polygon ver-
tices currently being processed represents an outside-to-inside pair or an inside-

Figure 6-24

Clipping the concave polygon in (a)

with the Sutherland-Hodgeman

clipper produces the two connected
b areas in (b).

(b)

Figure 6-25
Clipping a concave polygon (a} with the Weiler-Atherton
algorithm generates the two separate polygon areas

in (b).

to-outside pair. For clockwise processing of polygon vertices, we use the follow-
ing rules:

¢ For an outside-to-inside pair of vertices, follow the polygon boundary.

¢ For an inside-to-outside pair of vertices, follow the window boundary in
a clockwise direction.

In Fig. 6-25, the processing direction in the Weiler-Atherton algorithm and the re-
sulting clipped polygon is shown for a rectangular clipping window.

An improvement on the Weiler-Atherton algorithm is the Weiler algorithm,
which applies constructive solid geometry ideas to clip an arbitrary polygon
against any polygon-clipping region. Figure 6-26 illustrates the general idea in
this approach. For the two polygons in this figure, the correctly clipped polygon
is calculated as the intersection of the clipping polygon and the polygon object.

Other Polygon-Clipping Algorithms

Various parametric lineclipping methods have also been adapted to polygon
clipping. And they are particularly well suited for clipping against convex poly-
gon-clipping windows. The Liang-Barsky Line Clipper, for example, can be ex-
tended to polygon clipping with a general approach similar to that of the Suther-
land-Hodgeman method. Parametric line representations are used to process
polygon edges in order around the polygon perimeter using region-testing proce-
dures similar to those used in line clipping.

! ! : Figure 6-26
' a Clipping a polygon by determining
) . the intersection of two polygon
/o areas.

Section 6-8

Polygon Clipping

Chapter 6

Two-Dimensional Viewing

)

]
____________ 4
Before Clipping

After Chpping

Figure 6-27
Clipping a filled circle.

o
[STRING 2!

Before Clipping

STRING 2

After Clipping

Figure 6-28

Text clipping using a
bounding rectangle about the
entire string,.

244

6-9
CURVF CLIPPING

Areas with curved boundaries can be clipped with methods similar to those dis-
cussed in the previous sections. Curve-clipping procedures will involve nonlin-
car equations, however, and this requires more processing than for objects with
linear boundaries.

The bounding rectangle for a circle or other curved object can be used first
to test for overlap with a rectangular clip window. If the bounding rectangie for
the object is completely inside the window, we save the object. If the rectangle is
determined to be completely outside the window, we discard the object. In either
case, there is no further computation necessary. But if the bounding rectangle test
fails, we can look for other computation-saving approaches. For a circle, we can
use the coordinate extents of individual quadrants and then octants for prelimi-
nary testing before calculating curve-window intersections. For an ellipse, we can
test the coordinate extents of individual quadrants. Figure 6-27 illustrates circle
clipping against a rectangular window.

Similar procedures can be applied when clipping a curved object against a
general polygon clip region. On the first pass, we can clip the bounding rectangle
of the object against the bounding rectangle of the clip region. If the two regions
overlap, we will need to solve the simultaneous line-curve equations to obtain
the clipping intersection points.

6-10
TEXT CLIPPING

There are several techniques that can be used to provide text clipping in a graph-
ics package. The clipping technique used will depend on the methods used to
generate characters and the requirements of a particular application.

The simplest method for processing character strings relative to a window
boundary is to use the ali-or-none string-clipping strategy shown in Fig. 6-28. If all
of the string is inside a clip window, we keep it. Otherwise, the string is dis-
carded. This procedure is implemented by considering a bounding rectangle
around the text pattern. The boundary positions of the rectangle are then com-
pared to the window boundaries, and the string is rejected if there is any overlap.
This method produces the fastest text clipping.

An alternative to rejecting an entire character string that overlaps a window
boundary is to use the all-or-none character-clipping strategy. Here we discard only
those characters that are not completely inside the window (Fig. 6-29). In this
case, the boundary limit< of individual characters are compared to the window.
Any character that either overlaps or is outside a window boundary is clipped.

A final method for handling text clipping is to clip the components of indi-
vidual characters. We now treat characters in much the same way that we treated
lines. If an individual character overlaps a clip window boundary, we clip off the
parts of the character that are outside the window (Fig. 6-30). Outline character
fonts formed with line segments can be processed in this way using a line-
clipping algorithm. Characters defined with bit maps would be clipped by com-
paring the relative position of the individual pixels in the character grid patterns
to the clipping boundaries.

6-11
EXTERIOR CLIPPING

So far, we have considered only procedures for clipping a picture to the interior
of a region by eliminating everything outside the clipping region. What is saved
by these procedures is inside the region. In some cases, we want to do the reverse,
that is, we want to clip a picture to the exterior of a specified region. The picture
parts to be saved are those that are outside the region. This is referred to as exte-
rior clipping.

A typical example of the application of exterior clipping is in multiple-
window systems. To correctly display the screen windows, we often need to
apply both internal and external clipping. Figure 6-31 illustrates a multiple-
window display. Objects within a window are clipped to the interior of that win-
dow. When other higher-priority windows overlap these objects, the objects are
also clipped to the exterior of the overlapping windows.

Exterior clipping is used also in other applications that require overlapping
pictures. Examples here include the design of page layouts in advertising or pub-
lishing applications or for adding labels or design patterns to a picture. The tech-
nique can also be used for combining graphs, maps, or schematics. For these ap-
plications, we can use exterior clipping to provide a space for an insert into
larger picture. :

Procedures for clipping objects to the interior of concave polygon windows
can also make use of external clipping. Figure 6-32 shows a line P,P; that is to be
clipped to the interior of a concave window with vertices V,V,V,V, V5. Line P,P,
can be clipped in two passes: (1) First, PP, is clipped to the interior of the convex
polygon V,V,V,V, to vield the clipped segment P;P'; (Fig. 6-32(b)). (2) Then an
external clip of P\P'; is performed against the convex polygon V,V.V, to yield
the final clipped line segment PYP’,.

SUMMARY

In this chapter, we have seen how we can map a two-dimensional world-
coordinate scene to a display device. The viewing-transformation pipeline in-

Figure 6-31

A multiple-window screen display
showing examples of both interior
and exterior clipping. (Courtesy of
Sun Microsystems).

Summary

STR

NG 1

TRING 3

)

STRING 4

Before Clipping

NG 1

TRING 3

5N

STRING 4

After Clipping

Figure 6-29
Text clipping using a
bounding rectangle about
individual characters.

TRING 1

wo

Before Clipping

TRING 1

After Clipping

Figure 6-30
Text clipping performed on

the components of individual
characters.

245

Interior Clip
(o)

Exterior Clip
(c)

Figure 6-32

Clipping line P, P, to the interior of a concave polygon with vertices V,V.V,V, V. (a), using
convex polygons V,V,V,V, (b) and V,V;V, (<), to produce the clipped line PiP-.

246

cludes constructing the world-coordinate scene using modeling transformations
transferring world-coordinates to viewing coordinates, mapping the viewing-
coordinate descriptions «f objects to normalized device voordinates, and finallyv
mapping te device coordinates. Normalized coordinates are specified in the
range from 0 to 1, and thev are used to make viewing packages independent of
particular output devices ‘

Viewing coordinates are specified by giving the world-coordinate position
of the viewing origin and the view up vector that defines the direction of the
viewing y axis. These parameters are used to construct tae viewing transforma-
tion matrix that maps world-coordinate object descriptions to viewing coordi-
nates.

A window is then sct up in viewing coordinates, and a viewport is specitied
in normalized device courdinates. Typically, the window and viewport are rec-
tangles in standard position (rectangle boundaries are parallel to the coordinate
axes). The mapping from viewing coordinates to normalized device coordinates
is then carried out so that relative positions in the window are maintained in the
viewport.

Viewing functions 1in a graphics programming package are used to create
one or more sets of viewing parameters. One function is typically provided to
calculate the elements of the matrix for transforming world coordinates to view-
ing coordinates. Anocther function is used to set up the window-to-viewport
transformation matrix, and a third function can be used to specify combinations
of viewing transformations and window mapping in a viewing table. We can

then select different viewing combinations by specitving particular view indices
listed in the viewing table.

When objects are displayed on the output device, all parts of a scene out-
side the window {and the viewport) are clipped oft unless we set clip parameters
to turn off clipping. In many packages, clipping 1s done in normalized device co-
ordinates so that all transformations can be concatenated into a single transfor-
mation operation before applying the clipping algorithms. The clipping region is
commonly referred to as the clipping window, or as the clipping rectangle when
the window and viewport are standard rectangles Several algorithms have been
developed for clipping objects against the clip-window boundaries.

Line-clipping algorithms include the Cohen-Sutherland method, the
Liang-Barsky method, and the Nicholl-Lee-Nichell method. The Cohen-Suther-
land method is widelv used, since it was one of the first line-clipping algorithms
to be developed. Region codes are used to identifv the position of line endpoints
relative to the rectangular, clipping window boundaries. Lines that cannot be im-
mediately identified as completely inside the window or completely outside are
then clipped against window boundaries. Liang and Barsky use a parametric line
representation, similar to that of the earlier Cyrus<-Beck algorithm, to set up a
more cfficient line-clipping procedure that reduces intersection calculations. The
Nicholl-Lee—Nicholl algorithm uses more region testing in the xy plane to reduce
interseclion calculations even further. Parametric line clipping is easily extended
to convex clipping windows and to three-dimensional clipping windows.

Line clipping can also be carried out for concave, polygon clipping win-
dows and for clipping windows with curved boundaries. With concave poly-
gons, we can use either the vector method or the rozational method to split a con-
cave polygon intoa number of convex polygons. With curved clipping windows,
we calculate line intersections using the curve equations.

Polygon-clipping algorithms include the Sutherland-Hodgeman method,
the Liang-Barsky method, and the Weiler-Atherton method. In the Suther-
land-Hodgeman clipper, vertices of a convex polvgon are processed in order
against the four rectangular window boundaries to produce an output vertex list
for the clipped polygon. Liang and Barsky use parametric line equations to repre-
sent the convex polygon edges, and they use similar testing to that performed
line clipping to produce an output vertex list for the clipped polygon. Both the
Weiler-Atherland method and the Weiler method correctly clip both convex and
concave polygons, and these polygon clippers also allow the clipping window to
be a general polygon. The Weiler-Atherland algorithm processes polygon ver-
tices in order to produce one or more lists of output polygen vertices. The Weiler
method performs clipping by finding the intersection region of the two polygons.

Objects with curved boundaries are processed against rectangular clipping
windows by calculating intersections using the curve equations. These clipping
procedures are slower than line clippers or polygon clippers, because the curve
equations are nonlinear.

The fastest text-clipping method is to completely ¢lip a string if any part of
the string is outside any window boundary. Another method for text clipping is
to use the all-or-none approach with the individual characters in a string. A third
method is to apply either point, line, polygon, or curve clipping to the individual
characters in a string, depending on whether characters are defined as point
grids or as outline fonts.

In some applications, such as creating picture insets and managing multi-
ple-screen windows, exterior clipping is performed. In this case, all parts of a
scene that are inside a window are clipped and the exterior parts are saved.

summary

247

Chapter 6

248

Two-Dimensional Viewing

REFERENCES

Line-clipping algorithms are discussed in Sproull and Sutherland (1968), Cyrus and Beck
(1978), and Liang and Barsky (1984). Methods for improving the speed of the
Cohen-Sutherland line-clipping algorithm are given in Duvanenko (1990).

Polygon-clipping methods are presented in Sutherland and Hodgeman (1974) and in Liang
and Barsky (1983). General techniques for clipping arbitrarily shaped polygons against
each other are given in Weiler and Atherton (1977) and in Weiler (1980).

Two-dimensional viewing operations in PHIGS are discussed in Howard et al. (1991), Gask-
ins (1992), Hopgood and Duce (1991), and Blake (1993). For information on GKS viewing
operations, see Hopgood et al. (1983) and Enderle et af. (1984},

EXERCISES

6-1.

6-2.

6-3.

6-4.

6-5.

6-6.
6-7.

6-8.
6-9.

6-10.

6-11.

6-12.

6-13.

Write a procedure to to implement the evaluateviewOrientationMatrix func-
tion that calculates the elements of the matrix for transforming world coordinates to
viewing coordinates, given the viewing coordinate origin P, and the view up vector V.
Derive the window-to-viewport transformation equations 6-3 by first scaling the win-
dow to the s1ze of the viewport and then translating the scaled window to the view-
port position.

Write a procedure to ymplement the evaluateViewMappingMatrix function that
calculates the elements of a marrix for performing the window-to-viewport transforma-
tion.

Write a procedure to implement the setViewRepresentation function to concate-
nate viewMatrix and viewMappingMatrix and to store the result, referenced by
a spegified view index, in a viewing table.

Write a set of procedures to implement the viewing pipeline without clipp:ng and
without the workstation transformation. Your program should allow a scene to be con-
structed with modeling-coordinate transformations, a specified viewing system, and a
specified window—viewport pair. As an option, a viewing table can be implemented to
store different sets of viewing transformation parameters.

Derive the matrix representation for a workstation transformation.

Write a set of procedures to implement the viewing pipeline without clipping, but in-
cluding the workstation transformation. Your program should allow a scene to be con-
structed with modeling-coordinate transformations, a specified viewing system, a
specified window—viewport pair, and workstation transformation parameters. For a
given world-coordinate scene, the composite viewing transformation matrix should
transform the scene to an output device for display.

Implement the Cohen-Sutherland line-clipping algorithm.

Carefully discuss the rationale behind the various tests and methods for calculating the
intersection parameters u, and u, in the Liang-Barsky line-clipping algorithm.
Compare the number of arithmetic operations performed in the Cohen-Sutherland
and the Liang-Barsky line-clipping algorithms for several different line orientations rel-
ative to a clipping window.

Wirite a procedure to implement the Liang-Barsky line-clipping algorithm.

Devise symmetry transformations for mapping the intersection calculations for the
three regions in Fig. 6-10 to the other six regions of the xy plane.

Set up a detailed algorithm for the Nicholl-Lee-Nicholl approach to line clipping for
any input pair of line endpaints.

. Compare the number of arithmetic operations perfarmec in NLN algorithm to both the

Cohen-Sutherland and the Liang-Barsky line-clipping algorithms for several different
line orientations relative to a clipping window.

6-16.
6-17.
6-18.
6-19.

6-21
6-22.

6-24.

6-25.

. Wiite a routine to identify concave polygons by calculating cross products of pairs of

edge vectors.

Write a routine to split a concave polygon using the vector method.

Write a routine to split a concave polygon using the rotational method.

Adapt the Liang-Barsky line-clipping algorithm to polygon clipping.

Set up a detaled algorithm for Weiler-Atherton polygon clipping assuming that the
clipping window is a rectangle in standard position.

. Devise an algorithm for Weiler-Atherton polygon clipping, where the clipping win-

dow can be any specified polygon.

. Wirite a routine to clip an ellipse against a rectangular window.

Assuming that all characters in a text string have the same width, develop a text-clip-
ping algorithm that clips a string according to the “all-or-none character-clipping”
strategy.

. Develop a text-clipping algorithm that clips individual characters assuming that the

characters are defined in a pixel grid of a specified size.

Write a routine to implement exterior clipping on any part of a defined picture using
any specified window.

Write a routine 1o perform both interior and exterior clipping, given a particular win-
dow-system display. Input to the routine is a set of window positions on the screen,
the objects to be displayed in each window, and the window priorities. The individual
objects are to be clipped to fit into their respective windows, then clipped to remove
parts with overlapping windows of higher display priority.

Exercises

249

F or a great many applications, it is convenient to be able to create and ma-
nipulate individual parts of a picture without affecting other picture parts.
Most graphics packages provide this capability in one form or another. With the
ability to define each object in a picture as a separate module, we can make modi-
fications to the picture more easily. In design applications, we can try out differ-
ent positions and orientations for a component of a picture without disturbing
other parts of the picture. Or we can take out parts of the picture, then we can
easily put the parts back into the display at a later time. Similarly, in modeling
applications, we can separately create and position the subparts of a complex ob-
ject or system into the overall hierarchy. And in animations, we can apply trans-
formations to individual parts of the scene so that one object can be animated
with one type of motion, while other objects in the scene move differently or re-
main stationary.

7-1
STRUCTURE CONCEPTS

A labeled set of output primitives (and associated attributes) in PHIGS is called a
structure. Other commonly used names for a labeled collection of primitives are
segments (GKS) and objects (Graphics Library on Silicon Graphics systems). In this
section, we consider the basic structure-managing functions in PHIGS. Similar
operations are available in other packages for handling labeled groups of primi-
tives in a picture.

Bastc Structure Functions

When we create a structure, the coordinate positions and attribute vajues speci-
fied for the structure are stored as a labeled group in a system structure list called
the central structure store. We create a structure with the function

openStructure (id)

The label for the segment is the positive integer assigned to parameter id. In
PHIGS+, we can use character strings to label the structures instead of using inte-
ger names. This makes it easier to remember the structure identifiers. After all
primitives and attributes have been listed, the end of the structure is signaled
with the closeStructure statement. For example, the following program

251

Chapter 7

252

Structures and Hierarchical
Modehing

statements define structure 6 as the line sequence specitied in polyline with the
designated line type and color:

openStructure {(c);
setLinetype (1lt):
setPolylineColourlIndex (lc);
polyline (n, pts):
closeStructure;

Any number of structures can be created for a picture, but only one structure can
be open (in the creation process) at a time. Any open structure must be closed be-
fore a new structure can be created. This requirement eliminates the need for a
structure identification number in the closeStructure statement.

Once a structure has been created, it can be displayed on a selected output
device with the function

postStructure (ws, id, priority)

where parameter ws is the workstation identifier, id is the structure name, and
priority is assigned a real value in the range from 0 to 1. Parameter priority
sets the display priority relative to other structures. When two structures overlap
on an output display device, the structure with the higher priority will be visible.
For example, if structures 6 and 9 are posted to workstation 2 with the following
priorities

postStructure

(2. 6, 0.8)
postStructure (2

3, 0.0

then any parts of structure 9 that overlap structure 6 will be hidden, since struc-
ture 6 has higher prioritv. If two structures are assigned the same priority value,
the last structure to be posted is given display precedence

When a structure is posted to an active workstation, the primitives in the
structure are scanned and interpreted for display on the selected output device
(video monitor, laser printer, etc.). Scanning a structure list and sending the
graphical output to a workstation is called traversal. A list of current attribute
values for primitives is stored in a data structure called a traversal state list. As
changes are made to posted structures, both the system structure list and the tra-
versal state list are updated. This automatically modifies the display of the
posted structures on the workstation.

To remove the display of a structure from a particular output device, we in-
voke the function

unpostStructure 1ws, id)

This deletes the structure from the active list of structures for the designated out-
put device, but the system structure list is not affected. On a raster system, a
structure is removed from the display by redrawing the primitives in the back-
ground color. This process, however, may also affect the display of primitives
from other structures that overlap the structure we want to erase. To remedy this,
we can use the coordinate extents of the various structures in a scene to deter-

mine which ones overlap the structure we are erasing. Then we can simply re- Section 7-1
draw these overlapping structures after we have erased the structure that is tobe Structure Concepts
unposted. All structures can be removed from a selected output device with

unpostAllStructures (ws}

If we want to remove a particular structure from the system structure list,
we accomplish that with the function

deleteStructure (id)

Of course, this also removes the display of the structure from all posted output
devices. Once a structure has been deleted, its name can be reused for another set
of primitives. The entire system structure list can be cleared with

deleteAllStructures

It is sometimes useful to be able to relabel a structure. This is accomplished
with

crangeStructureldentifier (0l1dID, newlD)

One reason for changing a structure label is to consolidate the numbering of the
structures after several structures have been deleted. Another is to cycle through
a set of structure labels while displaying a structure in multiple locations to test
the structure positioning.

Setting Structure Attributes

We can set certain display characteristics for structures with workstation filters.
The three properties we can set with filters are visibility, highlighting, and the ca-
pability of a structure to be selected with an interactive input device.

Visibility and invisibility settings for structures on a particular workstation
for a selected device are specified with the function

setInvisibilityFilter (ws, devCode, invisSet, visSet)

where parameter invisSet contains the names of structures that will be invisi-
ble, and parameter visSet contains the names of those that will be visible. With
the invisibility filter, we can turn the display of structures on and off at selected
workstations without actually deleting them from the workstation lists. This al-
lows us, for example, to view the outline of a building without all the interior de-
tails; and then to reset the visibility so that we can view the building with all in-
ternal features included. Additional parameters that we can specify are the
number of structures for each of the two sets. Structures are made invisible on a
raster monitor using the same procedures that we discussed for unposting and
for deleting a structure. The difference, however, is that we do not remove the
structure from the active structure list for a device when we are simply making it
invisible.

Highlighting is another convenient structure characteristic. In a map dis-
play, we could highlight all cities with populations below a certain value; or fora

253

Chapter 7

254

Structures and Hierarchical
Modeling

landscape layout, we could highlight certain varieties of shrubbery; or in a circuit
diagram, we could highlight all components within a specific voltage range. This
is done with the function

setHighlightingFilter (ws, devCode, highlightset,
nohighlightSet)

Parameter highlightSet contains the names of the structures that are to be
highlighted, and parameter nohighlightSet contains the names of those that
are not to be highlighted. The kind of highlighting used to accent structures de-
pends on the type and capabilities of the graphics system. For a color video mon-
itor, highlighted structures could be displayed in a brighter intensity or in a color
reserved for highlighting. Another common highlighting implementation is to
turn the visibility on and off rapidly so that blinking structures are displayed.
Blinking can also be accomplished by rapidly alternating the intensity of the
highlighted structures between a low value and a high value.

The third display characteristic we can set for structures is pickability. This
refers to the capability of the structure to be selected by pointing at it or position-
ing the screen cursor over it. If we want to be sure that certain structures in a dis-
play can never be selected, we can declare them to be nonpickable with the pick-
ability filter. In the next chapter, we take up the topic of input methods in more
detail.

7-2
EDITING STRUCTURES

Often, we would like to modify a structure after it has been created and closed.
Structure modification is needed in design applications to try out different graph-
ical arrangements, or to change the design configuration in response to new test
data.

If additional primitives are to be added to a structure, this can be done by
simply reopening the structure with the openStructure wncon and append-
ing the required statements. As an example of simple appending, the following
program segment first creates a structure with a singie fill area and then adds a
second fill area to the structure:

openStructure (shape});
setInteriorStyle (30l1id);
setInteriorColourlIndex (4):
fillArea (n., vertsl);
closeStructure;

openStructure ({shape);
setIntericrStyle (hollow);
fillArea (n2, verts?2);
closeStructure;

This sequence of operations is equivalent to initially creating the structure with
both fill areas:

openStructure (shape):
setIntericrStyle (solid);
setInteriorColourIndex (4);
fillArea {(nl, vertsl);
setInteriorStyle {(hollow):
fillArea (n2, verts2);
closeStructure;

In addition to appending, we may also want sometimes to delete certain
items in a structure, to change primitives or attribute settings, or to insert items at
selected positions within the structure. General editing operations are carried out
by accessing the sequence numbers for the individual components of a structure
and setting the edit mode.

Structure Lists and the Element Pointer

Individual items in a structure, such as output primitives and attribute values,
are referred to as structure elements, or simply elements. Each element is as-
signed a reference position value as it 15 entered into the structure. Figure 7-1
shows the storage of structure elements and associated position numbers created
by the following program segment.

openStructure {gizmo) ;
setLinetype (1tl);
setPolylineColourIndex (lcl);
polyline (nl, ptsl);
setlLinetype (1lt2):
setPolylineColcurIndex (lc2):
polyline (n2, pts2);

closeStructure;

Structure elements are numbered consecutively with integer values starting
at 1, and the value 0 indicates the position just before the first element. When a
structure is opened, an element pointer is set up and assigned.a position value
that can be used to edit the structure. If the opened structure is new (not already
existing in the system structure list), the element pointer is set to 0. If the opened
structure does already exist in the system list, the element pointer is set to the po-
sition value of the last element in the structure. As elements are added to a struc-
ture, the element pointer is incremented by 1.

We can set the value of the element pointer to any position within a struc-
ture with the function

setzlementPointer (k)

glzmo structure

setLinetype (1tl)

setPolylineColourIndex (lcl)

0

1

2

3| polyline (nl, ptsl)

4} getLinetype (1t2)

5
—6

Figure 7-4

setPolylineColourIndex (le2) .
element : Element position values for
pointer polyline (n2. pts2) structure gizmo.

Section 7-2

Editing Structures

255

Chapter 7

256

Structures and Hierarchical
Modeling

where parameter k can be assigned any integer value from 0 to the maximum
number of elements in the structure. It is also possible to position the element
pointer using the following offset function that moves the pointer relative to the
current position:

offsetElementPo.nter (dk}

with dk assigned a positive or negative integer offset from the present position of
the pointer. Once we have positioned the element pointer, we can edit the struc-
ture at that position.

Setting the Edit Mode

Structures can be modified in one of two possible modes. This is referred to as
the edit mode of the structure. We set the value of the edit mode with

setEd:tMode (moce)

where parameter mode is assigned either the value insert, or the value replace.

Inserting Structure Elements

When the edit mode is set to insert, the next item entered into a structure will be
placed in the position immediately following the element pointer. Elements in
the structure list following the inserted item are then automatically renumbered.
To illustrate the insertion operation, let's change the standard line width
currently in structure g: zmo (Fig. 7-2) to some other value. We can do this by in-
serting a line width statement anywhere before the first polyline command:

openStructure (gizmo);
setEditMcde (insert):
setElemertPointer (0);
setLinewidth (lw);

closeStructure;

Figure 7-2 shows the maodified element list of gizmo, created by the previous in-
sert operation. After this insert, the element pointer is assigned the value 1 (the
position of the new line-width attribute). Also, all elements after the line-width
statement have been renumbered, starting at the value 2.

0 gizmo structure
element - :
pointer — 1| setLinewidth (1w}
2| setLinetype (lt1)
3| setPolylineColourIndex (lcl) .
4{ polyline (nl tsl) Figure 7-2
5 y_ '1p2 Modified element list and position
Ee”‘met{me fe2) ‘ of the element pointer after
6| setPolylineColourindex (1c¢2) inserting a line-width attribute
7] polyline (n2, pts2) into structure gizmo.

When a new structure 1s created, the edit mode is automatically ‘et to the
value insert. Assuming the edit mode has not been changed from this iefault
value before we reopen this structure, we can append items at the end of the ele-
ment list without setting values for either the edit mode or element pointer, as
demonstrated at the beginning of Section 7-2. This is because the edit mode re-
mains at the value insert and the element pointer for the reopened structure
points to the last element in the list.

Replacing Structure Elements

When the edit mode is set to the value replace, the next item entered into a struc-
ture is placed at the position of the element pointer. The element originally at that
position is deleted, and the value of the element pointer remains unchanged.

As an example of the replace operation, suppose we want to change the
color of the second polyline in structure gizmo (Fig. 7-1). We can do this with the
sequence:

openStructure (gizme);
setEditMode (replace);
setElementPointer (5);
setPolvlineColourIndex (lcZNew);

closeStructure;

Figure 7-3 shows the element list of gizmo with the new color for the second
polyline. After the replace operation, the element pointer remains at position 5
(the position of the new line color attribute).

Deleting Structure Elements

We can delete the element at the current position of the element pointer with the
function

deleteElement

This removes the element from the structure and sets the value of the element
pointer to the immediately preceding element.

As an example of element deletion, suppose we decide to have both poly-
lines in structure gizmo (Fig. 7-1) displayed in the same color. We can accom-
plish this by deleting the second color attribute:

glizmo structure

setLinetype (ltl)

setPolylineColourIndex (1cl) —
Figure 7-3

Modified element list and position
of the element pointer after
changing the color of the second
polyline in structure gizmo.

polyline (nl, ptsi)

element

pointer setPolylineColourindex {1c2New)

0

1

2

3

4} setLinetype (1t2)
—5

6

polyline (n2, pts2)

Section 7-2

Editing Structures

257

Chapter 7

258

Structures and Hierarchical
Modeling

openStructure (gizmo};
setElementFointer (5);
deleteElement;

closeStructure;

The element pointer is then reset to the value 4 and all following elements are
renumbered, as shown in Fig. 7-4.
A contiguous group of structure elements can be deleted with the function

deleteElementRarge (k1, k2)

where integer parameter k1 gives the beginning position number, and k2 speci-
fies the ending position number. For example, we can delete the second polyline
and associated attributes in structure gizmo with

deleteElementRange (4, 6)
And all elements in a structure can be deleted with the function

emptyStructure (id)

Labeling Structure Elements

Once we have made a number of modifications to a structure, we could easily
lose track of the element positions. Deleting and inserting elements shift the ele-
ment position numbers. To avoid having to keep track of new position numbers
as modifications are made, we can simply label the different elements in a struc-
ture with the function

label (k)

where parameter k is an integer position identifier. Labels can be inserted any-
where within the structure list as an aid to locating structure elements without re-
ferring to position number. The label function creates structure elements that
have no effect on the structure traversal process. We simply use the labels stored
in the structure as editing references rather than using the individual element po-
sitions. Also, the labeling of structure elements need not be unique. Sometimes it
is convenient to give two or more elements the same label value, particularly if
the same editing operations are likely to be applied to several positions in the
structure.

gizmo structure

0

1| setLinetype (ltl}

2} setPolylineColourIndex {1lcl)

3| polyline (ni, ptél)
—4

5

Figure 7-4

Modified element list and position
of the element pointer after deleting
the color-attribute statement for the
second polyline in structure gizmo.

element

pointer setLinetype (1t2)

polyline (nz, pts2)

To illustrate the use of labeling, we create structure labeledGizmo in the
following routine that has the elements and position numbers as shown in Fig. 7-5.

openStructure (labeledGizmo);
label (objectlLinetype);
setLinetype {(1tl);
label (objectlColor):
setPolylineColourIndex (lcl);
label (objectl);
polyline (nl, ptsl};
label (object2Linetype);
setLinetype (1t2);
label (object2Color);
setPolylineColourIndex (1c2);
label (object2);
polyline (n2, pts2);
closeStructure;

Now if we want to change any of the primitives or attributes in this structure, we
can do it by referencing the labels. Although we have labeled every item in this
structure, other labeling schemes could be used depending on what type and
how much editing is anticipated. For example, all attributes could be lumped
under one label, or all color attributes could be given the same label identifier.

A label is referenced with the function

setElementPointerAtLabel (k)

which sets the element pointer to the value of parameter k. The search for the
label begins at the current element-pointer position and proceeds forward
through the element list. This means that we may have to reset the pointer when
reopening a structure, since the pointer is always positioned at the last element in
a reopened structure, and label searching is not done backward through the ele-
ment list. If, for instance, we want to change the color of the second object in
structure labeledGizmo, we could reposition the pointer at the start of the ele-
ment list after reopening the structure to search for the appropriate color at-
tribute statement label:

labeledGizmo structure
label (objectilLinetype)
setLinetype (ltl)

label (objectiColor)
setPolylineColourIndex (1lcl)
label (objectl)

polyline (nl, ptsl)

label (object2Linetype)

W N YW N O

getLinetype (1t2)
label (object2Color)
10} setPolylineColourindex (1c2)

11} label (object2)

element
g — 12
pointer :

W

Figure 7-5

A set of labeled objects and
associated position numbers stored
in structure labeledGizmo.

polyline (n2, pts2)

Section 7-2

Editing Structures

259

Chapter 7

260

Structures and Hierarchical
Modeling

openStructure (iabeledGizmo);
setElementPointer (0);
setEditMode (replace);
setElementPointerAtlLabel (object2Color);
cffsetElementPointer (1);
setPolylineColourindex (1c2New);

closeStructure;

Deleting an item referenced with a label is similar to the replacement opera-
tion illustrated in the last openStructure routine. We first locate the appropri-
ate label and then offset the pointer. For example, the color attribute for the sec-
ond polyline in structure 1abeledGizmo can be deleted with the sequence

openStructure {labeledGizmo);
setElementPointer (0);
setEditMode (replace);
setElementPointerAtLabel (object2Color);
offsetElementPointer (1};
deleteElement;

closeStructure;

We can also delete a group of structure elements between specified labels with
the function

deleteElementsBetweenlabels (kl, k2)
After the set of elements is deleted, the element pointer is set to position k1.
Copying Elements from One Structure to Another
We can copy all the entries from a specified structure into an open structure with
copyAllElementsFromStructure {id)
The elements from structure id are inserted into the open structure starting at
the position immediately following the element pointer, regardless of the setting

of the edit mode. When the copy operation is complete, the element pointer is set
to the position of the last item inserted into the open structure.

7-3
BASIC MODELING CONCEPTS

An important use of structures is in the design and representation of different
types of systems. Architectural and engineering systems, such as building lay-
outs and electronic circuit schematics, are commonly put together using com-
puter-aided design methods. Graphical methods are used also for representing
economic, financial, organizational, scientific, social, and environmental systems.
Representations for these systems are often constructed to simulate the behavior

of a system under various conditions. The outcome of the simulation can serve as
an instructional tool or as a basis for making decisions about the system. To be ef-
fective in these various applications, a graphics package must possess efficient
methods for constructing and manipulating the graphical system representations.
The creation and manipulation of a system representation is termed model-
ing. Any single representation is called a model of the system. Models for a sys-
tem can be defined graphically, or they can be purely descriptive, such as a set of
equations that defines the relationships between system parameters. Graphical
models are often referred to as geometric models, because the component parts
of a system are represented with geometric entities such as lines, polygons, or cir-
cles. We are concerned here only with graphics applications, so we will use the
term model to mean a computer-generated geometric representation of a system.

Model Representations

Figure 7-6 shows a representation for a logic circuit, illustrating the features com-
mon to many system models. Component parts of the system are displayed as
geometric structures, called symbols, and relationships between the symbols are
represented in this example with a network of connecting lines. Three standard
symbols are used to represent logic gates for the Boolean operations: and, or, and
not. The connecting lines define relationships in terms of input and output flow
(from left to right) through the system parts. One symbol, the and gate, is dis-
played at two different positions within the logic circuit. Repeated positioning of
a few basic symbols is a common method for building complex models. Each
such occurrence of a symbol within a model is called an instance of that symbol.
We have one instance for the or and not symbols in Fig. 7-6 and two instances of
the and symbol.

In many cases, the particular graphical symbols choser. to represent the
parts of a system are dictated by the system description. For circuit models, stan-
dard electrical or logic symbeols are used. With models representing abstract con-
cepts, such as political, financial, or economic systems, symbols may be any con-
venient geometric pattern,

Information describing a model is usually provided as a combination of
geometric and nongeometric data. Geometric information includes coordinate
positions for locating the component parts, output primitives and attribute func-
tions to define the structure of the parts, and data for constructing connections
between the parts. Nongeometric information includes text labels, algorithms de-
scribing the operating characteristics of the model, and rules for determining the
relationships or connections between component parts, if these are not specified
as geometric data.

Figure 7-6
Model of a logic drcuit.

Section7-3

Basic Modeling Concepts

261

Chapter 7

262

Structures and Hierarchical
Modeling

There are two methods for specifying the information needed to construct
and manipulate a model. One method is to store the infomation in a data struc-
ture, such as a table or linked list. The other method is to specify the information
in procedures. In general, a model specification will contain both data structures
and procedures, although some models are defined completely with data struc-
tures and others use only procedural specifications. An application to perform
solid modeling of objects might use mostly information taken from some data
structure to define coordinate positions, with very few procedures. A weather
model, on the other hand, may need mostly procedures to calculate plots of tem-
perature and pressure variations.

As an example of how combinations of data structures and procedures can
be used, we consider some alternative model specifications for the logic circuit of
Fig. 7-6. One method is to define the logic components in a data table (Table 7-1),
with processing procedures used to specify how the network connections are to
be made and how the circuit operates. Geometric data in this table include coor-
dinates and parameters necessary for drawing and positioning the gates. These
symbols could all be drawn as polygon shapes, or they could be formed as com-
binations of straight-line segments and elliptical arcs. Labels for each of the com-
ponent parts also have been included in the table, aithough the labels could be
omitted if the symbols are displayed as commeonly recognized shapes. Proce-
dures would then be used to display the gates and construct the connecting lines,
based on the coordinate positions of the gates and a specified order for connect-
ing them. An additional procedure is used to produce the circuit output (binary
values) for any given input. This procedure could be set up to display only the
final output, or it could be designed to display intermediate output values to il-
lustrate the internal functioning of the circuit.

Alternatively, we might specify graphical information for the circuit model
in data structures. The connecting lines, as well as the gates, could then be de-
fined in a data table that explicitly lists endpoints for each of the lines in the cir-
cuit. A single procedure might then display the circuit and calculate the output.
At the other extreme, we could completely define the model in procedures, using
no external data structures.

Symbol Hierarchies

Many models can be organized as a hierarchy of symbols. The basic “building
blocks” for the model are defined as simple geometric shapes appropriate to the
type of model under consideration. These basic symbols can be used to form
composite objects, called modules, which themselves can be grouped to form
higher-level modules, and so on, for the various components of the model. In the

TABLE 7-1
A DATA TABLE DEFINING THE STRUCTURE AND
POSITION OF EACH GATE IN THE CIRCUIT OF FIG. 7-6

Symbol Geometric Identifying
Code Description Label
Gate 1 Coordinates and other paramete-s1 and
Cate 2 : or
Gate 3 : not

Gate 4 : and

simplest case, we can describe a model by a one-level hierarchy of component
parts, as in Fig. 7-7. For this circuit example, we assume that the gates are posi-
tioned and connected to each other with straight lines according to connection
rules that are specified with each gate description. The basic symbols in this hier-
archical description are the logic gates. Although the gates themselves could be
described as hierarchies—formed from straight lines, elliptical arcs, and text—
that sort of description would not be a convenient one for constructing logic cir-
cuits, in which the simplest building blocks are gates. For an application in which
we were interested in designing different geometric shapes, the basic symbols
could be defined as straight-line segments and arcs.

An example of a two-level symbol hierarchy appears in Fig. 7-8. Here a fa-
cility layout is planned as an arrangement of work areas. Each work area is out-
fitted with a collection of furmiture. The basic symbols are the furniture items:
worktable, chair, shelves, file cabinet, and so forth. Higher-order objects are the
work areas, which are put together with different furniture organizations. An in-
stance of a basic symbol is defined by specifying its size, position, and orientation
within each work area. For a facility-layout package with fixed sizes for objects,
only position and orientation need be specified by a user. Positions are given as
coordinate locations in the work areas, and orientations are specified as rotations
that determine which way the symbols are facing. At the second level up the hi-
erarchy, each work area is defined by specifying its size, position, and orientation
within the facility layout. The boundary for each work area might be fitted with a
divider that encloses the work area and provides aisles within the facility.

More complex symbol hierarchies are formed by repeated grouping of sym-
bol clusters at each higher level. The facility layout of Fig. 7-8 could be extended
to include symbol clusters that form different rooms, different floors of a build-
ing, different buildings within a complex, and different complexes at widely sep-
arated physical locations.

Modeling Packages

Some general-purpose graphics systems, GKS, for example, are not designed to
accommodate extensive modeling applications. Routines necessary to handle
modeling procedures and data structures are often set up as separate modeling
packages, and graphics packages then can be adapted to interface with the mod-
eling package. The purpose of graphics routines is to provide methods for gener-

tigure /-7
A one-level hierarchical description of a circuit formed with logic gates.

Section 7-3

Basic Modeling Concepts

263

264

Figure 7-8

A two-level hierarchical description of a facility layout.

ating and manipulating final output displays. Modeling routines, by contrast,
provide a means for defining and rearranging model representations in terms of
symbol hierarchies, which are then processed by the graphics routines for dis-
play. Systems, such as PHIGS and Graphics Library (GL) on Silicon Graphics
equipment, are designed so that modeling and graphics functions are integrated
into one package.

Symbols available in an application modeling package are defined and
structured according to the type of application the package has been designed to
handle. Modeling packages can be designed for either two-dimensional or three-
dimensional displays. Figure 7-9 illustrates a two-dimensional layout used in cir-
cuit design. An example of three-dimensional molecular modeling is shown in
Fig. 7-10, and a three-dimensional facility layout is given in Fig. 7-11. Such three-
dimensional displays give a designer a better appreciation of the appearance of a
layout. In the following sections, we explore the characteristic features of model-
ing packages and the methods for interfacing or integrating modeling functions
with graphics routines.

Figure 7-9
Two-dimensional modeling layout used in circuit
design. (Courtesy of Summagraphics)

Figure 7-10

One-half of a stereoscopic image
pair showing a three-dimensional
molecular model of DNA. Data
supplied by Tamar Schlick, NYU,
and Wilma K. Olson, Rutgers
University; visualization by Jerry
Greenberg, SDSC. (Courtesy of
Stephanie Stdes, San Diego Supercomputer
Center.)

Figure 7-11
A three-dimensional view of an office layout. Courtesy of
Intergraph Corporation.

7-4
HIERARCHICAL MODELING WITH STRUCTURES

A hierarchical model of a system can be created with structures by nesting the
structures into one another to form a tree organization. As each structure is
placed into the hierarchy, it is assigned an appropriate transformation so that it
will fit properly into the overall model. One can think of setting up an office facil-
ity in which furniture is placed into the various offices and work areas, which in
turn are placed into departments, and so forth on up the hierarchy.

Local Coordinates and Modeling Transformations

In many design applications, models are constructed with instances {transformed
copies) of the geometric shapes that are defined in a basic symbol set. Instances
are created by positioning the basic symbols within the world-coordinate refer-
ence of the model. The various graphical symbols to be used in an application are
each defined in an independent coordinate reference called the modeling-coordi-
nate system. Modeling coordinates are also referred to as local coordinates, or
sometimes master coordinates. Figure 7-12 illustrates local coordinate definitions

Section 7-4

Hierarchical Modeling with
Structures

265

Chapter 7
Structures and Hierarchical
Modeling

for two symbols that could be used in a two-dimensional facility-layout applica-
tion. '

To construct the component parts of a graphical model, we apply transfor-
mations to the local-coordinate definitions of symbols to produce instances of the
symbols in world coordinates. Transformations applied to the modeling-coordi-
nate definitions of symbols are referred to as modeling transformations. Typi-
cally, modeling transformations involve translation, rotation, and scaling to posi-
tion a symbol in world coordinates, but other transformations might also be used
in some applications.

Modeling Transformations

We obtain a particular modeling-transformation matrix using the geometric-
transformation functions discussed in Chapter 5. That is, we can set up the indi-
vidual transformation matrices to accomplish the modeling transformation, or
we can input the transformation parameters and allow the system to build the
matrices. In either case, the modeling package concatenates the individual trans-
formations to construct a homogeneous-coordinate modeling transformation ma-
trix, MT. An instance of a symbol in world coordinates is then produced by ap-
plying MT to modeling-coordinate positions (P,.) to generate corresponding
world-coordinate positions (P,,):

P, = MT - P, 7-1

Structure Hierarchies

As we have seen, modeling applications typically require the composition of
basic symbols into groups, called modules; these modules may be combined into

Arraystor
oo (‘:’ "

w it v y\ fori

oMo o

Figure 7-12

Objects defined in local coordinates.

266

higher-level modules; and so on. Such symbol hierarchies can be created by em-
bedding structures within structures at each successive level in the tree. We can
first define a module (structure) as a list of symbol instances and their transfor-
mation parameters. At the next level, we define each higher-level module as a list
of the lower-module instances and their transformation parameters. This process
is continued up to the root of the tree, which represents the total picture in world
coordinates.
A structure is placed within another structure with the function

executeStructure (id)

To properly orient the structure, we first assign the appropriate local transforma-
tion to structure id. This is done with

setlocalTransformation (mlt, type)

where parameter mlt specifies the transformation matrix. Parameter type is as-
signed one of the following three values: pre, post, or replace, to indicate the type
of matrix composition to be performed with the current modeling-transformation
matrix. If we simply want to replace the current transformation matrix with imt,
we set parameter type to the value replace. If we want the current matrix to be
premultipled with the local matrix we are specifying in this function, we choose
pre; and similarly for the value post. The following code section illustrates a se-
quence of modeling statements to set the first instance of an object into the hier-
archy belew the root node.

createStructure (id0j;
setLocalTransformation {lmt, type: -
executeStructure (idl);

closeStructure;

The same procedure is used to instance other objects within structure 1d0
to set the other nodes into this level of the hierarchy. Then we can create the next
level down the tree by instancing objects within structure idl and the other
structures that are in 1d0. We repeat this process until the tree is complete. The
entire tree is then displayed by posting the root node: structure 1d0 in the previ-
ous example. In the following procedure, we illustrate how a hierarchical struc-
ture can be used to model an object.

void main {)

enum { Frame, Wheel, Bicycle };

int nPrs;

WwCPL2 pts([256);

pMatrix3 m;
[/* Routines to generate geometry */
| extern void getWheelVertices {(int * nPts, wcPt2 pts);
‘ extern void getFrameVertices (int * nPts, wcPt2 pts);
|
|

/* HMake the wheel structure */

Section 7-4

Hierarchical Modeling with
Structures

267

268

getWheelVertices nPts, prs);
openStructure (Wreel);
setLineWidth (2.1);

poelyline (nPts, fts);
closeStructure;

/* Make the frame structure */
getFrameVertices (nPts, pts};
openStructure (Frame);
setLineWidth (2.41):

polyline (nPts. pts);
closeStructure:-

/* Make the bicyile */

openStructure (Bicycle);

/* Include the frame *.,

executeStructure (Framej;

’* Position and :nclude rear wheel *°
matrixSetIdentity m);

m(0,2] := -1.0; =[%.2] := -0.5;
setLocalTranstormationMatrix (m, REPLACE);
executeStructure (Wheel);

/* Position and iaclude front wheel */
m(0,2] :- 1.0; mfl,2) := -0.5;
setLocalTransformationmatrix {m, REPLACE);
executeStructure (wheel);

closeStructure;

We delete a hierarchy with the function
deleteStructurelNetwork i1d}

Where parameter id reterences the root structure of the tree. This deletes the root
node of the hierarchy and all structures that have been placed below the root
using the executeStructure function, assuming that the hierarchy is orga-
nized as a tree.

SUMMARY

A structure (also called a segment or an object in some systems) is a labeled
group of output statements and associated attributes. Bv designing pictures as
sets of structures, we can easily add, delete, or manipwate picture components
independently of each another. As structures are created, they are entered into a
central structure store. Structures are then displayed by posting them to various
output devices with assigned priorities. When two structures overlap, the struc-
ture with the higher priority is displayed over the structure with the lower prior-
ity

We can use workstation filters to set attributes, such as visibility and high-
lighting, for structures. With the visibility filter, we can turn off the display of a
structure while retaining it in the structure list. The highlighting filter is used to
emphasize a displayed structure with blinking, color, or high-intensity patterns.

Various editing op=rations can be applied to structures. We can reopen
structures to carry out append, insert, or delete operations. Locations in a struc-
ture are referenced with the element pointer. In addinon. we individually label
the primitives or attributes in a structure.

The term model, in graphics applications, refers lo a graphical representa-
tion for some system. Components of the system are represented as symbols, de-
fined in local (modeling) coordinate reference frames. Many models, such as elec-
trical circuits, are constructed by placing instances of the svmbols at selected
locations.

Many models are constructed as symbol hierarchies. A bicycle, for instance,
can be constructed with a bicycle frame and the wheels. The frame can include
such parts as the handlebars and the pedals. And the wheels contain spokes,
rims, and tires. We can construct a hierarchial model by nesting structures. For
example, we can set up a bike structure that contains a frame structure and a
wheel structure. Both the frame and wheel structures can then contain primitives
and additional structures. We continue this nesting down to structures that con-
tain only output primitives (and attributes).

As each structure is nested within another structure, an associated model-
ing transformation can be set for the nested structure. This transformation de-

scribes the operations necessary to properly orient and scale the structure to fit
into the hierarchyv.

REFERENCES

Structure operations and hierarchical modeling in PHIGS are discussed in Hopgood and
Duce (1691, Howard et al. (1991), Gaskins (1992), and Blake (1993).

For information on GGKS segment operations see Hopgood 113983) and Enderle et at (1984)

EXERCISES

7-1. Wirite a procedure for creating and manipulating the information in a central structure
store. This procedure is to be invoked by functions such as openStructure,
deleteStructure, and changeStructureldent ifier.

-2, Write a routine for storing information in a traversal state list.

7-3. Wirite a routine for erasing a specified structure on a raster system, given the coordi-
nate extents for all displayed structures in a scene

. Wrile a procedure to implement the unoost Structure function on a raster system.
. Write a procedure to implement the deleteStructure function on a raster system.
. Write a procedure to implement highlighting as a blinking operation.

. Write a set of routines for editing structures. Your routines should provide for the fol-

lowing types of editing: appending, inserting, replacing, and deleting structure ele-
ments.

[N NEVES

7B Discuss model representations that would be appropriate for several distinctly difter-
ent kinds of systems. Also discuss how graphical representations might be imple-
mented for eack system.

7-9 For alogic-circuit modeling application, such as that n Fig. 7-6, give a detailed graph-
cal deseription of the standard logic symbols to be used in constructing a display of a
circuit.

7-10. Develop a modeling package for electrical design that will allow a user to position
clectrical symbols within a circuit network. Only tianslations need be applied to place
an instance of one of the electrical menu shapes intc the network. Once a component

has been placed in the network, it is 1o be connected to other specified components
with straight line segments.

7-it Devise a two-dimensional facility-layout package. A menu of furniture shapes is to be

Exercises

269

Chapter 7

D

70

Structures and Hierarchical
Modeling

7-12.

pravided to a des.gner, who can place the objects in any locatian within a single room
(one-level hierarchy . Instance transformations can be himited to translations and rota-
tions.

Devise a two-dimensional facility-layout package that presents a menu of furniture
shapes. A two-level hierarchy is to be used so that turniture items can be placed into
various work areas. and the work areas can be arranged within a larger area. Instance
transformations may be limited to translations and rotations, but scaling could be used
if furniture 1items of different sizes are to be available.

272

T he human—compater interface for most systems invalves extensive graph-
ics, regardless ot the application. Typically, general svstems now consist of
windows, pull-down and pop-up menus, icons, and pointing devices, such as a
mouse or spaceball, for positioning the screen cursor. Papular graphical user in-
terfaces include X Windows, Windows, Macintosh, OpenLook, and Motif. These
interfaces are used in a variety of applications, including word processing,
spreadsheets, databases and file-management systems, presentation systems, and
page-layout systems. In graphics packages, specialized interactive dialogues are
designed for individual applications, such as engineering design, architectural
design, data visualization, drafting, business graphs, and artist’s paintbrush pro-
grams. For general graphics packages, interfaces are usually provided through a
standard system. An example is the X Window System interface with PHIGS. In
this chapter, we take a look at the basic elements of graphical user interfaces and
the techniques for interactive dialogues. We also consider how dialogues in
graphics packages, in particular, can allow us to construct and manipulate pic-
ture components, select menu options, assign parameter values, and select and
position text strings. A variety of input devices exists, and general graphics
packages can be designed to interface with various devices and to provide exten-
sive dialogue capabilities.

8-1
THE USER DIALOGUE

For a particular application, the user’s model serves as the basis for the design of
the dialogue. The user’s model describes what the system is designed to accom-
plish and what graphics operations are available. [t states the type of objects that
can be displayed and how the objects can be manipulated. For example, if the
graphics system is to be used as a tool for architectural design, the model de-
scribes how the package can be used to construct and display views of buildings
by positioning walls, doors, windows, and other building, components. Similarly,
for a facility-layout system, objects could be defined as a set of furniture items
(tables, chairs, etc.), and the available operations would include those for posi-
tioning and removing different pieces of furniture within the facility layout. And
a circuit-design progran, might use electrical or logic clements for objects, with
positioning operations available for adding or deletirg clements within the over-
all circuit design

All information in the user dialogue is then presented in the language of the
application. In an architectural design package, this means that all interactions
are described only in architectural terms, without reference to particular data
structures or other concepts that may be unfamiliar to an architect. In the follow-
ing sections, we discuss some of the general considerations in structuring a user
dialogue.

Windows and lcons

Figure 8-1 shows examples of common window and icon graphital interfaces. Vi-
sual representations are used both for objects to be manipulated in an application
and for the actions to be performed on the application objects.

A window system provides a window-manager interface for the user and
functions for handling the display and manipulation of the windows. Common
functions for the window system are opening and closing windows, reposition-
ing windows, resizing windows, and display routines that provide interior and
exterior clipping and other graphics functions. Typically, windows are displayed
with sliders, buttons, and menu icons for selecting various window options.
Some general systemns, such as X Windows and NeWS, are capable of supporting
multiple window managers so that different window styles can be accommo-
dated, each with its own window manager. The window managers can then be
designed for particular applications. In other cases, a window system is designed
for one specific application and window style.

Icons representing objects such as furniture items and circuit elements are
often referred to as application icons. The icons representing actions, such as ro-
tate, magnify, scale, clip, and paste, are called control icons, or command icons.

Accommodating Mulliple Skill Levels

Usually, interactive graphical interfaces provide several methods for selecting ac-
tions. For example, options could be selected by pointing at an icon and clicking
different mouse buttons, or by accessing pull-down or pop-up menus, or by typ-
ing keyboard commands. This allows a package to accommodate users that have
different skill levels.

For a less experienced user, an interface with a few easily understood oper-
ations and detailed prompting is more effective than one with a large, compre-

) 7]

Figure 8-1
Examples of screen layouts using window systems and icons. (Courtesy of (a) Intergraph
Corporation, (b} Visual Numerics, Inc., and (c) Sun Microsystems.)

Section 8-1

The User Dialogue

)

273

Chapter 8

Craplucal User interiaces and

Interact ve fapat Methods

hensive operation set A simplified set of menus and options is casy to learn and
remember, and the user can concentrate on the application imstead of on the de-
tails of the intertace. Sincple point-and-click operations are often easiest for an in-
experienced user of an applications package. Therefore. mterfaces typicallv pro-
vide a means for maskirg the complexity of a package. = that beginners can use
the svstem without bu.n;: overwhelmed swith too much detail

'Experienced user- on the other hand, tvpicallv want speed. This means
fewer prompts and mere input from the kevboard or with multiple mouse-but-
ton clicks. Actions are selected with tunction keys or with simultaneous combina-
tions of keyboard keys, -ince experienced users will remcmber these shorteuts for
commonly used actions

Similarly, help tacinties can be designed on several levels so that beginners
can carry on a detailed dialogue. while more experiended nsers can reduce or
eliminate prompts and messages. Help facilitics can also include one or more tu-
torial applications, which provide users with an introduction to the capabilities
and use of the svstem.

Consistenacs

An important design consideration in an intertace is consistencv. For example, a
particular icon shape should alwavs have a single mearing, rather than serving
to represent different actions or ob;mts depending on the context. Some other ex-
amples of consistency ate alwavs placing menus in the same relative positions so
that a user does not have to hunt for a particular option. alwave using a particu-
lar combination of keyboard keys for the same action, and alwavs color coding so
that the same color does not have difierent meanings in ¢ifferent situations.
Generally, a complicated, inconsistent model is difticult for a user to under-
stand and to work with 17 an effective wav. The objects and operations provided
should be designed to form a minimum and consistent et so that the svstem is
easy to learn, but not oy ersimplified to the point where it 1 ditficult to applv.

Atiimizing Memornzation

Operations in an interface should also be structured so that thev are easy to un-
derstand and to rememoer. Obscure, complicated, incorsistent, and abbreviated
command formats lead ~0 confusion and reduction 1n the effectiveness of the use
of the package. One kev or button used for all delete operations, for example, is
easier to remember than a number of different kevs for different tvpes of delete
operations.

Icons and window systems also aid in minimizing memorization. Different
kinds of information can be separated into different windows, so that we do not
have to rely on memorization when different information displays overlap. We
can simply retain the multiple information on the screen in different windows,
and switch back and forth between window areas. lcons are used to reduce mem-
orizing by displaying casily recognizable shapes for various objects and actions.
To select a particular action, we simply select the icon that resembles that action.

Backup anil Frior Handiae

A mechanism tor backing up, or aborting, during a sequence ot operations is an-
other common teature of an interface. Often an operation can be canceled before

execution is completed, with the system restored to the state it was in before the
operation was started. With the ability to back up at any point, we can confi-
dently explore the capabilities of the system, knowing that the effects of a mis-
take can be erased.

Backup can be provided in many forms. A standard undo key or command
is used to cancel a single operation. Sometimes a system can be backed up
through several operations, allowing us to reset the system to some specified
point. In a system with extensive backup capabilities, all inputs could be saved
so that we can back up and “replay” any part of a session.

Sometimes operations cannot be undone. Once we have deleted the trash in
the desktop wastebasket, for instance, we cannot recover the deleted files. In this
case, the interface would ask us to verify the delete operation before proceeding.

Good diagnostics and error messages are designed to help determine the
cause of an error. Additionally, interfaces attempt to minimize error possibilities
by anticipating certain actions that could lead to an error. Exampies of this are
not allowing us to transform an object position or to delete an object when no ob-
ject has been selected, not allowing us to select a line attribute if the selected ob-
ject is not a line, and not allowing us to select the paste operation if nothing is in
the clipboard.

Feedback

Interfaces are designed to carry on a continual interactive dialogue so that we are
informed of actions in progress at each step. This is particularly important when
the response time is high. Without feedback, we might begin to wonder what the
system is doing and whether the input should be given again.

As each input is received, the system normally provides some type of re-
sponse. An object is highlighted, an icon appears, or a message is displayed. This
not only informs us that the input has been received, but it also tells us what the
system is doing. If processing cannot be completed within a few seconds, several
feedback messages might be displayed to keep us informed of the progress of the
system. In some cases, this could be a flashing message indicating that the system
is still working on the input request. It may also be possible for the system to dis-
play partial results as they are completed, so that the final display is built up a
piece at a time. The system might also allow us to input other commands or data
while one instruction is being processed.

Feedback messages are normally given clearly enough so that they have lit-
tle chance of being overlooked, but not so overpowering that our concentration is
interrupted. With function keys, feedback can be given as an audible click or by
lighting up the key that has been pressed. Audio feedback has the advantage that
it does not use up screen space, and we do not need to take attention from the
work area to receive the message. When messages are displayed on the screen, a
fixed message area can be used so that we always know where to look for mes-
sages. In some cases, it may be advantageous to place feedback messages in the
work area near the cursor. Feedback can also be displayed in different colors to
distinguish it from other displayed objects.

To speed system response, feedback techniques can be chosen to take ad-
vantage of the operating characteristics of the type of devices in use. A typical
raster feedback technique is to invert pixel intensities, particularly when making
menu selections. Other feedback methods include highlighting, blinking, and
color changes.

Section 8-1

The User Dialogue

275

Chapter 8

e
~J

Graphical User Interfaces and
Interactive Input Methods

Special symbols are designed for different types of feedback. For example, a
cross, a frowning face, or a thumbs-down symbol is often used to indicate an
error; and a blinking “at work” sign is used to indicate that processing is in
progress. This type of feedback can be very effective with a more experienced
user, but the beginner may need more detailed feedback that not only clearly in-
dicates what the system is doing but also what the user should input next.

With some types of input, echo feedback is desirable. Typed characters can
be displayed on the screen as they are input so that we can detect and correct er-
rors immediately. Button and dial input can be echoed in the same way. Scalar
values that are selected with dials or from displayed scales are usually echoed on
the screen to let us check input values for accuracy. Selection of coordinate points
can be echoed with a cursor or othersymbol that appears at the selected position.
For more precise echoing of selected positions, the coordinate values can be dis-
played on the screen.

§-2
INPUT OF GRAPHICAL DATA

Graphics programs use several kinds of input data. Picture specifications
need values for coordinate positions, values for the character-string parameters,
scalar values for the transformation parameters, values specifving menu options,
and values for identification of picture parts. Any of the input devices discussed
in Chapter 2 can be used to input the various graphical data types, but some de-
vices are better suited for certain data types than others. To make graphics pack-
ages independent of the particular hardware devices used, input functions can be
structured according to the data description to be handled by each function. This
approach provides a logical input-device classification in terms of the kind of
data to be input by the device.

Logical Classification of Input Devices

The various kinds of input data are summarized in the following six logical de-
vice classifications used by PHIGS and GKS:

LOCATOR~—a device for specitying a coordinate position (x, y)
STROKE--a device for specifving a series of coordinate positions
STRING--a device for specifying text input

VALUATOR—a device for specifying scalar values

CHOICE—a device for selecting menu options

PICK—a device ter selecting picture components

In some packages, a single logical device is used tor both focator and stroke
operations. Some other mechanism, such as a switch, can then be used to indicate
whether one coordinate position or a “stream’ of positions 1s to be input.

Each of the six logical input device classifications can be inplemented with
any of the hardware devices, but some hardware devices are more convenient for
certain kinds of data than others. A device that can be pointed at a screen posi-
tion is more convenient for entering coordinate data than a kevboard, for exam-
ple. In the following sections, we discuss how the vanous phvsical devices are
used to provide input within each of the loyical classificetions.

Locator Devices

A standard method for interactive selection of a coordinate point is by position-
ing the screen cursor. We can do this with a mouse, joystick, trackball, spaceball,
thumbwheels, dials, a digitizer stylus or hand cursor, or some other cursor-posi-
tioning device. When the screen cursor is at the desired location, a button is acti-
vated to store the coordinates of that screen point.

Keyboards can be used for locator input in several ways. A general-purpose
keyboard usually has four cursor-control keys that move the screen cursor up,
down, left, and right. With an additional four keys, we can move the cursor diag-
onally as well. Rapid cursor movement is accomplished by holding down the se-
lected cursor key. Alternatively, a joystick, joydisk, trackball, or thumbwheels can
be mounted on the keyboard for relative cursor movement. As a last resort, we
could actually type in coordinate values, but this is a slower process that also re-
quires us to know exact coordinate values.

Light pens have also been used to input coordinate positions, but some spe-
cial implementation considerations are necessary. Since light pens operate by de-
tecting light emitted from the screen phosphors, some nonzero intensity level
must be present at the coordinate position to be selected. With a raster system,
we can paint a color background onto the screen. As long as no black areas are
present, a light pen can be used to select any screen position. When it is not pos-
sible to eliminate all black areas in a display (such as on a vector system, for ex-
ample), a light pen can be used as a locator by creating a small light pattern for
the pen to detect. The pattern is moved around the screen until it finds the light
pen.

Stroke Devices

This class of logical devices is used to input a sequence of coordinate positions.
Stroke-device input is equivalent to multiple calls to a locator device. The set of
input points is often used to display line sections.

Many of the physical devices used for generating locator input can be used
as stroke devices. Continuous movement of a mouse, trackball, joystick, or tablet
hand cursor is translated into a series of input coordinate values. The graphics
tablet is one of the more common stroke devices. Button activation can be used to
place the tablet intv “continuous” mode. As the cursor is moved across the tablet
surface, a stream of coordinate values is generated. This process is used in paint-
brush systems that allow artists to draw scenes on the screen and in engineering
systems where layouts can be traced and digitized for storage.

String Devices

The primary physical device used for string input is the keyboard. Input charac-
ter strings are typically used for picture or graph labels.

Other physical devices can be used for generating character patterns in a
“text-writing” mode. For this input, individual characters are drawn on the
screen with a stroke or locator-type device. A pattern-recognition program then
interprels the characters using a stored dictionary of predefined patterns.

Valuator Devices

This logical class of devices is employed in graphics systems to input scalar val-
ues. Valuators are used for setting various graphics parameters, such as rotation

Section 8-2

Input of Graphical Data

277

Chapter 8

278

Graphical User Interfaces and
Interactive Input Methods

angle and scale factors, and for setting physical parameters associated with a par-
ticular application (temperature settings, voltage levels, stress factors, etc.).

A typical physical device used to provide valuator input is a set of control
dials. Floating-point nimbers within any predefined range are input by rotating
the dials. Dial rotations in one direction increase the numeric input value, and
opposite rotations decrease the numeric value. Rotary potentiometers convert
dial rotation into a corresponding voltage. This voltage is then translated into a
real fidthber within a defined scalar range, such as —10.5 to 25.5. Instead of dials,
slide potentiometers are sometimes used to convert linear movements into scalar
values.

Any keyboard with a set of numeric keys can be used as a valuator device.
A user simply types the numbers directly in floating-point format, although this
is a slower itiethod than using dials or slide potentiometers.

Joysticks, trackballs, tablets, and other interactive devices can be adapted
for valuator input by interpreting pressure or movement of the device relative to
a scalar range. For one direction of movement, say, left to right, increasing scalar
values can be input. Movement in the opposite direction decreases the scalar
input value.

Another technique for providing valuator input is to display sliders, but-
tons, rotating scales, and menus on the video monitor. Figure 8-2 illustrates some
possibilities for scale representations. Locator input from a mouse, joystick,
spaceball, or other device is used to select a coordinate position on the display,
and the screen coordinate position is then converted to a numeric input value. As
a feedback mechanism for the yser, the selected position on a scale can be
marked with some symbol. Numeric values may also be echoed somewhere on
the screen to confirm the selections.

Figure 8-2

Scales displayed on a video monitor for interactive selection of
parameter values. In this display, sliders are provided for selecting
scalar values for superellipse parameters, s1 and s2, and for individual
R, G, and B color values. In addition, a small circle can be positioned on
the color wheel for selection of a combined RGB color, and buttons can
be activated to make small changes in color values.

Choice Devices

Graphics packages use menus to select programming options, parameter values,
and object shapes to be used in constructing a picture (Fig. 8-1). A choice device
is defined as one that enters a selection from a list (menu) of alternatives. Com-
monly used choice devices are a set of buttons; a cursor positioning device, such
as a mouse, trackball, or keyboard cursor keys; and a touch panel.

A function keyboard, or “button box”, designed as a stand-alone unit, is
often used to enter menu selections. Usually, each button is programmable, so
that its function can be altered to suit different applications. Single-purpose but-
tons have fixed, predefined functions. Programmable function keys and fixed-
function buttons are often included with other standard keys on a keyboard.

For screen selection of listed menu options, we can use cursor-control de-
vices. When a coordinate position (x, y) is selected, it is compared to the coordi-
nate extents of each listed menu item. A menu item with vertical and horizontal
boundaries at the coordinate values Xqin, Xmaw Ymune aNd Yoy is selected if the
input coordinates (x, y) satisfy the inequalities

Xpnin =X = Xmaxs Ymin = Yy = ymax (8'1)

For larger menus with a few options displayed at a time, a touch panel is
commenly used. As with a cursor-control device, such as a mouse, a selected
screen position is compared to the area occupied by each menu choice.

Alternate methods for choice input include keyboard and voice entry. A
standard keyboard can be used to type in commands or menu options. For this
method of choice input, some abbreviated format is useful. Menu listings can be
numbered or given short identifying names. Similar codings can be used with
voice-input systems. Voice input is particularly useful when the number of op-
tions is small (20 or less).

Pick Devices

Graphical object selection is the function of this logical class of devices. Pick de-
vices are used to select parts of a scene that are to be transformed or edited in
some way.

Typical devices used for object selection are the same as those for menu se-
lection: the cursor-positioning devices, With a mouse or joystick, we can position
the cursor over the primitives in a displayed structure and press the selection
button. The position of the cursor is then recorded, and several levels of search
may be necessary to locate the particular object (if any) that is to be selected.
First, the cursor position is compared to the coordinate extents of the various
structures in the scene. If the bounding rectangle of a structure contains the cur-
sor coordinates, the picked structure has been identified. But if two or more
structure areas contain the cursor coordinates, further checks are necessary. The
coordinate extents of individual lines in each structure can be checked next. If the
cursor coordinates are determined to be inside the coordinate extents of only one
line, for example, we have identified the picked object. Otherwise, we need addi-
tional checks to determine the closest line to the cursor position.

One way to find the closest line to the cursor position is to calculate the dis-
tance squared from the cursor coordinates (x, y) to each line segment whose
bounding rectangle contains the cursor position (Fig. 8-3). For a line with end-
points (x|, y,) and (x,, y,), distance squared from (x. y) to the line is calculated as

Section 8-2

Input of Grapbical Data

279

280

Figure 8-3
Distances to line segments from the
pick position.

_ [axy—y) - Ay(x —x))
CAx?T+Ay?

dZ

(8-2)

where Ax=x,—x,, and Ay=y,~y, Various approximations can be used to speed
up this distance calculation, or other identification schemes can be used.

Another method for finding the closest line to the cursor position is to spec-
ify the size of a pick window. The cursor coordinates are centered on this win-
dow and the candidate lines are dipped to the window, as shown in Fig. 8-4. By
making the pick window small enough, we can ensure that a single line will
cross the window. The method for selecting the size of a pick window is de-
scribed in Section 8-4, where we consider the parameters associated with various
input functions.

A method for avoiding the calculation of pick distances or window clipping
intersections is to highlight the candidate structures and allow the user to resolve
the pick ambiguity. One way to do this is to highlight the structures that overlap
the cursor position one bv one. The user then signals when the desired structure
is highlighted.

An alternative to cursor positioning is to use button input to highlight suc-
cessive structures. A second button is used to stop the process when the desired
structure is highlighted. If very many structures are to be searched in this way,
the process can be speeded up and an additional button is used to help identify
the structure, The first button can initiate a rapid successive highlighting of struc-
tures. A second button can again be used to stop the process, and a third button
can be used to back up more slowly if the desired structure passed before the op-
erator pressed the stop button.

Finally, we could use a keyboard to type in structure names. This is a
straightforward, but less interactive, pick-selection method. Descriptive names
can be used to help the user in the pick process, but the method has several
drawbacks. It is generally slower than interactive picking on the screen, and a
user will probably need prompts to remember the various structure names. In
addition, picking structure subparts from the keyboard can be more difficult than
picking the subparts on the screen.

X, vl o N o
Tigure 8-4
A pick window, centered on pick
e " coordinates (x,, y,). used to resolve
W

i pick object overlaps.

8-3
INPUT FUNCTIONS

Graphical input functions ..1. be set up to allow users to specify the following
options:

* Which physical devices are to provide input within a particular logical clas-
sification (for example, a tablet used as a stroke device).

¢ How the graphics program and devices are to interact (input mode). Either
the program or the devices can initiate dat.. entry, or both can operate si-
multaneously.

* When the data are to be input and which device is to be used at that time to
deliver a particular input type to the specified data variables.

Input Modes

Functions to provide input can be structured to operate in various input modes,
which specify how the program and input devices interact. Input could be initi-
ated by the program, or the program and input devices both could be operating
simultaneously, or data input could be initiated by the devices. These three input
modes are referred to as request mode, sample mode, and event mode.

In request mode, the application program initiates data entry. Input values
are requested and processing is suspended until the required values are received.
This input mode corresponds to typical input operation in a general program-
ming language. The program and the input devices operate alternately. Devices
are put into a wait state until an input request is made; then the program waits
until the data are delivered.

In sample mode, the application program and input devices operate inde-
pendently. Input devices may be operating at the same time that the program is
processing other data. New input values from the input devices are stored, re-
placing previously input data values. When the program requires new data, it
samples the current values from the input devices.

In event mode, the input devices initiate data input to the application pro-
gram. The program and the input devices again operate concurrently, but now
the input devices deliver data to an input queue, All input data are saved. When
the program requires new data, it goes to the data queue.

Any number of devices can be operating at the same time in sample and
event modes. Some can be operating in sample mode, while others are operating
in event mode. But only one device at a time can be providing input in request
mode.

An input mode within a logical class for a particular physical device operat-
ing on a specified workstation is declared with one of six input-class functions of
the form

set ... Moce {(ws, deviceCode, inputMode, echoFlag)

where deviceCode is a positive integer; inputMode is assigned one of the val-
ues: request, samplz, or event; and parameter echoFlag is assigned either the
value echo or the value noecho. How input data will be echoed on the display de-
vice is deterrnined by parameters set in other input functions to be described
later in this section.

Section 8-3

Input Functions

287

Graphical User Interfaces and
Interactive Input Methods

282

TABLE 8-1
ASSIGNMENT OF INPUT-DEVICE
CODES

Device Code Physical Device Type

Keyboard
Graphics Tablet
Mouse

Jovstick
Trackball
Button

U b w N —

Device code assignment is installation-dependent. One possible assignment
of device codes is shown in Table 8-1. Using the assignments in this table, we
could make the following declarations:

setLocatorMode (1, 2, sample, noecho)
setTextMode (2, 1, reqguest, echo)
setPickMode {4, 3, event, echo)

Thus, the graphics tablet is declared to be a locator device in sample mode on
workstation 1 with no input data feedback echo; the keyboard is a text device in
request mode on workstation 2 with input echo; and the mouse is declared to be
a pick device in event mode on workstation 4 with input echo.

Request Mode

Input commands used in this mode correspond to standard input functions in a
high-level programming language. When we ask for an input in request mode,
other processing is suspended until the input is received. After a device has been
assigned to request mode. as discussed in the preceding section, input requests
can be made to that device using one of the six logical-class functions represented
by the following:

request ... (ws, deviceCode, status, ...)

Values input with this function are the workstation code and the device code. Re-
turned values are assigned to parameter status and to the data parameters cor-
responding to the requested logical class.

A value of ok or none is returned in parameter status, according to the va-
lidity of the input data. A value of none indicates that the input device was acti-
vated so as to produce invalid data. For locator input, this could mean that the
coordinates were out of range. For pick input, the device could have been acti-
vated while not pointing at a structure. Or a “break” button on the input device
could have been pressed. A returned value of none can be used as an end-of-data
signal to terminate a programming sequence.

Locator and Stroke Input in Request Mode
The request functions for these two logical input classes are

requestbLocator (ws, devCode, status, viewlncex, pt)
requestStroke (ws, devCcde, nMax, status, viewIndex, n, pis)

For locator input, pt is the world-coordinate position selected. For stroke input,
pts is a list of n coordinate positions, where parameter nMax gives the maxi-
mum number of points that can go in the input list. Parameter viewIndex is as-
signed the two-dimensional view index number.

Determination of a world-coordinate position is a two-step process: (1) The
physical device selects a point in device coordinates (usually from the video-dis-
play screen) and the inverse of the workstation transformation is performed to
obtain the corresponding point in normalized device coordinztes. (2) Then, the
inverse of the window-to-viewport mapping is carried out to get to viewing co-
ordinates, then to world coordinates.

Since two or more views may overlap on a device, the correct viewing
transformation is identified according to the view-transformation input priority
number. By default, this is the same as the view index number, and the lower the
number, the higher the priority. View index 0 has the highest priority. We can
change the view priority relative to another (reference) viewing transformation
with

setViewTransformationInputPriority (ws, viewlIndex,
refViewlndex, prior:ty)

where viewIndex identifies the viewing transformation whose priority is to be
changed, refviewIndex identifies the reference viewing transformation, and
parameter priority is assigned either the value lower or the value higher. For
example, we can alter the priority of the first four viewing transformations on
workstation 1, as shown in Fig. 8-5, with the sequence of functions:

setViewTransformationInputPriority {i 3, 1, higher)
setViewTransformationInputPriority (1, 0, 2, lower)

String Input in Request Mode
Here, the request input function is
requestString (ws, devCode, status, nChars, str)

Parameter str in this function is assigned an input string. The number of charac-
ters in the string is given in parameter nChars.

Original Fina)
Priority Ordering Priority Ordering

Figure 8-5
Rearranging viewing priorities.

Section 8-3

tnput Functions

283

Chapter 8

Graphical User Interfaces and

284

Interactive Input Methods

Valuator Input in Request Mode

A numerical value is input in request mode with
regquestValuator (ws, devCode, status, value)

Parameter value car be assigned any real-number value.

Choice Input in Request Mode

We make a menu selection with the following request function:
requestChoice (ws, devCode, status, itemNum}

Parameter itemNum is assigned a positive integer value corresponding to the
menu item selected.

Pick Input in Request Mode

For this mode, we obtain a structure identifier number with the function

reguestPick (ws, devCode, maxPathDepth, status, pathDepth,
pickPath)

Parameter pickPath is a list of information identifying the primitive selected.
This list contains the structure name, pick identifier for the primitive, and the ele-
ment sequence number. Parameter pickDepth is the number of levels returned
in pickPath, and maxPathDepth is the specified maximum path depth that
can be included in pickPath.

Subparts of a structure can be labeled for pick input with the following
function:

setPickIdentifier (pickID)

An example of sublabeling during structure creation is given in the following
programming sequence:

openStructure {(id):;
for (k = 0; k < n; k#++){
setPickIdentifier (k);

}
closeStructure;

Picking of structures and subparts of structures is also controlled by some work-
station filters (Section 7-1) Obijects cannot be picked if they are invisible. Also, we
can set the ability to pick objects independently of their visibility. This is accom-
plished with the pick filter:

setPickFilter (ws, devCode, pickables, nonp.ckab.es)

where the set pickables contains the names of objects (structures and primi-
tives) that we may want to select with the specitied pick device. Similarly, the set
nonpickables contains the names of objects that we do not want to be avail-
able for picking with this input device.

Sample Mode

Once sample mode has been set for one or more physical devices, data input be-
;ins without waiting for program direction. If a joystick has been designated as a
ocator device in sample mode, coordinate values for the current position of the
activated joystick are immediately stored. As the activated stick position changes,
the stored values are continually replaced with the coordinates of the current
stick position.

Sampling of the current values from a physical device in this mode begins
when a sample command is encountered in the application program. A locator
device is sampled with one of the six logical-class functions represented by the
following:

sample ... (ws, deviceCode, ...)

Some device classes have a status parameter in sample mode, and some do not.
Other input parameters are the same as in request mode.

As an example of sample input, suppose we want to translate and rotate a
selected object. A final translation position for the object can be obtained with a
locator, and the rotation angle can be supplied by a valuator device, as demon-
strated in the following statements.

samplelLocator (wsl, devl, viewIndex, pt)
sampleValuator (ws2, dev2, angle)

tvent Mode

When an input device is placed in event mode, the program and device operate
simultaneously. Data input from the device is accumulated in an event queue, or
input queue. All input devices active in event mode can enter data (referred to as
“events”) into this single-event queue, with each device entering data values as
they are generated. At any one time, the event queue can contain a mixture of
data types, in the order they were input. Data entered into the queue are identi-
fied according to logical class, workstation number, and physical-device code.

An application program can be directed to check the event queue for any
input with the function

awaitEvent (time , ws, deviceClass, deviceCode)

Parameter time is used to set a maximum waiting time for the application pro-
gram. If the queue happens to be empty, processing s suspended untit either the
number of seconds specified in time has elapsed or an input arrives. Should the
waiting time run out before data values are input, the parameter aeviceClass
is assignad the value rione. When time is given the value 0, the program checks
the queue and immediately returns to other processing if the queue is empty.

Section 8-3

Input Functions

285

Chapter 8

286

Craphical User Interfaces and
Interactive Input Methads

If processing is directed to the event queue with the awaitEvent function
and the queue is not empty, the first event in the queue is transferred to a current
event record. The particular logical device class, such as locator or stroke, that
made this input is stored in parameter deviceClass. Codes, identifying the
particular workstation and physical device that made the input, are stored in pa-
rameters ws and deviceCode, respectively.

To retrieve a data input from the current event record, an event-mode input
function is used. The functions in event mode are similar to those in request and
sample modes. However, no workstation and device-code parameters are neces-
sary in the commands, since the values for these parameters are stored in the
data record. A user retrieves data with

get ... { ...)

For example, to ask for locator input, we invoke the function

getLocator (viewIndex, pt)

In the following program section, we give an example of the use of the
awaitEvent and get functions. A set of points from a tablet (device code 2) on
workstation 1 is input to plot a series of straight-line segments connecting the
input coordinates:

setStrokeMode (1, z, event, noecho);
do

awaitEvent (0, ws, deviceClass,
} while (deviceClass stroke) ;
getStroke (nMax, viewIndex, n, pts);

polyline (n, pts);

deviceCode)

The repeat-until loop bypasses any data from other devices that might be in
the queue. If the tablet is the only active input device in event mode, this loop is
not necessary.

A number of devices can be used at the same time in event mode for rapid
interactive processing of displays. The following statements plot input lines from
a tablet with attributes specified by a button box:

setPolylineIndex (1) ;
/* set tablet to stroke device,
setStrokeMcde (1, 2, event,

event mode */
noecho) ;

/* set buttons to choice device,
setChoiceMode (1, 6, event,

event mode */

noecho) ;

do {
awaitEvent
if

(60, deviceClass,
(deviceClass choice) {

getChoice (status, option);

setPolylineIndex (option);

WS,

deviceCode) ;

}
else
if ==

(deviceClass
getStroke (nMax,
polyline (n,

}
} while

stroke) {
viewIndex,
pts);

n, pts);

ideviceClass != none):

Some additional housekeeping functions can be used in event mode. Func-
tions for clearing the event queue are useful when a process is terminated and a
new application is to begin. These functions can be set to clear the entire queue or
to clear only data associated with specified input devices and workstations.

Concurrent Use of Input Modes

An example of the simultaneous use of input devices in different modes is given
in the following procedure. An object is dragged around the screen with a
mouse. When a final position has been selected, a button is pressed to terminate
any further movement of the Ubject. The mouse positions are obtained in sample
mode, and the button input is sent to the event queue

T /* drags object in response to mouse input */
/* terminate processing by button press *’
setlLocatorMode (1, 3, sample, echo);
setChoiceMode (1, 6, event, noecho);
do {

sanpleLocator (1, 3, viewIndex, pt}:

/* translate object centroid to position pt and draw */

awaitEvent (0, ws, class, code);
} while (class != choice);

8-4
INITIAL VALUES FOR INPUT-DEVICE PARAMETERS

Quite a number of parameters can be set for input devices using the initial-
ize function for each logical class:

initialize ... (ws, deviceCode, ... , p2, coordExt, dataRec)

Parameter pe is the prompt and echo type, parameter coordExt is assigned a
set of four coordinate values, and parameter dataRec is a record of various con-
trol parameters.

For locator input, some values that can be assigned to the prompt and echo
parameter are

pe = 1: installation defined

pe = 2: crosshair cursor centered at current position
pe = 3: line from initial position to current position
pe = 4: rectangle defined by current and initial points

Several other options are also available.
For structure picking, we have the following options:

pe = 1: highlight picked primitives
pe = 2: highlight all primitives with value of pick id
pe = 3: highlight entire structure

as well as several others.

Section 8-4

initial Values for Input-Device
Parameters

287

Chapter 8

Graphical User [nterfaces and

288

Interactive Input Methods

When an echo of the input data is requested, it is displayed within the
bounding rectangle specified by the four coordinates in parameter coordext.
Additional options can also be set in parameter dataRec. For example, we can
set any of the following:

¢ size of the pick window

¢ minimum pick distance

e type and size of cursor display

e type of structure highlighting during pick operations
¢ range (min and max) for valuator input

* resolution (scale) for valuator input

plus a number of other options.

8-5
INTERACTIVE PICTURE-CONSTRUCTION TECHNIQUES

There are several techniques that are incorporated into graphics packages to aid
the interactive construction of pictures. Various input options can be provided, so
that coordinate information entered with locator and stroke devices can be ad-
justed or interpreted according to a selected option. For example, we can restrict
all lines to be either horizontal or vertical. Input coordinates can establish the po-
sition or boundaries for objects to be drawn, or they can be used to rearrange pre-
viously displayed obijects.

Basic Positioning Methods

Coordinate values supplied by locator input are often used with positioning
methods to specify a location for displaying an object or a character string. We in-
teractively select coordinate positions with a pointing device, usually by posi-
tioning the screen cursor. Just how the object or text-string positioning is pe-
formed depends on the selected options. With a text string, for example, the
screen point could be taken as the center string position, or the start or end posi-
tion of the string, or any of the other string-positioning options discussed in
Chapter 4. For lines, straight line segments can be displayed between two se-
lected screen positions.

As an aid in positioning objects, numeric values for selected positions can
be echoed on the screen. Using the echoed coordinate values as a guide, we can
make adjustments in the selected location to obtain accurate positioning.

Constraints

With some applications, certain types of prescribed orientations or object align-
ments are useful. A constraint is a rule for altering input-coordinate vajues to
produce a specified vrientation or alignment of the displayed coordinates. There
are many kinds of constraint functions that can be specified, but the most com-
mon constraint is a horizontal or vertical alignment of straight lines. This type of
constraint, shown in Figs. 8-6 and 8-7, is useful in forming network layouts. With
this constraint, we can create horizontal and vertical lines without worrying
about precise specification of endpoint coordinates.

=

Select First Select
Endpoint Position Second Endpoint
Position Along
Approximate

Horizontal Path
Figure 8-6
Horizontal line constraint.

+

+
Selact First Select
Endpoint Position Second Endpaoint
Position Along
Approximate
Vertical Path
Figure 5-7

Vertical line constraint.

A harizontat or vertical constraint is implemented by determining whether
any two input coordinate endpoints are more nearly horizontal or more nearly
vertical. If the difference in the y values of the two endpoints is smaller than the
difference in x values, a horizontal line is displayed. Otherwise, a vertical line is
drawn. Other kinds of constraints can be applied to input coordinates to produce
a variety of alignments. Lines could be constrained to have a particular slant,
such as 45°, and input coordinates could be constrained to lie along predefined
paths, such as circular arcs.

Grids

Another kind of constraint is a grid of rectangular lines displayed in some part of
the screen area. When a grid is used, any input coordinate position is rounded to
the nearest intersecton of two grid lines. Figure 8-8 illustrates line drawing with a
grid. Each of the two cursor positions is shifted to the nearest grid intersection
point, and the line is drawn between these grid points. Grids facilitate object con-
structions, because a new line can be joined easily to a previously drawn line by
selecting any position near the endpoint grid intersection of one end of the dis-
played lire. :

Section 8-5

interactive Picture-Construction
Techniques

Select First Endpoint
Position Near a
Grid Intersection

Select a Position
Near a Second
Grid Intersection

Figure 8-8
Line drawing using a grid.

289

Chapter 8

Graphical User Interfaces and
Interactive Input Methods

Figure 8-9

Gravity field around a line.
Any selected point in the
shaded area is shifted to a
position on the line.

290

Spacing between grid lines is often an option that can be set by the user.
Similarly, grids can be turned on and off, and it is sometimes possible to use par-
tial grids and grids of different sizes in different screen areas.

Gravity Field

In the construction of figures, we sometimes need to connect lines at positions be-
tween endpoints. Since exact positioning of the screen cursor at the connecting
point can be difficult, graphics packages can be designed to convert any input
position near a line to a position on the line.

This conversion of input position is accomplished by creating a gravity field
area around the line. Any selected position within the gravity field of a line is
moved (“gravitated”) to the nearest position on the line. A gravity field area
around a line is illustrated with the shaded boundary shown in Fig. 8-9. Areas
around the endpoints are enlarged to make it easier for us to connect lines at
their endpoints. Selected positions in one of the circular areas of the gravity field
are attracted to the endpoint in that area. The size of gravity fields is chosen large
enough to aid positioning, but small enough to reduce chances of overlap with
other lines. If many lines are displayed, gravity areas can overlap, and it may be
difficult to specify points correctly. Normally, the boundary for the gravity field is
not displayed.

Rubber-Band Methads

Straight lines can be comstructed and positioned using rubber-band methods,
which stretch out a line from a starting position as the screen cursor is moved.
Figure 8-10 demonstrates the rubber-band method. We first select a screen posi-
tion for one endpoint of the line. Then, as the cursor moves around, the line is
displayed from the start position to the current position of the cursor. When we
finally select a second screen position, the other line endpoint 1s set.

Rubber-band methods are used to construct and position other objects be-
sides straight lines. Figure 8-11 demonstrates rubber-band construction of a rec-
tangle, and Fig. 8-12 shows a rubber-band circle construction.

—

. L —
L__//

Select As the Cursor Line Follows
First Moves, A Line Cursor Position
Line Stretches out until the Second
Endpoint from the Initiai Endpoint Is
Point Selected
Figure 8-10
Rubber-band method for drawing and positioning a straight line

segment.

)

Select Rectangle Select Final
Position Stretches Out Position for
for One Corner As Cursor Moves Opposite Corner

of the Rectangle

of the Rectangle

Figure 8-11
Rubber-band method for constructing a rectangle.

Dragging

A technique that is often used in interactive picture construction is to move ob-
jects into position by dragging them with the screen cursor. We first select an ob-
ject, then move the cursor in the direction we want the object to move, and the se-
lected object follows the cursor path. Dragging objects to various positions in a
scene is useful in applications where we might want to explore different possibil-
ities before selecting a final location.

Painting and Drawing

Options for sketching, drawing, and painting come in a variety of forms. Straight
lines, polygons, and circles can be generated with methods discussed in the pre-
vious sections. Curve-drawing options can be provided using standard curve
shapes, such as circular arcs and splines, or with freehand sketching procedures.
Splines are interactively constructed by specifying a set of discrete screen points
that give the general shape of the curve. Then the system fits the set of points
with a polynomial curve. In freehand drawing, curves are generated by follow-
ing the path of a stylus on a graphics tablet or the path of the screen cursor on a
video monitor. Once a curve is displayed, the designer can alter the curve shape
by adjusting the positions of selected points along the curve path.

e

Select Position Circle Stretches Select the
for the Circle Out as the Final Radius
Center Cursor Moves of the Circle
Figure 8-12

Constructing a circle using a rubber-band method.

291

Chapter 8

Graphical User Interfaces and

292

Interactive Input Methods

Figure 8-13

A screen layout showing one type
of interface to an artist’s painting
package. (Courtesy of Thomson Digital
Image.)

Line widths, line styles, and other attribute options are also commonly
found in-painting and drawing packages. These options are implemented with
the methods discussed in Chapter 4. Various brush styles, brush patterns, color
combinations, object shapes, and surface-texture patterns are also available on
many systems, particularly those designed as artist’s wurkstations. Some paint
systems vary the line width and brush strokes according to the pressure of the
artist’s hand .on the stylus. Figure 8-13 shows a window and menu system used
with a painting package that allows an artist to select variations of a specified ob-
ject shape, different surface textures, and a variety of lighting conditions for a
scene,

8-6
VIRTUAL-REALITY ENVIRONMENTS

A typical virtual-reality environment is illustrated in Fig. 8-14. Interactive input
is accomplished in this environment with a data glove (Section 2-5), which is ca-
pable of grasping and moving objects displayed in a virtual scene. The computer-
generated scene is displayed through a head-mounted viewing system (Section
2-1) as a stereoscopic projection. Tracking devices compute the position and ori-
entation of the headset and data glove relative to the object positions in the scene.
With this system, a user can move through the scene and rearrange object posi-
tions with the data glove.

Another method for generating virtual scenes is to display stereoscopic pro-
jections on a raster monitor, with the two stereoscopic views displayed on alter-
nate refresh cycles. The scene is then viewed through stereoscopic glasses. Inter-
active object manipulations can again be accomplished with a data glove and a
tracking device to monitor the glove position and orientation relative to the posi-
tion of objects in the scene.

Figure 8-14

Using a head-tracking stereo
display, called the BOOM (Fake
Space Labs, Inc.), and a Dataglove
(VPL, Inc.), a researcher
interactively manipulates
exploratory probes in the unsteady
flow around a Harrier jet airplane.
Software developed by Steve
Bryson; data from Harrier. (Courtesy
of Sam Uselton, NASA Ames Research
Center)

SUMMARY

A dialogue for an applications package can be designed from the user’s model,
which describes the functions of the applications package. All elements of the di-
alogue are presented in the language of the applications. Examples are electrical
and architectural design packages.

Graphical interfaces are typically designed using windows and icons. A
window system provides a window-manager interface with menus and icons
that allows users to open, close, reposition, and resize windows. The window
system then contains routines to carry out these operations, as well as the various
graphics operations. General window systems are designed to support multiple
window managers. Icons are graphical symbols that are designed for quick iden-
tification of application processes or control processes.

Considerations in user-dialogue design are ease of use, clarity, and flexibil-
ity. Specifically, graphical interfaces are designed to maintain consistency in user
interaction and to provide for different user skill levels. In addition, interfaces are
designed to minimize user memorization, to provide sufficient feedback, and to
provide adequate backup and error-handling capabilities.

Input to graphics programs can come from many different hardware de-
vices, with more than one device providing the same general class of input data.
Graphics input functions can be designed to be independent of the particular
input hardware in use, by adopting a logical classification for input devices. That
is, devices are classified according to the type of graphics input, rather than a

Summary

293

Chapter 8

o]

4

Graphecal Liser interfaces and
Interaztive Input Methods

hardware designation, such as mouse or tablet. The six logical devices in com-
mon use are locator, stroke, string, valuator, choice, and pick. Locator devices are
any devices used by a program to input a single coordinate position. Stroke de-
vices input a stream of coordinates. String devices are used to input text. Valuator
devices are any input devices used to enter a scalar value. Choice devices enter
menu selections. And pick devices input a structure name.

Input functions available in a graphics package can be defined in three
input modes. Request mode places input under the control of the application
program. Sample mode allows the input devices and program to operate concur-
rently. Event mode allows input devices to initiate data entry and control pro-
cessing of data. Once a mode has been chosen for a logical device class and the
particular physical device to be used to enter this class of data, input functions in
the program are used to enter data values into the program. An application pro-
gram can make simultaneous use of several physical input devices operating in
different modes.

Interactive picture-construction methods are commonly used in a variety of
applications, including design and painting packages. These methods provide
users with the capability to position objects, to constrain figures to predefined
orientations or alignments, to sketch figures, and to drag objects around the
screen. Grids, gravity fields, and rubber-band methods are used to aid in posi-
tioning and other picture-construction operations.

REFERENCES

Guidelines for user-intertace design are presented in Apple (1987, Bleser (1988, Digital
(1989), and OSF-MOTHF 1989). For information on the X \Window Svstem, see Young
(1990 and Cutler Gilly, and Reilly (1992). Additional discussions of interface design can
be found in Philhips (19771, Goodman and Spence (1978), Lodding 1983), Swezey and
Davis (1983), Carroll and Carrithers (1984), Foley, Wallace, and Chan :11984), and Good et
al. (1984).

The evolution of the concept of logical (or virtuah input devices is discussed in Wallace
(1976) and in Rosenthal et al. (1982). An early discussion of input-device classifications is
to be found in Newman (1968).

Input operations in PHIGS can be found in Hopgood and Duce (1991}, Howard et al.
(1991}, Gaskins (1992), and Blake (1993). For information on GKS input functions, see
Hopgood et al. (1983} and Enderle, Kansy, and Pfafi {1984),

EXERCISES

8-1. Select sume graphics application with which you are farmliar and set up a user model
that will serve as the basis for the design of a user interface tor graphics applications in
that area.

8-2. List possible help facilites that can be provided in a user interface and discuss which
types of help would be appropriate for different fevels ¢f users.

8-3. Summarize the possibiz ways of handling backup and errors. State which approaches
are more suitable for the beginner and which are better suited to the experienced user.

8-4. List the possible formats for presenting menus to a user ard explain under what cir-
cumstances each might be appropriate.

8-5. Discuss alternatives ‘or feedback in terms of the various levels of users.

8-6. List the tunctions that must be performed by a window manager in handling screen
layouts with multiple overbapping windows.

8-7.
3-8.
8-9.

8-10.

8-12.

8-17.

8-18.

8-24.

8-25.
8-26.

8-27.

Set up a design for a window-manager package.
Design a user interface for a painting program.
Design a user interface for a two-level hierarchical modeling package.

For any area with which you are familiar, design a complete user interface to a graph-
ics package providing capabilities to any users in that area.

. Develop a program that allows objects to be positioned on the screen using a locator

device. An object menu of geometric shapes is 10 be presented to a user who is to se-
lect an object and a placement position. The program should allow any number of ob-
jecls to be positioned until a “terminate” signal is given.

Extend the program of the previous exercise so that selected objects can be scaled and
rotated before positioning. The transformation chcices and transformation parameters
are 1o be presented to the user as menu options.

Write a program that allows a user 1o interactively sketch pictures using a stroke de-
vice.

. Discuss the methods that could be employed in a pattern-recognition procedure to

match input characters against a stored library of shapes.

. Write a routine that displays a linear scale and a slider on the screen and allows nu-

meric values to be selected by positioning the slider along the scale line. The number
value selected is to be echoed in a box displayed near the linear scale.

. Write a routine that displays a circular scale and a pointer or a slider that can be

moved around the circle 1o select angles (in degrees). The angular value selected is to
be echoed in a box displayed near the circular scale.

Write a drawing program that allows users to create a picture as a set of line segments
drawn between specified endpoints. The coordinates of the individual line segments
are 10 be selected with a locator device.

Write a drawing package that allows pictures to be created with straight line segments
drawn between specified endpoints. Set up a gravity field around each line in a pic-
lure, as an aid in connecting new lines to existing lines.

. Modify the drawing package in the previous exercise that allows lines to be con-

strained horizontally or vertically.

. Develop a drawing package that can display an optional grid pattern so that selected

screen positions are rounded to grid intersections. The package is to provide line-
drawing capabilities, with line endpoints selected with a locator device.

.
. Write a routine that allows a designer to create a picture by sketching straight lines

with a rubber-band method.

. Write a drawing package that allows straight lines, rectangles, and circles to be con-

structed with rubber-band methods.

. Write a program that allows a user to design a picture from a menu of basic shapes by

dragging each selected shape into position with a pick device.
Design an implementation of the input functions for request mode.
Design an implementation of the sample-mode input functions.
Design an implementation of the input functions for event mode.

Set up a general implementation of the input functions for request, sample, and event
modes.

Fxercises

295

29¢

W hen we model and display a three-dimensional scene, there are many

more considerations we must take into account besides just including
coordinate values for the third dimension. Object boundaries can be constructed
with various combinations of plane and curved surfaces, and we sometimes need
to specify information about object interiors. Graphics packages often provide
routines for displaying internal components or cross-sectional views of solid ob-
jects. Also, some geometric transformations are more involved in three-dimen-
sional space than in two dimensions. For example, we can rotate an object about
an axis with any spatial orientation in three-dimensional space. Two-dimensional
rotations, on the other hand, are always around an axis that is perpendicular to
the xy plane. Viewing transformations in three dimensions are much more com-
plicated because we have many more parameters to select when specifving how
a three-dimensional scene is to be mapped to a display device. The scene descrip-
tion must be processed through viewing-coordinate transformations and projec-
tion routines that transform three-dimensional viewing coordinates onto two-di-
mensional device coordinates. Visible parts of a scene, for a selected view, must
be identified; and surface-rendering algorithms must be applied if a realistic ren-
dering of the scene is required.

9-1
THREF-DIMENSIONAL DISPLAY METHODS

To obtain a display of a three-dimensional scene that has been modeled in world
coordinates, we must first set up a coordinate reference for the “camera”. This co-
ordinate reference defines the position and vrientation for the plane of the cam-
era fitm (Fig. 9-1), which is the plane we want to use to display a view of the ob-
jects in the scene. Object descriptions are then transferred to the camera reference
coordinates and projected onto the sclected displav plane. We can then display

L £ Display

N |

Plane Py 94
|

[N Coordinate refererce for obtamming,
qf] A particular view of a
e

three-dimensional scene.

!
(N o

297

Chapter 9 the objects in wireframe (outline) form, as in Fig. 9-2, or we can apply lighting
Three-Dimensional Concepts and surface-rendering techniques to shade the visible surfaces.

Parallel Projection

One method for generating a view of a solid object is to project points on the ob-
ject surface along parallel lines onto the display plane. By selecting different
viewing positions, we can project visible points on the object onto the display
plane to obtain different two-dimensional views of the object, as in Fig. 9-3. In a
parallel projection, parallel lines in the world-coordinate scene project into parallel
lines on the two-dimensional display plane. This technique is used in engineer-
ing and architectural drawings to represent an object with a set of views that
maintain relative proportions of the object. The appearance of the solid object can
then be reconstructured from the major views.

Figure 9-2

Wireframe display of three objects,
with back lines removed, from a
commercial database of object
shapes. Each object in the database
is defined as a grid of coordinate
points, which can then be viewed in
wireframe form or in a surface-
rendered form. (Courtesy of Viewpoint
DataLabs.)

Figure 9-3
Three parallel-projection views of an object, showing relative
proportions from different viewing positions.
298

Perspective Projection

Another method for generating a view of a three-dimensional scene is to project
points to the display plane along converging paths. This causes objects farther
from the viewing position to be displayed smaller than objects of the same size
that are nearer to the viewing position. In a perspective projection, parallel lines in
a scene that are not parallel to the display plane are projected into converging
lines. Scenes displayed using perspective projections appear more realistic, since
this is the way that our eyes and a camera lens form images. In the perspective-
projection view shown in Fig. 94, parallel lines appear to converge to a distant
point in the background, and distant objects appear smaller than objects closer to
the viewing position.

Depth Cueing

With few exceptions, depth information is important so that we can easily iden-
tify, for a particular viewing direction, which is the front and which is the back of
displayed objects. Figure 9-5 illustrates the ambiguity that can result when a
wireframe object is displayed without depth information. There are several ways
in which we can include depth information in the two-dimensional representa-
tion of solid objects.

A simple method for indicating depth with wireframe displays is to vary
the intensity of objects according to their distance from the viewing position. Fig-
ure 9-6 shows a wireframe object displayed with depth cueing. The lines closest to

Section 9-1

Three-Dimensional Display
Methods

Figure 9-4
A perspective-projection view of an airport scene. (Courtesy of Evans & Sutherland.)

299

(a}

{b)

(c)

Figure 9-5

The wireframe

representation of the pyramid
in (a) contains no depth
information to indicate
whether the viewing
direction is (b) downward
from a position above the
apex or (c) upward from a
position below the base.

Figure 9-6

A wireframe object displayed
with depth cueing, so that the
intensity of lines decreases
from the front to the back of
the object.

300

the viewing position are displayed with the highest intensities, and lines farther
away are displayed with decreasing intensities. Depth cueing is applied by
choosing maximum and minimum intensity (or color) values and a range of dis-
tances over which the intensities are to vary.

Another application of depth cueing is modeling the effect of the atmos-
phere on the perceived intensity of objects. More distant objects appear dimmer
to us than nearer objects due to light scattering by dust particles, haze, and
smoke. Some atmospheric effects can change the perceived color of an object, and
we can model these effects with depth cueing.

Visible Line and Surface Identification

We can also clarify depth relationships in a wireframe display by identifying visi-
ble lines in some way. The simplest method is to highlight the visible lines or to
display them in a different color. Another technique, commonly used for engi-
neering drawings, is to display the nonvisible lines as dashed lines. Another ap-
proach is to simply remove the nonvisible lines, as in Figs. 9-5(b) and 9-5(c). But
removing the hidden lines also removes information about the shape of the back
surfaces of an object. These visible-line methods also identify the visible surfaces
of objects.

When objects are to be displayed with color or shaded surfaces, we apply
surface-rendering procedures to the visible surfaces so that the hidden surfaces
are obscured. Some visible-surface algorithms establish visibility pixel by pixel
across the viewing plane; other algorithims determine visibility for object surfaces
as a whole.

Surface Rendering

Added realism is attained in displays by setting the surface intensity of objects
according to the lighting conditions in the scene and according to assigned sur-
face characteristics. Lighting specifications include the intensity and positions of
light sources and the general background illumination required for a scene. Sur-
face properties of objects include degree of transparency and how rough or
smooth the surfaces are to be. Procedures can then be applied to generate the cor-
rect illumination and shadow regions for the scene. In Fig. 9-7, surface-rendering
methods are combined with perspective and visible-surface identification to gen-
erate a degree of realism in a displayed scene.

Exploded and Cutaway Views

Many graphics packages allow objects to be defined as hierarchical structures, so
that internal details can be stored. Exploded and cutaway views of such objects
can then be used to show the internal structure and relationship of the object
parts. Figure 9-8 shows several kinds of exploded displays for a mechanical de-
sign. An alternative to exploding an object into its component parts is the cut-
away view (Fig. 9-9), which removes part of the visible surfaces to show internal
structure.

Three-Dimensional and Stereoscopic Views

Another method for adding a sense of realism to a computer-generated scene is
to display objects using either three-dimensional or stereoscopic views. As we
have seen in Chapter 2, three-dimensional views can be obtained by reflecting a

Section 9-1

Three-Dimensional Display
Methods

Figure 9-7

. A realistic room display achieved
with stochastic ray-tracing
methods that apply a perspective
projection, surface-texture
mapping, and illumination models.
(Courtesy of John Snyder, Jed Lengyel,
Devendra Kalra, and Al Barr, California

Institute of Technology. Copyright © 1992
Caltech.)

ligure 9-8

A fully rendered and assembled turbine display (a) can also be viewed
as (b) an exploded wireframe display, (c} a surface-rendered exploded
display, or (d) a surface-rendered, color-coded exploded display.
(Courtesy of Autodesk, Inc.)

raster image from a vibrating flexible mirror. The vibrations of the mirror are syn-
chronized with the display of the scene on the CRT. As the mirror vibrates, the
focal length varies so that each point in the scene is projected to a position corre-
sponding to its depth.

Stereoscopic devices present two views of a scene: one for the left eye and
the other for the right eye. The two views are generated by selecting viewing po-
sitions that correspond to the two eye positions of a single viewer. These two
views then can be displayed on alternate refresh cycles of a raster monitor, and
viewed through glasses that alternately darken first one lens then the other in
synchronization with the monitor refresh cycles.

301

Chapter 9

302

Three-Dimensional Concepts

Figure 9-9

Color-coded cutaway view of a lawn mower engine showing the
structure and relationship of internal components. (Courtesy of
Autodesk, Inc.)

9-2
THREE-DIMENSIONAL GRAPHICS PACKAGES

Design of three-dimensional packages requires some considerations that are not
necessary with two-dimensional packages. A significant difference between the
two packages is that a three-dimensional package must include methods for
mapping scene descriptions onto a flat viewing surface. We need to consider im-
plementation procedures for selecting different views and for using different pro-
jection techniques. We also need to consider how surfaces of solid objects are to
be modeled, how visible surfaces can be identified, how transformations of ob-
jects are performed in space, and how to describe the additional spatial proper-
ties introduced by three dimensions. Later chapters explore each of these consid-
erations in detail.

Other considerations for three-dimensional packages are straightforward
extensions from two-dimensional methods. World-coordinate descriptions are
extended to three dimensions, and users are provided with output and input rou-
tines accessed with specifications such as

polyline3 (n, wcPoints)

fillarea3 (n, wcPoints)

text3 (wcPoint, string)

getLocator3 (wcPoint)
translate3{translateVector, matrixTranslate)

where points and vectors are specified with three components, and transforma-
tion matrices have four rows and four columns.

Two-dimensional attribute functions that are independent of geometric con-
siderations can be applied in both two-dimensional and three-dimensional appli-
cations. No new attribute functions need be defined for colors, line styles, marker

Figure 9-10
Pipeline for transforming a view of a world-coordinate scene to device coordinates.

attributes, or text fonts. Attribute procedures for orienting character strings, how-
ever, need to be extended to accommodate arbitrary spatial orientations. Text-at-
tribute routines associated with the up vector require expansion to include z-co-
ordinate data so that strings can be given any spatial orientation. Area-filling
routines, such as those for positioning the pattern reference point and for map-
ping patterns onto a fill area, need to be expanded to accommodate various ori-
entations of the fill-area plane and the pattern plane. Also, most of the two-di-
mensional structure operations discussed in earlier chapters can be carried over
to a three-dimensional package.

Figure 9-10 shows the general stages in a three-dimensional transformation
pipeline for displaying a world-coordinate scene. After object definitions have
been converted to viewing coordinates and projected to the display plane, scan-
conversion algorithms are applied to store the raster image.

303

‘ raphics scenes can contain many different kinds of objects: trees, flowers,

clouds, rocks, water, bricks, wood paneling, rubber, paper, marble, steel,
glass, plastic, and cloth, just to mention a few. So it is probably not too surprising
that there is no one method that we can use to describe objects that will include
all characteristics of these different materials. And to produce realistic displays of
scenes, we need to use representations that accurately model object characteris-
tics.

Polygon and quadric surfaces provide precise descriptions for simple Eu-
clidean objects such as polyhedrons and ellipsoids; spline surfaces and construc-
tion techniques are useful for designing aircraft wings, gears, and other engineer-
ing structures with curved surfaces; procedural methods, such as fractal
constructions and particle systems, allow us to give accurate representations for
clouds, clumps of grass, and other natural objects; physically based modeling
methods using systems of interacting forces can be used to describe the nonrigid
behavior of a piece of cloth or a glob of jello; octree encodings are used to repre-
sent internal features of objects, such as those obtained from medical CT images;
and isosurface displays, volume renderings, and other visualization techniques
are applied to three-dimensional discrete data sets to obtain visual representa-
tions of the data.

Representation schemes for solid objects are often divided into two broad
categories, although not all representations fall neatly into one or the other of
these two categories. Boundary representations (B-reps) describe a three-dimen-
sional object as a set of surfaces that separate the object interior from the environ-
ment. Typical examples of boundary representations are polygon facets and
spline patches. Space-partitioning representations are used to describe interior
properties, by partitioning the spatial region containing an object into a set of
small, nonoverlapping, contiguous solids (usually cubes). A common space-par-
titioning description for a three-dimensional object is an octree representation. In
this chapter, we consider the features of the various representation schemes and
how they are used in applications.

10-1
POLYGON SURFACES

The most commonly used boundary representation for a three-dimensional
graphics object is a set of surface polygons that enclose the object interior. Many
graphics systems store all object descriptions as sets of surface polygons. This
simplifies and speeds up the surface rendering and display of objects, since all
surfaces are described with linear equations. For this reason, polygon descrip-

305

Figure 10-1

Wireframe representation of a
cylinder with back (hidden)
lines removed.

306

tions are often referred to as “standard graphics objects.” In some cases, a polyg-
onal representation is the only one available, but many packages allow objects to
be described with other schemes, such as spline surfaces, that are then converted
to polygonal representations for processing.

A polygon representation for a polyhedron precisely defines the surface fea-
tures of the object. But for other objects, surfaces are tesselated (or tiled) to produce
the polygon-mesh approximation. In Fig. 10-1, the surface of a cylinder is repre-
sented as a polygon mesh. Such representations are common in design and solid-
modeling applications, since the wireframe outline can be displayed quickly to
give a general indication of the surface structure. Realistic renderings are pro-
duced by interpolating shading patterns across the polygon surfaces to eliminate
or reduce the presence of polygon edge boundaries. And the polygon-mesh ap-
proximation to a curved surface can be improved by dividing the surface into
smaller polygon facets.

Polygon Tables

We specify a polygon surtace with a set of vertex coordinates and associated at-
tribute parameters. As information for each polygon is input, the data are placed
into tables that are to be used in the subsequent processing, display, and manipu-
lation of the objects in a scene. Polygon data tables can be organized into two
groups: geometric tables and atiribute tables. Geometric data tables contain ver-
tex coordinates and parameters to identify the spatial orientation of the polygon
surfaces. Attribute information for an object includes parameters specifying the
degree of transparency of the object and its surface reflectivity and texture char-
acteristics.

A convenient organization for storing geometric data is to create three lists:
a vertex table, an edge table, and a polygon table. Coordinate values for each ver-
tex in the object are stored in the vertex table. The edge table contains pointers
back into the vertex table to identify the vertices for each polygon edge. And the
polygon table contains pointers back into the edge table to identify the edges for
each polygon. This scheme is illustrated in Fig. 10-2 for two adjacent polygons on
an object surface. In addition, individual objects and their component polygon
faces can be assigned object and facet identifiers for easy reference.

Listing the geometric data in three tables, as in Fig. 10-2, provides a conve-
nient reference to the individual components (vertices, edges, and polygons) of
each object. Also, the object can be displayed efficiently by using data from the
edge table to draw the component lines. An alternative arrangement is to use just
two tables: a vertex table and a polygon lable. But this scheme is less convenient,
and some edges could get drawn twice. Another possibility is to use only a poly-
gon table, but this duplicates coordinate information, since explicit coordinate
values are listed for each vertex in each polygon. Also edge information would
have to be reconstructed from the vertex listings in the polygon table.

We can add extra information to the data tables ot Fig. 10-2 for faster infor-
mation extraction. For instance, we could expand the edge table to include for-
ward pointers into the polygon table so that common edges between polygons
could be identified more rapidly (Fig. 10-3). This is particularly useful for the ren-
dering procedures that must vary surface shading smoothly across the edges
from one polygon to the next. Similarly, the vertex table could be expanded so
that vertices are cross-referenced to corresponding edges.

Additional geometric information that is usually stored in the data tables
includes the slope for each edge and the coordinate extents for each polygon. As
vertices are input, we can calculate edge slopes, and we can scan the coordinate

VS
v,

VERTEX TABLE EDGE TABLE POLYGON SURFACE
Vi X, ¥y, E,: V..V, S,: E.E,E
Vo X ¥ 2 E,: V, V, S, Ey E.EqEq
Vi Xuva 2y Ey: Vo ¥,
Vi Xg Yo 24 E,. VoV,
Ve! Xs: Ve 2y Eg: Vi Vg

Ey: Ve, V,

Figure 10-2
Geometric data table representation for two adjacent polygon
surfaces, formed with six edges and five vertices.

values to identify the minimum and maximum x, y, and z values for individual
polygons. Edge slopes and bounding-box information for the polygons are
needed in subsequent processing, for example, surface rendering. Coordinate ex-
tents are also used in some visible-surface determination algorithms.

Since the geometric data tables may contain extensive listings of vertices
and edges for complex objects, it is important that the data be checked for consis-
tency and completeness. When vertex, edge, and polygon definitions are speci-
fied, it is possible, particularly in interactive applications, that certain input er-
rors could be made that would distort the display of the object. The more
information included in the data tables, the easier it is to check for errors. There-
fore, error checking is easier when three data tables (vertex, edge, and polygon)
are used, since this scheme provides the most information. Some of the tests that
could be performed by a graphics package are (1) that every vertex is listed as an
endpoint for at least two edges, (2) that every edge is part of at least one polygon,
(3) that every polygon is closed, (4) that each polygon has at least one shared
edge, and (5) that if the edge table contains pointers to polygons, every edge ref-
erenced by a polygon pointer has a reciprocal pointer back to the polygon.

Plane Equations

To produce a display of a three-dimensional object, we must process the input
data representation for the object through several procedures. These processing
steps include transformation of the modeling and world-coordinate descriptions
to viewing coordinates, then to device coordinates; identification of visible sur-
faces; and the application of surface-rendering procedures. For some of these
processes, we need information about the spatial orientation of the individual

Section 10-1

Polygon Surfaces

E,: VvV, V.S,

Ey: V,, V.. S,

Ey: Vi3V, 5,8,

E,: V3, V. S,

Ey: V. Vs S,

Eg: Vo, V.S,
Figure 10-3

Edge table for the surfaces of
Fig. 10-2 expanded to include
pointers to the polygon table.

307

Chapter 10

Ihree-Dimensional Object
Representations

z

Figire 10-4
The vector N, normal to the
surtace of a plane desenbed
by the equation Ax + By +
Cz + =0, has Cartesian
components (A, B, ()

308

surface components ot the object. This information 1s Obtained from the vertex-
coordinate valucs and tne equations that describe the palygon planes.
The equation for a plane surface can be expressed n the form

Ar + By +Cz+ D=0 i
where (v, y, 2) is anv pomt on the plane, and the coetfictents A, B, C, and D are
constants describing the spatial properties of the plane. We can obtain the values
of A, B, C, and D by solving a set of three plane equations using the coordinatc
values for three noncollinear points in the plane. For this purpose, we can select
three successive polygon vertices, (x,, ¥,, 2)), (X5, ¥2, 25), and (x5, Y3, z3), and solve
the following set of simultaneous linear plane equations for the ratios A/D, B/D,
and C/D:

(A/D)x; - (B/Dy, + (C/D)zy = —1, L=

The solution tor this set of equations can be obtained in determinant form, using
Cramer's rule, as

oy, g x |
A= 1 y. 1z B=|x, 1 >
Vo = x| @
[P ERR!
Uy, 1 XY 4
C=lx y 1 D=-|x; v 2z
! yy] Xy U z;é

Expanding the determinants, we can write the calculations for the plane coeffi-
cients in the form

A= yzy = 2 F akz - 2)) () - zo)
B oozl — xg) + zp6x, = x) + ap{x -)

Ll
Cony: —) + x50y —) + sty =~ y)

D= —xilyazs — yaz) — 0ysz — iz — 50z — vz

As vertex values and other information are entered into the polygon data struc-
ture, values for A, B, C. and D are computed for each polygon and stored with
the other polygon data.

Orientation of a plane surface in space can be described with the normal
vector to the plane, as shown in Fig. 10-4. This surface normal vector has Carte-
sian components (A, B, C), where parameters A, B, and (are the plane coeffi-
cients calculated in Eqs. 10-4.

Since we are usuaily dealing with polygon surfaces that enclose an object
interior, we need to distinguish between the two sides of the surface. The side of
the plane that faces the object interior is called the “inside” face, and the visible
or outward side is the "outside” face. If polygon vertices are specified in a coun-
terclockwise direction when viewing the outer side of the plane in a right-handed
coordinate system, the direction of the normal vector will be from inside to out-
side. This is demonstrated for one plane of a unit cube in Fig. 10-5,

To determine the components of the normal vector for the shaued surface
shown in Fig. 10-5, we select three of the four vertices along the boundary of the
polygon. These points are selected in a counterclockwise direction as we view
from outside the cube toward the origin. Coordinates for these vertices, in the
order selected, can be used in Egs. 10-4 to obtain the plane coefficients: A = 1,
B =0,C =0, D = —1. Thus, the normal vector for this plane is in the direction of
the positive x axis.

The elements of the plane normal can also be obtained using a vector cross-
product calculation. We again select three vertex positions, V), V,, and V;, taken
in counterclockwise order when viewing the surface from outside to inside in a
right-handed Cartesian system. Forming two vectors, one from V; to V, and the
other from V, to V3, we calculate N as the vector cross product:

N=(V, - V) X (V,~ Vp (10-5)

This generates values for the plane parameters A, B, and C. We can then obtain
the value for parameter D by substituting these values and the coordinates for
one of the polygon vertices in plane equation 10-1 and solving for D. The plane
equation can be expressed in vector form using the normal N and the position P
of any point in the plane as

N-P=-D (10-6)

Plane equations are used also to identify the position of spatial points rela-
tive to the plane surfaces of an object. For any point (x, v, z) not on a plane with
parameters A, B, C, D, we have

Ax+By+Cz+D#0

We can identify the point as either inside or outside the plane surface according
to the sign (negative or positive) of Ax + By + Cz + D:

if Ax + By + Cz + D <0, the point (x, y, 2) is inside the surface
if Ax + By + Cz + D > 0, the point (x, y, 2) is outside the surface

These inequality tests are valid in a right-handed Cartesian system, provided the
plane parameters A, B, C, and D were calculated using vertices selected in a
counterclockwise order when viewing the surface in an outside-to-inside direc-
tion. For example, in Fig. 10-5, any point outside the shaded plane satisfies the in-
equality x ~ 1 >0, while any point inside the plane has an x-coordinate value
less than 1.

Polygon Meshes

Some graphics packages (for example, PHIGS) provide several polygon functions
for modeling objects. A single plane surface can be specified with a function such
as fillArea. But when object surfaces are to be tiled, it is more convenient to
specify the surface facets with a mesh function. One type of polygon mesh is the
triangle strip. This function produces n — 2 connected triangles, as shown in Fig.
10-6, given the coordinates for n vertices. Another similar function is the quadri-
lateral mesh, which generates a mesh of (n — 1) by (m — 1) quadrilaterals, given

Figure 10-5

The shaded polygon surface

of the unit cube has plane
equationx ~ 1 =0 and

normal vector N = (1,0, 0).

Figure 10-6

A triangle strip formed w
11 triangles connecting 13
vertices.

ith

309

=

Figure 10-7

A quadrilateral mesh
containing 12 quadrilaterals
constructed from a 5 by 4
input vertex array.

310

the coordinates for an n by m array of vertices. Figure 10-7 shows 20 vertices
forming a mesh of 12 quadrilaterals.

When polygons are specified with more than three vertices, it is possible
that the vertices may not all lie in one plane. This can be due to numerical errors
or errors in selecting coordinate positions for the vertices. One way to handle this
situation is simply to divide the polygons into triangles. Another approach that is
sometimes taken is to approximate the plane parameters A, B, and C. We can do
this with averaging methods or we can project the polygon onto the coordinate
planes. Using the projection method, we take A proportional to the area of the
polygon projection on the yz plane, B proportional to the projection area on the xz
plane, and C proportional to the projection area on the xy plane.

High-quality graphics systems typically model objects with polygon
meshes and set up a database of geomaetric and attribute information to facilitate
processing of the polygon facets. Fast hardware-implemented polygon renderers
are incorporated into such systems with the capability for displaying hundreds
of thousands to one million or more shaded polygons per second (usually trian-
gles), including the application of surface texture and special lighting effects.

10-2
CURVED LINES AND SURFACES

Displays of three-dimensional curved lines and surfaces can be generated from
an input set of mathematical functions defining the objects or from a set of user-
specified data points. When functions are specified, a package can project the
defining equations for a curve to the display plane and plot pixel positions along
the path of the projected function. For surfaces, a functional description is often
tesselated to produce a polygon-mesh approximation to the surface. Usually, this
is done with triangular polygon patches to ensure that all vertices of any polygon
are in one plane. Polygons specified with four or more vertices may not have all
vertices in a single plane. Examples of display surfaces generated from functional
descriptions include the quadrics and the superquadrics.

When a set of discrete coordinate points is used to specify an object shape, a
functional description is obtained that best fits the designated points according to
the constraints of the application. Spline representations are examples of this
class of curves and surfaces. These methods are commonly used to design new
object shapes, to digitize drawings, and to describe animation paths. Curve-fit-
ting methods are also used to display graphs of data values by fitting specified
curve functions to the discrete data set, using regression techniques such as the
least-squares method.

Curve and surface equations can be expressed in either a parametric or a
nonparametric form. Appendix A gives a summary and comparison of paramet-
ric and nonparametric equations. For computer graphics applications, parametric
representations are generally more convenient.

10-3
QUADRIC SURFACES

A frequently used class of objects are the quadric surfaces, which are described
with second-degree equations (quadratics). They include spheres, ellipsoids, tori,

paraboloids, and hyperboloids. Quadric surfaces, particularly spkeres and ellip-
soids, are common elements of graphics scenes, and they are often available in
graphics packages as primitives from which more complex objects can be con-
structed.

Sphere
In Cartesian coordinates, a spherical surface with radius r centered on the coordi-
nate origin is defined as the set of points (x, y, z) that satisfy the equation

Rryp+2=rp (10-7)

We can also describe the spherical surface in parametric form, using latitude and
longitude angles (Fig. 10-8):

X = rcos¢ cosb, —-w/2=¢=m/2
y =rcos¢sing, -r=0=<x (16-8)
z =rsing

The parametric representation in Eqs. 10-8 provides a symmetric range for
the angular parameters 6 and ¢. Alternatively, we could write the parametric
equations using standard spherical coordinates, where angle ¢ is specified as the
colatitude (Fig. 10-9). Then, ¢ is defined over the range 0 = ¢ < 7, and 6 is often
taken in the range 0 < ¢ =< 2. We could also set up the representation using pa-
rameters u and v defined over the range from 0 to 1 by substituting ¢ = #u and
6 =27,

Ellipsoid

An ellipsoidal surface can be described as an extension of a spherical surface,
where the radii in three mutually perpendicular directions can have different val-
ues (Fig. 10-10). The Cartesian representation for points over the surface of an el-
lipsoid centered on the origin is

BRORC

And a parametric representation for the ellipsoid in terms of the latitude angle ¢
and the longitude angle 6 in Fig. 10-8 is

(10-9

x =r.cos¢pcosé, ~-m/2< $p=<7/2

y =r1,cosdsind, Ty (10-10)

z=r,sin¢g
Torus

A torus is a doughnut-shaped object, as shown in Fig. 10-11. It can be generated
by rotating a circle or other conic about a specified axis. The Cartesian represen-

Section 10-3

Quadric Surfaces

Z axis

P=(xy1)

y axis

X axis

Figure 10-8

Parametric coordinate
position (r, 6, ¢) on the
surface of a sphere with
radius r.

X axis

Figure 10-9

Spherical coordinate
parameters (r, 6, ¢), using
colatitude for angie ¢.

Figure 10-10

An ellipsoid with radii r,, r,,
and r, centered on the k
coordinate origin.

3

312

Z axis
9 G ix v, 2)

¢

xy plane

Figure 10-11
A torus with a circular cross section
x axis centered on the coordinate origin.

tation for points over the surface of a torus can be written in the form

7 2|2 2
[,._ (i) +(l)] +(£) -1 10-11)
y ry r,
where r is any given offset value. Parametric representations for a torus are simi-
lar to those for an ellipse, except that angle ¢ extends over 360°. Using latitude

and longitude angles ¢ and 8, we can describe the torus surface as the set of
points that satisfy

x = r(r + cos ¢)cos 8, -rT<¢p<mw
y=rfr+cosdlsing, -m<é<m (10-12)
z=r.sing

10-4
SUPERQUADRICS

This class of objects is a generalization of the quadric representations. Super-
quadrics are formed by incorporating additional parameters into the quadric
equations to provide increased flexibility for adjusting object shapes. The number
of additional parameters used is equal to the dimension of the object: one para-
meter for curves and two parameters for surfaces.

Superellipse

We obtain a Cartesian representation for a superellipse from the corresponding
equation for an ellipse by allowirg the exponent on the x and y terms to be vari-

able. One way to do this is to write the Cartesian superellipse equation in the

form
2/ 2/
(f_) - (1) A (10-13)
I, r,

where parameter s can be assigned any real value. When s = 1, we get an ordi-
nary ellipse.
Corresponding parametric equations for the superellipse of Eq. 10-13 can be
expressed as
x = rycos*®, -—m<@=<7
(10-14
y = rysin’g

Figure 10-12 illustrates supercircle shapes that can be generated using various
values for parameters.

Superellipsoid

A Cartesian representation for a superellipsoid is obtained from the equation for
an ellipsoid by incorporating two exponent parameters:

2/ 2/55 T2/ 2/
[(i) "+(1) ”] '+(3) "o (10-15)
e 7 r,

For s, = s, = 1, we have an ordinary ellipsoid.
We can then write the corresponding parametric representation for the
superellipsoid of Eq. 10-15 as

X = r.cos1 ¢ cos26, -m/2sd=<m/2
y=rycos'l¢sin‘10, -m<0=nr (10-16)
=r,sin1

Figure 10-13 illustrates supersphere shapes that can be generated using various
values for parameters s, and s,. These and other superquadric shapes can be com-
bined to create more complex structures, such as furniture, threaded bolts, and
other hardware.

5 7.0- 15 20 25 30

Figure 10-12 .
Superellipses plotted with different values for parameter s and with

r=r,

Section 10-4

Superquadrics

313

Chapter 10

Three-Dimensional Object
Representations

083

Figure 10-14

Molecular bonding. As two
molecules move away from
each other, the surface shapes
stretch, snap, and finally
contract into spheres.

(a)

(oo

(b}

Figure 10-15
Blobby muscle shapes in a
human arm.

314

Figure 10-13
Superellipsoids plotted with different values for parameters

s and s, and withr, = r, =,

10-5
BLOBBY OBJECTS

Some objects do not maintain a fixed shape, but change their surface characteris-
tics in certain motions or when in proximity to other objects. Examples in this
class of objects include molecular structures, water droplets and other liquid ef-
fects, melting objects, and muscle shapes in the human body. These objects can be
described as exhibiting “blobbiness” and are often simply referred to as blobby
objects, since their shapes show a certain degree of fluidity.

A molecular shape, for example, can be described as spherical in isolation,
but this shape changes when the molecule approaches another molecule. This
distortion of the shape of the electron density cloud is due to the “bonding” that
occurs between the two molecules. Figure 10-14 illustrates the stretching, snap-
ping, and contracting effects on molecular shapes when two molecules move
apart. These characteristics cannot be adequately described simply with spherical
or elliptical shapes. Similarly, Fig. 10-15 shows muscle shapes in a human arm,
which exhibit similar characteristics. In this case, we want to model surface
shapes so that the total volume remains constant.

Several models have been developed for representing blobby objects as dis-
tribution functions over a region of space. One way to do this is to model objects
as combinations of Gaussian density functions, or “bumps” (Fig. 10-16). A sur-
face function is- then defined as

fxy2) =3 be®¥i-T=0 (10-17)
'

where rf = Vix§ + 12 +2{, parameter T is some specified threshold, and parame-
ters 2 and b are used to adjust the amount of blobbiness of the individual objects.
Negative values for parameter b can be used to produce dents instead of bumps.
Figure 10-17 illustrates the surface structure of a composite object modeled with
four Gaussian density functions. At the threshold level, numerical root-finding

techniques are used to locate the coordinate intersection values. The cross sec-
tions of the individual objects are then modeled as circles or ellipses. If two cross
sections aze near to each other, they are merged to form one blobby shape, as in
Figure 10-14, whose structure depends on the separation of the two objects.

Other methods for generating blobby objects use density functions that fall
off to 0 in a finite interval, rather than exponentially. The “metaball” model de-
scribes composite objects as combinations of quadratic density functions of the
form

b(1 ~-3r/d), i#0<r=d/3
fin) = gb(l - rid)?, ifd/3<r=d (10-18)
0, ifr>d
And the “soft object” model uses the function
fry = —%:+%Z—T—;£, fo<r=d 1019
0, ifr>d

Some design and painting packages now provide blobby function modeling
for handling applications that cannot be adequately modeled with polygon or
spline functions alone. Figure 10-18 shows a user interface for a blobby object
modeler using metaballs. '

10-6
SPLINE REPRESENTATIONS

In drafting terminology, a spline is a flexible strip used to produce a smooth
curve through a designated set of points. Several small weights are distributed
along the length of the strip to hold it in position on the drafting table as the
curve is drawn. The term spline curve originally referred to a curve drawn in this
manner. We can mathematically describe such a curve with a piecewise cubic

Figure 10-18

A screen layout, used in the Blob
Modeler and the Blob Animator
packages, for modeling objects with
metaballs. (Courtesy of Thornson Digital
Irmage.)

Section 10-6
Spline Representations

b

-5 0| a
Figure 10-16
A three-dimensional

Gaussian bump centered at
position 0, with height b and
standard deviation a.

Figure 10-17

A composite blobby object
formed with four Gaussian
bumps.

315

Chapter 10

Three-Dimensional Object
Representations

Figure 10-19

A set of six control points
interpolated with piecewise
continuous polvnomial
sections.

./’—'\./'

Figure 10-20
A set of six control points
approximated with piecewise
continuous polynomial
sections

316

polynomial function whose first and second derivatives are continuous across
the various curve sections. In computer graphics, the term spline curve now
refers to any composite curve formed with polynomial sections satisfying speci-
fied continuity conditions at the boundary of the pieces. A spline surface can be
described with two sets of orthogonal spline curves. There are several different
kinds of spline specifications that are used in graphics applications. Each individ-
ual specification simply refers to a particular type of polynomial with certain
specified boundary conditions.

Splines are used .n graphics applications to design curve a.d surface
shapes, to digitize drawings for computer storage, ard to specify animation
paths for the objects o1 the camera in a scene. Typical CAD applications for
splines include the desizn of automobile bodies, aircraft and spacecraft surfaces,
and ship hulls.

Interpolation and Approsimation Splines

We specify a spline curve by giving a set of coordinate positions, called control
points, which indicates the general shape of the curve. These control points are
then fitted with piecewise continuous parametric polynemial functions in one of
two ways. When polynomial sections are fitted so that the curve passes through
each control point, as in Fig. 10-19, the resulting curve is said to interpolate the
set of control points. On the other hand, when the polvnomials are fitted to the
general control-point path without necessarily passing through any control point,
the resulting curve is said to approximate the set of control points (Fig. 10-20).

Interpolation curves are commonly used to digitize drawings or to specify
animation paths. Approximation curves are primarily used as design tools to
structure object surfaces. Figure 10-21 shows an approximation spline surface
created for a design application. Straight lines connect the control-point positions
above the surface.

A spline curve is defined, modified, and manipulated with operations on
the control points. By interactively selecting spatial positions for the control
points, a designer canset up an initial curve. After the polynomial fit is displayed
for a given set of control points, the designer can then reposition some or all of
the control points to restructure the shape of the curve. In addition, the curve can
be translated, rotated, or scaled with transformations applied to the control
points. CAD packages can also insert extra control points to aid a designer in ad-
justing the curve shapes.

The canvex polygon boundary that encloses a set of control points is called
the convex hull. One way to envision the shape of a convex hull is to imagine a
rubber band stretched around the positions of the contro! points so that each con-
trol point is either on the perimeter of the hull or inside it (Fig. 10-22). Convex
hulls provide a measure for the deviation of a curve or surface from the region
bounding the control points. Some splines are bounded by the convex hull, thus
ensuring that the polyncmials smoothly fellow the control points without erratic
oscillations. Also. the polvgon region inside the convex hull is useful in some al-
gorithms as a clipping region.

A polyline connecting the sequence of control points for an approximation
spline is usually displaved to remind a designer of the control-point ordering.
This set of connected line segments is often referred to as the control graph of the
curve. Other names for the series of straight-line sections connecting the control
points in the order specified are control polygon and characteristic polygon. Fig-
ure 10-23 shows the shape of the control graph for the control-point sequences in
Fig. 10-22.

Figure 10-21

An approximation spline surface for a CAD application

in automotive design. Surface contours are plotted with
polynomial curve sections, and the surface control points are
connected with straight-line segments. (Courtesy of Evans &
Sutherland.)

Parametric Continuity Conditions

To ensure a smooth transition from one section of a piecewise parametric curve
to the next, we can impose various continuity conditions at the connection
points. If each section of a spline is described with a set of parametric coordinate
functions of the form

x = x(u), y =y, z=2zu), U S uSu, (10-20)
Pz
A . P2
T
P 1
Pg “—’ Ps :
'
T 1
oy H
~. -~ 1
L |
S p,
{b)

Figure 10-22
Convex-hull shapes (dashed lines) for two sets of control
points.

Section 10-6

Spline Representations

317

Chapter 10

Three-Dimensional Object
Representations

(a)

ib)

TN

)

Frgure 10-24
Piecewise construction of a
curve by joining two curve
segments using different

orders of continuity: (a) zero-

order continuity only,
(b) first-order continuity,
and (c) second-order
continuity.

318

P;
R
[N
\
AN A"
{ N ,/)
Ps {
A Po\\Q)
| T |
P t Py Ny)
i ~~.)
N 1 . !
AN : ~é p,
\\ i
4 {b}
P
a)
Figure 10-23

Control-graph shapes (dashed lines) for two different sets of
control points.

we set parametric continuity by matching the parametric derivatives of adjoin-
ing curve sections at their common boundary.

Zero-order parametric continuity, described as C’ continuity, means simply
that the curves meet. That is, the values of x, y, and z evaluated at u, for the first
curve section are equal, respectively, to the values of x, y, and z evaluated at u,
for the next curve section. First-order parametric continuity, referred to as C!
continuity, means that the first parametric derivatives (tangent lines) of the coor-
dinate functions in Eq. 10-20 for two successive curve sections are equal at their
joining point. Second-order parametric continuity, or C? continuity, means that
both the first and second parametric derivatives of the two curve sections are the
same at the intersection. Higher-crder parametric continuity conditions are de-
fined similarly. Figure 10-24 shows examples of C?, C!, and 7 continuity.

With second-order continuity, the rates of change of the tangent vectors for
connecting sections are equal at their intersection. Thus, the tangent line fransi-
tions smoothly from one section of the curve to the next (Fig. 10-24(c)). But with
first-order continuity, the rates of change of the tangent vectors for the two sec-
tions can be quite different (Fig. 10-24(b)), so that the general shapes of the two
adjacent sections can change abruptly. First-order continuity is often sufficient for
digitizing drawings and some design applications, while second-order continuity
is useful for setting up animation paths for camera motion and for many preci-
sion CAD requirements. A camera traveling along the curve path in Fig. 10-24(b)
with equal steps in parameter u would experience an abrupt change in accelera-
tion at the boundary of the two sections, producing a discontinuity in the motion
sequence. But if the camera were traveling along the path in Fig. 10-24(c), the
frame sequence for the motion would smoothly transition across the boundary.

Geometric Continuity Conditions

An alternate method for joining two successive curve sections is to specify condi-
tions for geometric continuity. In this case, we only require parametric deriva-
tives of the two sections to be proportional te each other at their common bound-
ary instead of equal to each other.

Zero-order geometric continuity, described as G° continuity, is the same as
zero-order parametric continuity. That is, the two curves sections must have the

same coordinate position at the boundary point. First-order geometric continu-
ity, or G! continuity, means that the parametric first derivatives are proportional
at the intersection of two successive sections. If we denote the parametric posi-
tion on the curve as P(u), the direction of the tangent vector P'(x), but not neces-
sarily its magnitude, will be the same for two successive curve sections at their
joining point under G! continuity. Second-order geometric continuity, or G? con-
tinuity, means that both the first and second parametric derivatives of the two
curve sections are proportional at their boundary. Under G? continuity, curva-
tures of two curve sections will match at the joining position.

A curve generated with geometric continuity conditions is similar to one
generated with parametric continuity, but with slight differences in curve shape.
Figure 10-25 provides a comparison of geometric and parametric continuity. With
geometric continuity, the curve is pulled toward the section with the greater tan-
gent vector.

Spline Specifications

There are three equivalent methods for specifying a particular spline representa-
tion: (1) We can state the set of boundary conditions that are imposed on the
spline; or (2) we can state the matrix that characterizes the spline; or (3) we can
state the set of blending functions (or basis functions) that determine how spec-
ified geometric constraints on the curve are combined to calculate positions along
the curve path.

To illustrate these three equivalent specifications, suppose we have the fol-
lowing parametric cubic polynomial representation for the x coordinate along the
path of a spline section:

x(w)y =aud + bl +cu+d, 0=u=1 (10-21)

Boundary conditions for this curve might be set, for example, on the endpoint co-
ordinates x(0) and x(1) and on the parametric first derivatives at the endpoints
1'(0) and x’(1). These four boundary conditions are sufficient to determine the
values of the four coefficients a,, b, ¢, and d,.

From the boundary conditions, we can obtain the matrix that characterizes
this spline curve by first rewriting Eq. 10-21 as the matrix product

Po '¥/:/—\] Pq P2

C, v c, Py
(8) (b)

Figure 10-25
Three control points fitted with two curve sections joined with

(a) parametric continuity and (b) geometric continuity, where the
tangent vector of curve C; at point p, has a greater magnitude than the
tangent vector of curve C, at p,.

Section 10-6

Spline Representations

319

Chapter 10

320

Three-Dimensional Object
Representations

>

>

x(u) = W3’ ul)
(10-27)

oa o B
>

0

=U-C

where U is the row matrix of powers of parameter u, and C is the coefficient col-
umn matrix. Using Eq. 10-22, we can write the boundary conditions in matrix
form and solve for the coefficient matrix C as

C= Msplme ! Mgeom (10-23)

where M, is a four-element column matrix containing the geometric constraint
values (boundary conditions) on the spline, and M, is the 4-by-4 matrix that
transforms the geometric constraint values to the polynomial coefficients and
provides a characterization for the spline curve. Matrix M,,,, contains control-
point cocrdinate values and other geometric constraints that have been specified.
Thus, we can substitute the matrix representation for C into Eq. 10-22 to obtain

x(w) = U - Msplme ’ Mgeom (10-24)

The matrix, Mgy, characterizing a spline representation, sometimes called the
basis matrix, is particularly useful for transforming from one spline representation
to another.

Finally, we can expand Eq. 10-24 to obtain a polynomial representation for
coordinate x in terms of the geometric constraint parameters

3
() = Y g - BFw) (11-25)
k=0

where g, are the constraint parameters, such as the control-point coordinates and
slope of the curve at the control peints, and BF(u) are the polynomial blending
functions. In the following sections, we discuss some commonly used splines and
their matrix and blending-function specifications.

10-7
CUBIC SPLINE INTFRPOLATION METHODS

This class of splines is most often used to set up paths for object motions or to
provide a representation for an existing object or drawing, but interpolation
splines are also used sometimes to design object shapes. Cubic polynomials offer
a reasonable compromise between flexibility and speed of computation. Com-
pared to higher-order polynomials, cubic splines requ:re less calculations and
memory and they are more stable. Compared to lower-order polynomials, cubic
sphnes are more flexible for modeling arbitrary curve shapes.

Given a set of control points, cubic interpelation splines are obtained by fit-
ting the input points with a piecewise cubic polynomial curve that passes
through every control point. Suppose we have n + 1 control points specified with
coordinates

P = (x4), k=0,1,2,.. .n

A cubic interpolation fit of these points is illustrated in Fig, 10-26. We can de-
scribe the parametric cubic polynomial that is to be fitted between each pair of
control points with the following set of equations:

x(u) = au® + b + cu +d,
yl) =a i + bu? + cu + d, OD=u=l) (10-26)

zZw) =a,u® + byu? + cu +d,

For each of these three equations, we need to determine the values of the four co-
efficients a, b, ¢, and 4 in the polynomial representation for each of the n curve
sections between the n + 1 control points. We do this by setting enough bound-
ary conditions at the “joints” between curve sections so that we can obtain nu-
merical values for all the coefficients. In the following sections, we discuss com-
mon methods for setting the boundary conditions for cubic interpolation splines.

Natural Cubic Splines

One of the first spline curves to be developed for graphics applications is the nat-
ural cubic spline. This interpolation curve is a mathematical representation of
the original drafting spline. We formulate a natural cubic spline by requiring that
two adjacent curve sections have the same first and second parametric deriva-
tives at their common boundary. Thus, natural cubic splines have C? continuity.

If we have n + 1 control points to fit, as in Fig. 10-26, then we have n curve
sections with a total of 4n polynomial coefficients to be determined. At each of
the n — 1 interior control points, we have four boundary conditions: The two
curve sections on either side of a control point must have the same first and sec-
ond parametric derivatives at that control point, and each curve must pass
through that control point. This gives us 47 — 4 equations to be satisfied by the
4n polynomial coefficients. We get an additional equation from the first control
point p,, the position of the beginning of the curve, and another condition from
control point p,, which must be the last point on the curve. We still need two
more conditions to be able to determine values for all coefficients. One method
for obtaining the two additional conditions is to set the second derivatives at p,
and p, to 0. Another approach is to add two extra “dummy” control points, one
at each end of the original control-point sequence. That is, we add a control point
p-1and a control point p,,, Then all of the original control points are interior
points, and we have the necessary 4n boundary conditions.

Although natural cubic splines are a mathematical model for the drafting
spline, they have a major disadvantage. If the position of any one control point is
altered, the entire curve is affected. Thus, natural cubic splines allow for no “local
control”, so that we cannot restructure part of the curve without specifying an
entirely new set of control points.

Figure 10-26
A piecewise continuous cubic-spline interpolation of n + 1 control
.points.

Section 10-7

Cubic Spline Interpolation
Methods

321

Chapter 10

Three-Dimensional Object
Representations

Hermile Interpolation

A Hermite spline (named after the French mathematician Charles Hermite) is an
interpolating piecewise cubic polynomial with a specified tangent at each control
point. Unlike the natural cubic splines, Hermite splines can be adjusted locally
because each curve section is only dependent on its end point constraints.

If P(x) represents a parametric cubic point function for the curve section be-
tween control points p, and py.), as shown in Fig. 10-27, then the boundary con-
ditions that define this Hermite curve section are

P(O) =P

P = peey (10-27)
P'(0) = Dp,

P'(1) = Dp,.,

with Dp, and Dyp,,, specifying the values for the parametric derivatives (slope of
the curve) at control points p, and p, ,,, respectively.

We can write the vector equivalent of Eqs. 10-26 for this Hermite-curve sec-
tion as

Puo = aw’ + bu?+ cu + d, N=y=1l (10-28)

where the x component of P is x(u) = au® + bu? + ¢, - d,, and similarly for the
yand z components. The matrix equivalent ot Eq. 10-28 15

PG = [P u?u 1] - {(10-29)

o n o o

and the derivative of the point function can be expressed as

P(u) — (3u?2u10Q] - (10-3)

o n T o

Substituting endpoint values 0 and 1 for parameter « into the previous two equa-
tions, we can express the Hermite boundary conditions 10-27 in the matrix form:

P 0 0 0 1 a
Pio I R b G
Dp, 00 1 0 ¢
Dp,., 3 2 1 0 d

P.

h\.\ ——— S
\,P(m < (et yun, iy Ligure 10-27
Parametric point function P(u) fora
‘D ‘ Hermite curve section between
v control peints p, and p; . .

Solving this equation for the polynomial coefficients, we have

-1

P«
P+
Dp;
Dpy-,
2 -2 1 1 Px
-3 3 -2 -1) Pr+1
0 0 1 0 Dp;
1 0 0 0 Dp;.y

a n o
w o = O
N O =

— - O
e B o QS p—

(10-32)

Px+1
Dp,

Dpis

=My -

where My, the Hermite matrix, is the inverse of the boundary constraint matrix.
Equation 10-29 can thus be written in terms of the boundary conditions as

Px

P) = 1@ w2 u1] - M, - | P! (10-33)
Dp:

Dpx*l

Finally, we can determine expressions for the Hermite blending functions
by carrying out the matrix multiplications in Eq. 10-33 and collecting coefficients
for the boundary constraints to obtain the polynomial form:

Pw) = p2i® ~ 312 + 1) + ppy (2% + 3u?) ~ Dp(u® — 2u? + w)
+ Dpys(® — ud (10-34)
= ppHo(u) + pryy Hi(u) + Dp, Hy(w) + Dpy.y Hy)

The polynomials H(u) for k = 0, 1, 2, 3 are referred to as blending functions be-
cause they blend the boundary constraint values (endpoint coordinates and
slopes) to obtain each coordinate position along the curve. Figure 10-28 shows
the shape of the four Hermite blending functions.

Hermite polynomials can be useful for some digitizing applications where
it may not be too difficult to specify or approximate the curve slopes. But for
most problems in computer graphics, it is more useful to generate spline curves
without requiring input values for curve slopes or other geometric information,
in addition to control-point coordinates. Cardinal splines and Kochanek-Bartels
splines, discussed in the following two sections, are variations on the Hermite
splines that do not require input values for the curve derivatives at the control
points. Procedures for these splines compute parametric derivatives from the co-
ordinate positions of the control points.

Carclinal Splines

As with Hermite splines, cardinal splines are interpolating piecewise cubics with
specified endpoint tangents at the boundary of each curve section. The difference

Section 10-7

Cubic Spline Interpolation
Methods

323

Hyfw)

08
0.6
0.4

02

H,(u}

0.8
0.6
0.4

0.2

(=3
e
[N]
<
-~

Hy{w

0.8

0.6

0.4

0.2

la) {b)

Hy(u)

Figure 10-28

The Hermite blending functions.

Figure 10-29

Parametric point function
P(u) for a cardinal-spline
sectior: between control
points p, and p,, ;.

324

is that we do not have to give the values for the endpoint tangents. For a cardinal
spline, the value for the slope at a control point is calculated from the coordinates
of the two adjacent control points.

A cardinal spline section is completely specified with four consecutive con-
trol points. The middle two control points are the section endpoints, and the
other two points are used in the calculation of the endpoint slopes. If we take
P(u) as the representation for the parametric cubic point function for the curve
section between contral points p; and by, as in Fig. 10-29, then the four control
points from p,_, to p,.; are used to set the boundary conditions for the cardinal-
spline section as

P(0) = Pk
P(l) = Pr+1

(10-35)
P'(O) = ’%‘(1 - t)(pkn - pk--‘)

P(1) = $(1 = D(ps.2 = P
Thus, the slopes at control points p; and py., are taken to be proportional, respec-

tively, to the chords p,_\py,; and p; Pi+; (Fig. 10-30). Parameter ¢ is called the
tension parameter since it controls how loosely or tightly the cardinal spline fits

the input control points. Figure 10-31 illustrates the shape of a cardinal curve for
very small and very large values of tension t. When t = 0, this class of curves is
referred to as Catmuli-Rom splines, or Overhauser splines.

Using methods similar to those for Hermite splines, we can convert the
boundary conditions 10-35 into the matrix form

Pi-1

P = [Wuul] - Mq-| P (10-30)
Pr+i
P}+2

where the cardinal matrix is

-s 2-s s§-2 s
25 s$s-3 3-2 -—s

= 0-37)
M=l s o s 0 o3

withs = (1 ~ #)/2.
Expanding matrix equation 10-36 into polynomial form, we have

P(u) = pp-i(—su® + 25t —su) + pl(2 — shud + (s — 3)u? +1]
+ Pisil(s — D13+ (3 — 25)u? + sul+ praolsu® — su?) (10-38)
= Pi-1CAR(H) + PCAR (1) + PiriCAR, (1) + Py, 2CARS(U)
where the polynomials CAR(u) for k = 0, 1, 2, 3 are the cardinal blending func-

tions. Figure 10-32 gives a plot of the basis functions for cardinal splines with
t=0.

Kochanek-Bartels Splines

These interpolating cubic polynomials are extensions of the cardinal splines. Two
additional parameters are introduced into the constraint equations defining
Kochanek-Bartels splines to provide for further flexibility in adjusting the shape
of curve sections.

Given four consecutive control points, labeled pi_;, ps, Pi+1, and pyyp, we
define the boundary conditions for a Kochanek-Bartels curve section between p,
and py.as

PQ) = P«
P(1) = pi+s
P(0), = (1 = DI + BX(1 ~ Np, — Pry)

(10-39)
+ (1 = 51+ Hpgsq — p

P(1)y = 2(1 = DI + BA + Npesy — P

+ (1 = (1 = cNpgez — Pis)]

where t is the tension parameter, b is the bias parameter, and ¢ is the continuity
parameter. In the Kochanek-Bartels formulation, parametric derivatives may not
be continuous across section boundaries.

P
A\\P. -1

® ®
P, Py.2

Figure 10-30

Tangent vectors at the
endpoints of a cardinal-spline
section are proportional to
the chords formed with
neighboring control points
(dashed lines).

325

/.\ /‘\ Figure 10-31
Effect of the tension parameter on

t<0 >0 the shape of a cardinal spline
{Looser Curve) (Tighter Curve) section.

Tension parameter ¢ has the same interpretation as in the cardinal-spline
formulation; that is, it controls the looseness or tightness of the curve sections.
Bias (b) is used to adjust the amount that the curve bends at each end of a section,
so that curve sections can be skewed toward one end or the other (Fig. 10-33). Pa-
rameter ¢ controls the continuity of the tangent vector across the boundaries of
sections. If ¢ is assigned a nonzero value, there is a discontinuity in the slope of
the curve across section boundaries.

Kochanek-Bartel splines were designed to model animatien paths. In par-
ticular, abrupt changes in motion of a object can be simulated with nonzero val-
ues for parameter c.

CARy(u} CAR,(u)
1

0.8
0.6
0.4
0.2
u |11111111111111111|1111 u
1 0.2 0.4 0.6 1] 1
-0.2
(a) (b}
CAR,(w CARy v}
- 1~
08 08k
06f 06
0.4f 0.4f
02F 02f
G BN R R S R ST B S S S AN SRR | u _‘: € u
1] 0.2 0.4 0.6 08 1 r Ei %_ﬁ_ w 1

¢}

=

Figure 10-32

The cardinal blending functions for t = 0and s = 0.5.
326

P, Section 10-8
P

-]
/\ \/\ Bézier Curves and Surfaces
Po Jp‘ Py P Po , p’\\—/. Ps
b<0 >0

b

Figure 10-33
Effect of the bias parameter on the shape of a
Kochanek-Bartels spline section.

10-8
BEZIER CURVES AND SURFACES

This spline approximation method was developed by the French engineer Pierre
Bézier for use in the design of Renault automobile bodies. Bézier splines have a
number of properties that make them highly useful and convenient for curve and
surface design. They are also easy to implement. For these reasons, Bézier splines
are widely available in various CAD systems, in general graphics packages (such
as GL on Silicon Graphics systems), and in assorted drawing and painting pack-
ages (such as Aldus SuperPaint and Cricket Draw).

Bézier Curves

In general, a Bézier curve section can be fitted to any number of control points.
The number of control points to be approximated and their relative position de-
termine the degree of the Bézier polynomial. As with the interpolation splines, a
Bézier curve can be specified with boundary conditions, with a characterizing
matrix, or with blending functions. For general Bézier curves, the blending-func-
tion specification is the most convenient.

Suppose we are given n + 1 control-point positions: p, = (x, y,, z,), with k
varying from 0 to n. These coordinate points can be blended to produce the fol-
lowing position vector P(u), which describes the path of an approximating Bézier
polynomial function between pg and p,.

Pw) = pBEZ (W), O=u=1 (10-40)
k=0

The Bézier blending functions BEZ, ,{u) are the Bernstein polynomials:
BEZ, (w) = C(n, k)uk(1 — n)"* (104D

where the C(n, k) are the binomial coefficients:

nt
Cln, by = ki (10-42)

(n — k)

Equivalently, we can define Bézier blending functions with the recursive calcula-
tion

BEZ,) = (1 — w)BEZ,, () + uBEZ;_, (), n>k=1 (10-43)
327

Chaoter 10 with BEZ,, = u*, and BEZ,, = (1 — u)*. Vector equation 10-40 represents a set of

Three-Drmensional Object ~ three parametric equations for the individual curve coordinates:
Representations

x(W) = > x, BEZi (1)
k=0

y) = >y BEZ: (w) {0-44)
k=0

z(u) = D 2 BEZ, (1)
k=0

As a rule, a Bézier curve is a polynomial of degree cne less than the number
of control points used: Three points generate a parabola, four points a cubic
curve, and so forth. Figure 10-34 demonstrates the appearance of some Bezier
curves for various selections of control points in the xy plane (z = 0). With certain
control-point placements, however, we obtain degenerate Bézier polynomials.
For example, a Bézier curve generated with three collinear control points is a
straight-line segment. And a set of control points that are all at the same coordi-
nate position produces a Bézier “curve” that is a single point.

Bézier curves are commonly found in painting and drawing packages, as
well as CAD systems, since they are easy to implement and they are reasonably
powerful in curve design. Efficient methods for determining coordinate positions
along a Bézier curve can be set up using recursive calculations. For example, suc-
cessive binomial coefficients can be calculated as

Figure 10-34
Examples of two-dimensional Bézier curves generated from three, four,
and five control points. Dashed lines connect the control-point

328 positions.

—-k+1 Section 10-8
Cn, k) = %——C(n,k«l) (10-45) =

Bézier Curves and Surfaces

for n = k. The following example program illustrates a method for generating
Bézier curves.

— .. —

#include <math.h>
#include "graphics.h-

void computeCoefficients {(int n, int * c)
{

int k, 1i;

for (k=0; k<=n; k++) {
/* Compute n!/ (k! (n-k}!) */

clk] = 1;

for (i=n; i>=k+l; i--)
clk]l == i;

for (i=n-k; i>=2; i--}
clk] /= 1;

}

void computePoint
(float u, wcPt3 * pt, int nControls. wcPt2 * controls, int * ¢)
{

int k, n = nlontrols - 1;
I float blend; i

i pt->x = 0.0; pt->y = 0.0; pt->z = 0.0;

/* Add in influence of each control point */
: for (k=0D; k<nControls; k++} {
| blend = c[k] * powf {u,k) * powf {(l-u,n-k);
{ pt->x += controls{k).x * blend:
pt->y += controls{k].y * blend;
| pt->z += c¢ontrols(k].z * blend:

)

void bezier (wcPt3 * controls, int nControls, int m, wePt3d * curve)

{
/* Allocate space for the coefficients */
int * ¢ = {(int *) malloc¢ (nControls * sizeof (int));
int 1i;

computeCoefficients (nControls-1, ¢);
for (i=0; i<=m; i++)}

computePoint (i / (float) m, &curvel[i], nControls, controls, c¢);
free (c);

L)

Properties of Bézier Curves

A very useful property of a Bézier curve is that it always passes through the first
and last control points. That is, the boundary conditions at the two ends of the
curve are

PO =p
’ (11)-46)
B = py 329

Chapter 10

Three-Mhmensional Ohyect
Representations

P3

.

27

PR

- i

i

l

i

1

- \\ .

Pre i :
oo

7)

s .

e s]
p- Pg= P- P

Fryiere 10-35

A closed Bézier curve
generated by specifying the
first and last control points at
the same location

Py Pa

Figure 10-30

A Bezier curve can be made
Lo pass closer to a piven
coordinate position by
assigmng multiple control
pomts to that posttion

330

Values of the parametric first derivatives of a Bézier curve at the endpoints
can be calculated trom control-point coordinates as

P(0) = —npy+ n
Po ™ s (10-47)
P(l) = ~-np,., + np,

Thus, the slope at the beginning of the curve is along the line joining the first two
control points, and the slope at the end of the curve is along the line joining the
last two endpoints. Similarly, the parametric second derivatives of a Bézier curve
at the endpoints are calculated as

P7(0y = ntn — DIp> — p)) — (py — po)

(10-48)
P"(D = n(n = DEp..co = pu-t) = (Poe —

p,)l

Another important property of any Bézier curve is that it lies within the
convex hull (convex polvgon boundary) of the control points. This follows from
the properties of Bézier blending functions: They are all positive and their sum is
always 1,

N BEZ, (uh =1 {10-49)
}

k=t

so that any curve position is simply the weighted sum of the control-point posi-
tions. The convex-hull property for a Bézier curve ensures that the polynomial
smoothly follows the control points without erratic oscillations.

Design Techniques Usinz Beézier Curves

Closed Bézier curves are generated bv speafving the first and last control points
at the same position, as in the example shown in Fig. 10-35. Also, specifying mul-
tiple control points at a single coordinate position gives mwre weight to that posi-
tion. In Fig. 10-36, a singlc coordinate position is input as two control points, and
the resulting curve is pulled nearer to this position.

We can fit a Bézier curve to any number of control points, but this requires
the calculation of polynomial functions of higher degree. When complicated
curves are to be generated, they can be formed by piecing several Bézier sections
of lower degree together Piecing together smaller sections also gives us better
control over the shape of the curve in small regions. Since Bézier curves pass
through endpoints, it 15 easy to match curve sections (zero-order continuity).
Also, Bézier curves have the important property that the tangent to the curve at
an endpoint 15 along the line joining that endpoint to the adjacent control point.
Therefore, to obtain first-order continuity between curve sections, we can pick
control points p’y and p* of a new section to be along the same straight line as
control points p, ; and p, of the previous section (Fig. 10-37). When the two
curve sections have the same number of control points, we obtain C! continuity
by choosing the first cantrol point of the new section as the last control point of
the previous section and by positioning the second control point of the new sec-
tion at position

p-*(p.—p)

Figure 10-37

Piecewise approximation curve formed with two Bézier sections. Zero-
order and first-order continuity are attained between curve sections by
setting py = p; and by making points p;, p,, and pj collinear.

Thus, the three control points are collinear and equally spaced.

We obtain C? continuity between two Bézier sections by calculating the po-
sition of the third control point of a new section in terms of the positions of the
last three control points of the previous section as

Pn-2 + 4(Pn - pnfl)

Requiring second-order continuity of Bézier curve sections can be unnecessarily
restrictive. This is especially true with cubic curves, which have only four control
points per section. In this case, second-order continuity fixes the position of the
first three control points and leaves us only one point that we can use to adjust
the shape of the curve segment.

Cubic Bézier Curves

Many graphics packages provide only cubic spline functions. This gives reason-
able design flexibility while avoiding the increased calculations needed with
higher-order polynomials. Cubic Bézier curves are generated with four control
points. The four blending functions for cubic Bézier curves, obtained by substi-
tuting n = 3 into Eq. 10-41 are

BEZy5(u) = (1 — u)?

BEZ 5(u) = 3u(l — u)?

BEZ, 5(u) = 3u}(1 — w)

BEZ;3(u) = u®

(10-50)

Plots of the four cubic Bézier blending functions are given in Fig. 10-38. The
form of the blending functiens determine how the control points influence the
shape of the eurve for values of parameter u over the range from O to 1. Atu = (,

Section 10-8

Bézier Curves and Surfaces

331

332

BEZ, 4tu
1

BEZ, 4
1

0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
NN T U N T S0 U A S S B oy
0 0.2 0.4 0.6 0.8 1
(a)
BEZ, 5(u) BEZ, {u)
1 1
08 0.8
0.6 0.6
0.4 0.4
0.2 0.2
u bded T T 0 R SO0 S T W)
0 0.2 [¢X.) a6 0.8 1 [} 0.2 0.4 06 0.8 1
(c) {d)

Figure 10-38

The four Bézier blending functions for cubic curves (n = 3)

the only nonzero blending function is BEZ,,, which has the value 1. At u = 1, the
only nonzero function is BEZ; 3, with a value of 1 at that point. Thus, the cubic
Bézier curve will always pass through control points p,, and ps. The other func-
tions, BEZ,yand BEZ,-, influence the shape of the curve at intermediate values
of parameter u, so that the resulting curve tends toward points p, and p,. Blend-
ing function BEZ, ; is maximum at « = 1/3, and BEZ, , is maximum at « = 2/3.

We note in Fig. 10-38 that each of the four blending functions is nonzero
over the entire range of parameter «. Thus, Bézier curves do not allow for focal
control of the curve shape. If we decide to reposition any one of the control
points, the entire curve will be affected.

At the end positions of the cubic Bézier curve, the parametric first deriva-
tives (slopes) are

P(0) = Ap; - p). P'(1) = 3(p. - p2)
And the parametric second derivatives are
P(® = 6(p, - 2p, + p2). P(1) = 6(p, - 2p, 1 p3)

We can use these expressions for the parametric derivatives to construct piece-
wise curves with C' or (7 continuitv between sections.

By expanding the polynomial expressions for the blending functions, we
can write the cubic Bézier point function in the matrix form

Po
P
P(u) = [P u? u 1]-Mg,, - P (10-51)
Pa |
where the Bézier matrix is
-1 3 -3 1]
3 -6 3 0
Mg, = 10-52
Bez -3 3 00 ()
1 0 0 0_

We could also introduce additional parameters to allow adjustment of curve
“tension” and “bias”, as we did with the interpolating splines. But the more use-
ful B-splines, as well as B-splines, provide this capability.

Bézier Surfaces

Two sets of orthogonal Bézier curves can be used to design an object surface by
specifying by an input mesh of control points. The parametric vector function for
the Bézier surface is formed as the Cartesian product of Bézier blending func-
tions:

m n

Pu,v)= > > p,,BEZ,,(0)BEZ, (1)
1=0k=0

(10-33)

with p;; specifying the location of the (m + 1) by (n + 1) control points.

Figure 10-39 illustrates two Bézier surface plots. The control points are con-
nected by dashed lines, and the solid lines show curves of constant u and con-
stant v. Each curve of constant u is plotted by varying v over the interval from 0
to 1, with u fixed at one of the values in this unit interval. Curves of constant v
are plotted similarly.

Section 10-8

Bézier Curves and Surfaces

7/ -\ T~
/ 7 /*
s g
/
. ’ I A
\ Ny / -7 ‘
\ ~ - /
\ R S skl ‘ !
A /

1]

Figure 10-39

Bézier surfaces constructed tor (a) m = 3, n = 3, and (b) m = 4, n = 4. Dashed lines connect

the control points.

333

Chapter 10

334

Three-Dimensional Object
Representations

Boundary Line

Figure 10-40

A composite Bézier surface constructed with two Bézier sections,
joined at the indicated boundary line. The dashed lines connect
specified control points. First-order continuity is established by
making the ratio of length L, to length L, constant for each collinear
line of control points across the boundary between the surface
sections.

Bézier surfaces have the same properties as Bézier curves, and they provide
a convenient method for interactive design applications. For each surface patch,
we can select a mesh of control points in the xy “ground” plane, then we choose
elevations above the ground plane for the z-coordinate values of the control
points. Patches can then be pieced together using the boundary constraints.

Figure 10-40 illustrates a surface formed with two Bézier sections. As with
curves, a smooth transition from one section to the other is assured by establish-
ing both zero-order and first-order continuity at the boundary line. Zero-order
continuity is obtained by matching control points at the boundary. First-order
continuity is obtained by choosing control points aleng a straight line across the
boundary and by maintaining a constant ratio of collinear line segments for each
set of specified control points across section boundaries.

10-9
B-SPLINE CURVES AND SURFACES

These are the most widely used class of approximating splines. B-splines have
two advantages over Bézier splines: (1) the degree of a B-spline polynomial can
be set independently of the number of control points (with certain limitations),
and (2) B-splines allow local control over the shape of a spline curve or surface.
The trade-off is that B-splines are more complex than Bézier splines.

B-Spline Curves

We can write a general expression for the calculation of coordinate positions
along a B-spline curve in a blending-function formulation as

Pu) = > piBy(t), U SU=Up,. 2=d<n+1 (10-54)
k=0

where the p, are an input set of n + 1 control points. There are several differences
between this B-spline formulation and that for Bézier splines. The range of para-
meter u now depends on how we choose the B-spline parameters. And the B-
spline blending functions B, , are polynomials of degree d — 1, where parameter
d can be chosen to be any integer value in the range from 2 up to the number of
control points, n + 1. (Actually, we can also set the value of 4 at 1, but then our
“curve” is just a point plot of the control points.) Local control for B-splines is
achieved by defining the blending functions over subintervals of the total range
of u.

Blending functions for B-spline curves are defined by the Cox—deBoor re-
cursion formulas:

1, fu, = u <y,
B (u) =
i) 0, otherwise _
(10-5%)
u—u Upog— U
B, Ju) = — By g () + kel Byii,aa(u)
Upea-1 — Uy Upeq = Ugan

where each blending function is defined over d subintervals of the total range of
u. The selected set of subinterval endpoints u, is referred to as a knot vector. We
can choose any values for the subinterval endpoints satisfying the relation
U, = u,,,. Values for un,, and ug,, then depend on the number of control points
we select, the value we choose for parameter d, and how we set up the subinter-
vals (knot vector). Since it is possible to choose the elements of the knot vector so
that the denominators in the previous calculations can have a value of 0, this for-
mulation assumes that any terms evaluated as 0/0 are to be assigned the value 0.

Figure 10-41 demonstrates the local-control characteristics of B-splines. In
addition to local control, B-splines allow us to vary the number of control points
used to design a curve without changing the degree of the polynomial. Also, any
number of control points can be added or modified to manipulate curve shapes.
Similarly, we can increase the number of values in the knot vector to aid in curve
design. When we do this, however, we also need to add control points since the
size of the knot vector depends on parameter n.

B-spline curves have the following properties:

* The polynomial curve has degree d — 1 and C?°? continuity over the range
of u.

e For n + 1 control points, the curve is described with » + 1 blending func-
tions.

¢ Each blending function B, , is defined over d subintervals of the total range
of u, starting at knot value ;.

* The range of parameter u is divided into n + d subintervals by the n + d +
1 values specified in the knot vector.

Section 10-9

B-Spline Curves and Surfaces

335

Chapter 10

Three-Dimensional Object
Representations

Figure 10-41
Local modification of a B-spline curve. Changing one of the control points in (a) produces
curve (b), which is modified only in the neighborhood of the altered control point.

* With knot values labeled as {ug, 1), .. ., 1,4}, the resulting B-spline curve is
defined only in the interval from knot value u, - | up to knot value v, ..

® Each section of the spline curve (between two successive knot values) is in-
fluenced by d control points.

* Any one control point can affect the shape of at most d curve sections.

In addition, a B-spline curve lies within the convex hull of at most 4 + 1 control
points, so that B-splines are tightly bound to the input positions. For any value of
u in the interval from knot value u;_, to u,,,, the sum over all basis functions is 1:

n
> Bigw =1 (10-56)
k=0

Given the control-point positions and the value of parameter ¢, we then
need to specify the knot values to obtain the blending functions using the recur-
rence relations 10-55. There are three general classifications for knot vectors: uni-
form, open uniform, and nonuniform. B-splines are commonly described accord-
ing to the selected knot-vector class.

Uniform, Periodic B-Splines

When the spacing between knot values is constant, the resulting curve is called a
uniform B-spline. For example, we can set up a uniform knot vector as

{-15,-10,-05,0.0.05,10,15,20)
Often knot values are normalized to the range between 0 and 1, as in
10.0,0.2,04, 0.6,0.8, 1.0}
It is convenient in many applications to set up uniform knot values with a sepa-
ration of 1 and a starting value of 0. The following knot vector is an example of

this specification scheme.

10,1,2,3,4,5,6,7|
336

By slu) B, qlu)
1 1
0.8 0.8
0.6 0.6
0.4 04
0.2 02
I (A S B S B A G B i1 [BT S T u
0 1 3 4 5 6 0 1 2 3 4 5 6
{a) (b)
8,5l By3lu)
1 1
0.8 08
0.6 0.6
0.4 0.4
0.2 0.2
u U TR S T Y U T B O T S B (A G S U Ly
0 1 2 3 4 5 6] 5 6
(c) (d)
Figure 10-42

Periodic B-spline blending functions for n = d = 3 and a uniform, integer knot vector.

Uniform B-splines have periodic blending functions. That is, for given val-
ues of n and d, all blending functions have the same shape. Each successive
blending function is simply a shifted version of the previous function:

Bu(u) = Bk,lld(ll'i‘All) = Bk_u(u + 2 Au) (10'57)
where Au is the interval between adjacent knot values. Figure 10-42 shows the

quadratic, uniform B-spline blending functions generated in the following exam-
ple for a curve with four control points.

Example 10-1 Uniform, Quadratic B-Splines

To illustrate the calculation of B-spline blending functions for a uniform, integer
knot vector, we select parameter values d = 12 = 3. The knot vector must then
contain n + d + 1 = 7 knot values:

10,1,2,3,4,5,6)

and the range of parameter u is from 0 to 6, with n + 4 = 6 subintervals.

337

Chapter 10 Each of the four blending functions spans 4 = 3 subintervals of the total range of

338

Three-Dimensional Object ;. Using the recurrence relations 10-55, we obtain the first blending function as
Representations

%u’, for0=u<1
Bisw) = € Su - w+ -3 -w, fort=su<?
13 - w? for2=u<3

We obtain the next periodic blending function using relationship 10-57, substitut-
ing u — 1 for u in By, and shifting the starting positions up by 1:

T— 12, forl=u<2
By =€ 3G~ DG - u)+3u—2D4 -, for2=u<3
T4 - up?, for3=u<4

Similarly, the remaining two periodic functions are obtained by successively
shifting B ; to the right:

Tl - 27, for2=u<3
Bos) = 4 T - 2@ -+ -3G -1, for3=u<4
5 - w2 ford =su<s
%lu - 3), for3=u <4

Bas) = 4 Tl — G —w) + 50— 46—), ford=u<5

L;(b—u)z, forS5=u<6

A plot of the four periodic, quadratic blending functions is given in Fig. 10-42,
which demonstrates the local feature of B-splines. The first control point is multi-
plied by blending function By s(u). Therefore, changing the position of the first
control point only affects the shape of the curve up to « = 3. Similarly, the last
control point influences the shape of the spline curve in the interval where B; ; is
defined.

Figure 10-42 also illustrates the limits of the B-spline curve for this example. All
blending functions are present in the interval from u,; . | = 2tou,,; = 4. Below 2
and above 4, not all blending functions are present. This is the range of the poly-

P. P2

,’F- _‘\ Figure 10-43
Quadratic, pericdic B-spline fitted

J/ \ to four control points in the xy
¢ “p, plane.

nomial curve, and the interval in which Eq. 10-56 is valid. Thus, the sum of all
blending functions is 1 within this interval. Outside this interval, we cannot sum
all blending functions, since they are not all defined below 2 and above 4.

Since the range of the resulting polynomial curve is from 2 to 4, we can deter-
mine the starting and ending positions of the curve by evaluating the blending
functions at these points to obtain

Poan = '%;(PD + P, Peng = '%'(PZ + py)

Thus, the curve starts at the midposition between the first two control points and
ends at the mid position between the last two control points.

We can also determine the parametric derivatives at the starting and ending posi-
tions of the curve. Taking the derivatives of the blending functions and substitut-
ing the endpoint values for parameter u, we find that

Poan =P1 = Po. FPona =P3 P2

The parametric slope of the curve at the start position is parallel to the line join-
ing the first two control points, and the parametric slope at the end of the curve is
parallel to the line joining the last two control points.

An example plot of the quadratic periodic B-spline curve is given in Figure 10-43
for four control points selected in the xy plane.

In the preceding example, we noted that the quadratic curve starts between
the first two control points and ends at a position between the last two control
points. This result is valid for a quadratic, periodic B-spline fitted to any number
of distinct control points. In general, for higher-order polynomials, the start and
end positions are each weighted averages of d — 1 control points. We can pull a
spline curve closer to any control-point position by specifying that position mul-
tiple times.

General expressions for the boundary conditions for periodic B-splines can
oe obtained by reparameterizing the blending functions so that parameter u is
mapped onto the unit interval from 0 to 1. Beginning and ending conditions are
then obtained at u =Dand u = 1.

Cubic, Periodic B-Splines

Since cubic, periodic B-splines are commonly used in graphics packages, we con-
sider the formulation for this class of splines. Periodic splines are particularly
useful for generating certain closed curves. For example, the closed curve in Fig.
10-44 can be generated in sections by cyclically specitying four of the six control

339

Chapter 10

340

Three-Dimensional Object
Representations

Figure 10-44

A closed, periodic, piecewise, cubic
B-spline constructed with cyclic
specification of the six control
points.

points shown at each step. If any three consecutive control points are identical,
the curve passes through that coordinate position.

For cubics, d = 4 and each blending function spans four subintervals of the
total range of u. If we are to fit the cubic to four control points, then we could use
the integer knot vector

0,1,2,3,4,5,6,7}

and recurrence relations 10-55 to obtain the periodic blending functions, as we
did in the last section for quadratic periodic B-splines.

In this section, we consider an alternate formulation for periodic cubic B-
splines. We start with the boundary conditions and obtain the blending functions
normalized to the interval 0 =< u = 1. Using this formulation, we can also easily
obtain the characteristic mairix. The boundary conditions for periodic cubic B-
splines with four consecutive control points, labeled pg, p;, p,, and p;, are

P(O) = +(po + 4p; + P))

P(1) = +(p, + 4p, + py)
(10-58)
P(0) = %(pz - P())

P = %(Pa - py

These boundary conditions are similar to those for cardinal splines: Curve sec-
tions are defined with four control points, and parametric derivatives (slopes) at
the beginning and end of each curve section are parallel to the chords joining ad-
jacent control points. The B-spline curve section starts at a position near p, and
ends at a position near p,.

A matrix formulation for a cubic periodic B-splines with four control points
can then be written as

P(u) = (1P u?ul]l-Mg-

(10-59)

where the B-spline matrix for periodic cubic polynomials is

-1 3 -3 1 Section 10-9
1 3 ~6 3 0 B-Spline Curves and Surfaces
M= — 10-60)
B el -3 0 30 (
1 4 1 O

This matrix can be obtained by solving for the coefficients in a general cubic
polynomial expression using the specified four boundary conditions.

We can also modify the B-spline equations to include a tension parameter !
(as in cardinal splines). The periodic, cubic B-spline with tension matrix then has
the form

-t 12-9t 9t - 12 t

1| 3t 126-18 18-15t 0
M, = — 10-61)
76| -3t 4 3t 0 (10-61)
to6—2 ' 0

which reduces to Mz when t = 1.

We obtain the periodic, cubic B-spline blending functions over the parame-
ter range from 0 to 1 by expanding the matrix representation into polynomial
form. For example, for the tension value t = 1, we have

By s(u) = %(1 - u), O=su=l

By s(u) = +(3u® — 6u? + 4)
(10-62)
Byos(u) = £(=3ud + 312 + 3u + 1)

Byy(u) = 4

Open Uniform B-Splines

This class of B-splines is a cross between uniform B-splines and nonuniform B-
splines. Sometimes it is treated as a special type of uniform B-spline, and some-
times it is considered to be in the nonuniform B-spline classification. For the
open uniform B-splines, or simply open B-splines, the knot spacing is uniform
except at the ends where knot values are repeated d times.

Following are two examples of open uniform, integer knot vectors, each
with a starting value of 0:

{0,0,1,2,3,3,), ford=2andn=3
{0,0,0,0,1,2,2,2,2,, ford =4andn=4

We can normalize these knot vectors to the unit interval from 0 to 1:

{10,0,0.33,0.67, 1,1}, ford =2andn =3
10,0,0,0,05,1,1,1, 1}, ford=4andn =4

341

Chapter 10

342

Three-Dimensional Object
Representations

For any values of parameters d and n, we can generate an open uniform knot
vector with integer values using the calculations

0, for0=j<d

w,=9j7-d+1, ford=j=n (10-63)

n-d+2 forj>n

for values of j ranging from 0 to n + d. With this assignment, the first d knots are
assigned the value 0, and the last 4 knots have the value n — d + 2.

Open uniform B-splines have characteristics that are very similar to Bézier
splines. In fact, when d = n + 1 (degree of the polynomial is n} open B-splines re-
duce to Bézier splines, and all knot values are either 0 or 1. For example, with a
cubic, open B-spline (d = 4) and four control points, the knot vector is

10,0,0,0,1,1,1, 1}

The polynomial curve for an open B-spline passes through the first and last con-
trol points. Also, the slope of the parametric curves at the first control point is
parallel to the line connecting the first two control points. And the parametric
slope at the last control point is parallel to the line connecting the last two control
points. So geometric constraints for matching curve sections are the same as for
Bézier curves.

As with Bézier curves, specifying multiple control points at the same coor-
dinate position pulls any B-spline curve closer to that position. Since open B-
splines start at the first control point and end at the last specified control point,
closed curves are generated by specifving the first and last control points at the
same position.

Example 10-2 Open Uniform, Quadratic B-Splines

From conditions 10-63 with d = 3 and 17 = 4 (five control points), we obtain the
following eight values for the knot vector:

{tg, uy, U, U, Uy, s, 1, 150 = 10,0,0,1,2, 3, 3, 3}

The total range of u is divided into seven subintervals, and each of the five blend-
ing functions By, is defined over three subintervals, starting at knot position 1.
Thus, By is defined from u, = 0 to u; = 1, By 4 is defined from u, = 0 to u, = 2,
and B, ; is defined from i, = 2 to u; = 3. Explicit polynomial expressions zre ob-
tained for the biending functions from recurrence relations 10-55 as

Boa(u) = (1 ~ u), 0=p<1
%11(4*31(), 0=u<1
B]yg(ll) =
12w, l=u<?2

%uz, O=u<l1
Bys) =< 7u—w+ tu-DG-w, 1=u<2

T3 - u)?, 2=u<3

13(”'1)2, 1=wu<?2
B 5(u) =

506 -wGu -5, 2=u<3
By a(u) = (u — 2), 2=u<3

Figure 10-45 shows the shape of the these five blending functions. The local fea-
tures of B-splines are again demonstrated. Blending function By is nonzero only
in the subinterval from 0 to 1, so the first control point influences the curve only
in this interval. Similarly, function B, ; is zero outside the interval from 2 to 3, and
the position of the last control point does not affect the shape of the beginning
and middle parts of the curve.

Matrix formulations for open B-splines are not as conveniently generated as
they are for periodic, uniform B-splines. This is due to the multiplicity of knot
values at the beginning and end of the knot vector.

Nonuniform: B-Splines

For this class of splines, we can specify any values and intervals for the knot vec-
tor. With nonuniform B-splines, we can choose multiple internal knot values and
unequal spacing between the knot values. Some examples are

0,1,2,3,3,4
0,2,2,3,3,6}
{0,0,0,1,1,3,3,3
{0,0.2,06, 0.9, 1.0}

Nonuniform B-splines provide increased flexibility in controlling a curve
shape. With unequally spaced intervals in the knot vector. we obtain different
shapes for the blending functions in different intervals, which can be used to ad-
just spline shapes. By increasing knot multiplicity, we produce subtle variations
in curve shape and even introduce discontinuities. Multiple knot values also re-
duce the continuity by 1 for each repeat of a particular value.

We obtain the blending functions for a nonuniform B-spline using methods
similar to those discussed for uniform and open B-splines. Given a set of n + 1
control points, we set the degree of the polynomial and select the knot values.
Then, using the recurrence relations, we could either obtain the set of blending
functions or evaluate curve positions directly for the display of the curve. Graph-
ics packages often restrict the knot intervals to be either 0 or 1 to reduce compu-
tations. A set of characteristic matrices then can be stored and used to compute

Section 10-9

B-Spline Curves and Surfaces

343

Bealud By lui

2.8
0.6
0.4
0.2
U I U B S N T U T O T T U T TV S S W Y P T W N S G T S U O Y S WY B L P S T S WU Y
] 0.5 1 15 2 25 3 0 05 1 15 2 2.5 3
(a} (b)
8,,(u) B, ,(u)

0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 U S T 0% O S S T Y T T A W S A u u
o 0.5 1 1.5 2 25 3 0 0.5 1 15 2 25 3
(c) (di
B, ,lu)
1
0.8
0.6
0.4
0.2
IRV WY A B0 S A U 0 B B I I SRS
0 0.5 1 15 2 25 3

(e)

Figure 10-45
Open, uniform B-spline blending functions forn = 4and d = 3.

values along the spline curve without evaluating the recurrence relations for each
curve point to be plotted.

B-Spline Suriaces

Formulation of a B-spline surface is similar to that for Bézier splines. We can ob-
tain a vector point function over a B-spline surface using the Cartesian product of

I lendi . .
344 B-spline blending functions in the form

Figure 10-46

A prototype helicopter, designed and modeled by
Daniel Langlois of SOFTIMAGE, Inc., Montreal,
using 180,000 B-spline surface patches. The scene
was then rendered using ray tracing, bump
mapping, and reflection mapping. (Courtesy of Silicon
Graphics, Inc.)

rl n2
P,) =D > PriBydy Biya,®) (10-64)
Ey=0k;=0

where the vector values for p,, , specify positions of the (n; + 1) by (n; + 1) con-
trol points.

B-spline surfaces exhibit the same properties as those of their component B-
spline curves. A surface can be constructed from selected values for parameters
d, and d, (which determine the polynomial degrees to be used) and from the
specified knot vector. Figure 10-46 shows an object modeled with B-spline sur-
faces.

10-10
BETA-SPLINES

A generalization of B-splines are the beta-splines, also referred to as 3-splines,
that are formulated by imposing geometric continuity conditions on the first and
second parametric derivatives. The continuity parameters for beta-splines are
called B parameters.

Beta-Spline Continuity Conditions

For a specified knot vector, we can designate the spline sections to the left and
right of a particular knot u; with the position vectors P,_,(#) and P{w) (Fig. 10-47).
Zero-order continuity (positional confinuity), G°, at u, is obtained by requiring

P (1) = P(u) (10-65)

First-order continuity (unit tangent continuity), G', is obtained by requiring
tangent vectors to be proportional:

Section 10-10

Beta-Splines

Figure 10-47

Position vectors along curve
sections to the left and right

of knot u,

345

Chapter 10

346

Three-Dimensional Object
Representatians

BiPI\(u) = Pi(u), B >0 (0-60)

Here, parametric first derivatives are proportional, and the unit tangent vectors
are continuous across the knot.

Second-order continuity (curvature vector conlinuily), G2, is imposed with the
condition

BiP () + B (1) = P(u) (10-67)

where 3, can be assigned any real number, and 3, > 0. The curvature vector pro-
vides a measure of the amount of bending of the curve at position 4. When g8, =
1and B, = 0, beta-splines reduce to B-splines.

Parameter 8, is called the bias parameter since it controls the skewness of the
curve. For B, > 1, the curve tends to flatten to the right in the direction of the unit
tangent vector at the knots. For 0 < 8; < 1, the curve tends to flatten to the left.
The effect of B, on the shape of the spline curve is shown in Fig. 10-48.

Parameter B, is called the fension parameter since it controls how tightly or
loosely the spline fits the control graph. As B, increases, the curve approaches the
shape of the control graph, as shown in Fig. 10-49.

Cubic, Periodic Beta-Spline Matrix Representation

Applying the beta-spline boundary conditions to a cubic polynomial with a uni-
form knot vector, we obtain the following matrix representation for a periodic
beta-spline:

*-gz------e

By =1 By >> 1

Figure 10-48
Effect of parameter 3, on the shape of a beta-spline curve.

[
|
(
i
3
!

Lt tatuiniuini 4

S R ——
8,=0 By >>1

Figure 10-49
Effect of parameter B, on the shape of a beta-spline curve.

—28] 2B+ BB B) AR+ BB 2

Mg = 1 687 —3(B; +2B1 + 28D 3B, + 2% 0 (10-68)
8| -eBi 6(B? = B) 6B, 0
2% B+ 4Bt + B) 2 0

where & = 8, + 2f} + 4Bf + 48, + 2.
We obtain the B-spline matrix My when 8, =1 and B, = 0. And we get the
B-spline with tension matrix My, when

12
=1 Bp=0-1D

10-11
RATIONAL SPLINES

A rational function is simply the ratio of two polynomials. Thus, a rational
spline is the ratio of two spline functions. For example a rational B-spline curve
can be described with the position vector:

n

> wpBy)
p() = AL AP (10-69)
kZO @By 4 (1)

where the p, are a set of n + 1 control-point positions. Parameters w; are weight
factors for the control points. The greater the value of a particular w,, the closer
the curve is pulled toward the control point p, weighted by that parameter.
When all weight factors are set to the value 1, we have the standard B-spline
curve since the denominator in Eq. 10-69 is 1 (the sum of the blending functions).

Rational splines have two important advantages compared to nonrational
splines. First, they provide an exact representation for quadric curves {(conics),
such as circles and ellipses. Nonrational splines, which are polynomials, can only
approximate conics. This allows graphics packages to model all curve shapes
with one representation—rational splines—without needing a library of curve
functions to handle different design shapes. Another advantage of rational
splines is that they are invariant with respect to a perspective viewing transfor-
mation (Section 12-3). This means that we can apply a perspective viewing trans-
formation to the control points of the rational curve, and we will obtain the cor-
rect view of the curve. Nonrational splines, on the other hand, are not invariant
with respect to a perspective viewing transformation. Typically, graphics design
packages usc nonuniform knot-vector representations for constructing rational B-
splines. These splines are referred to as NURBs (nonuniform rational B-splines).

Homogeneous coordinate representations are used for rational splines,
since the denominator can be treated as the homogeneous factor in a four-dimen-
sional representation of the control points. Thus, a rational spline can be thought
of as the projection of a four-dimensional nonrational spline into three-dimen-
sional space.

Constructing a rational B-spline representation is carried out with the same
procedures for constructing a nonrational representation. Given the set of control
points, the degree of the polynomial, the weighting factors, and the knot vector,
we apply the recurrence relations to obtain the blending functions.

Section 10-11

Rational Splines

347

Chapter 10

348

Three-Dimensional Object
Representations

To plot conic sections with NURBs, we use a quadratic spline function (d =
3) and three control points. We can do this with a B-spline function defined with
the open knot vector:

{0,0,0,1,1, 1}

which is the same as a quadratic Bézier spline. We then set the weighting func-
tions to the following values:

w0=w2=1

r (10-70)

and the rational B-spline representation is

P(u) == PoBoal) + [/ = NlpiB, 3() + p,By) (071
Balg(u) + [r/(l - 7)]B113(N) - leg(u)

We then obtain the various conics (Fig. 10-50) with the following values for para-
meter r:

r>1/2, w,>1(hyperbola section)
r=1/2, w, = 1(parabola section)
r<1/2, w, <1 (ellipse section)

r=0, w =0 (straight-line segment)

We can generate a one-quarter arc of a unit circle in the first quadrant of the
xy plane (Fig. 10-51) by setting w, = cos¢ and by choosing the control points as

Y

——,_/ hyperbola
22, wy >)

Pg

o
straight line
{r =0, w, =0)

parabola
r=12w =1

ellipse
<12, w, <

P

Figure 10-50
Conic sections generated with various values of the rational-spline
weighting factor w,.

y
o= (0. 1) &

Figure 10-51
2 A circular arc in the first quadrant
p,={1,00 X of the xy plane.

Po = o, D, P = {1, 1), P = 1,0

Other sections of a unit circle can be obtained with different control-point posi-
tions. A complete circle can be generated using geometric transformation in the
xy plane. For example, we can reflect the one-quarter circular arc about the x and
i axes to produce the circular arcs in the other three quadrants.

In some CAD systems, we construct a conic section by specifying three
points on an arc. A rational homogeneous-coordinate spline representation is
then determined by computing control-point positions that would generate the
selected conic type. As an example, a homogeneous representation for a unit cir-
cular arc in the first quadrant of the xy plane is

x,(u) 1 -
) | _ 2u
) | 0

h 1+ uw?

10-12
CONVERSION BETWEEN SPLINE REPRESENTATIONS

Sometimes it is desirable to be able to switch from one spline representation to
another. For instance, a Bézier representation is the most convenient one for sub-
dividing a spline curve, while a B-spline representation offers greater design flex-
ibility. So we might design a curve using B-spline sections, then we can convert
to an equivalent Bézier representation to display the object using a recursive sub-
division procedure to locate coordinate positions along the curve.

Suppose we have a spline description of an object that can be expressed
with the following matrix product:

Pluw) =U- Msplmel : Mgmml (10-72)

where M, i5 the matrix characterizing the spline representation, and Mgeomi 15
the column matrix of geometric constraints (for example, control-point coordi-
nates). To transform to a second representation with spline matrix Mpjnez, We
need to determine the geometric constraint matrix M. that produces the same
vector point function for the object. That is,

349

Chagter 10 P) = U My - Mpeom: =3

Three-Dimenstonal Object
Representations

U- lepln\el ' Mg(-oml =U- M,

sphinel

M

eoml

Solving for Mo, we have

— -1
Mgmmz - Msphnez i Msplmv\ i Mg,eum:
= Msl.sZ : Mgeom\

i)

and the required transformation matrix that converts from the first spline repre-
sentation to the second is then calculated as

= 1 . TS
M51,~'2 - Msplmel M~plme1 U

A nonuniform B-spline cannot be characterized with a general spline ma-
trix. But we can rearrange the knot sequence to change the nonuniform B-spline
to a Bézier representation. Then the Bézier matrix could be converted to any
other form.

The following example calculates the transformation matrix for conversion
from a periodic, cubic B-spline representation to a cubic, Bézier spline representa-
tion.

-1 3 -3 1 -1 3 -3 1
M 3 -6 30 i 3 -6 30
B.Bez -3 3 00 ol -3 0 3 0
1 0 00 1 4 10
(10-76)
1410
B 0420
=V lg 2 4 0
01 4 1

And the the transformation matrix for converting from a cubic Bézier representa-
tion to a periodic, cubic B-spline representation is

-1/6 1/2 -1/2 /61 '[-1 3 -3 1

M. - 12 -1 1/2 0 3 -6 30
Bez8 -1/2 0 1/2 0 -3 3 00
1 0 00

1/6 2/3 1/6 Q

qo0-77
6 "7 20
_ 02 10
0 "1 20
0 2 "7 6

350

10-13 N
DISPLAYING SPLINE CURVES AND SURFACES

To display a spline curve or surface, we must determine coordinate positions on
the curve or surface that project to pixel positions on the display device. This
means that we must evaluate the parametric polynomial spline functions in cer-
tain increments over the range of the functions. There are several methods we
can use to calculate positions over the range of a spline curve or surface.

Horner’s Rule

The simplest method for evaluating a polynomial, other than a brute-force calcu-
lation of each term in succession, is Horner’s rule, which performs the calculations
by successive factoring. This requires one multiplication and one addition at each
step. For a polynomial of degree n, there are n steps.

As an example, suppose we have a cubic spline representation where coor-
dinate positions are expressed as

x(u) =au®+ bl +cu+d, (10-78)

with similar expressions for the y and z coordinates. For a particular value of pa-
rameter u, we evaluate this polynomial in the following factored order:

x(u) = [(a,u + bju +cJu +d, (10-79)

The calculation of each x value requires three multiplications and three additions,
so that the determination of each coordinate position (x, y, 2} along a cubic spline
curve requires nine multiplications and nine additions.

Additional factoring tricks can be applied to reduce the number of compu-
tations required by Horner’s method, especially for higher-order polynomials
(degree greater than 3). But repeated determination of coordinate positions over
the range of a spline function can be computed much faster using forward-differ-
ence calculations or spline-subdivision methods.

Forward-Difference Calculations
A fast method for evaluating polynomial functions is to generate successive val-
ues recursively by incrementing previously calculated values as, for example,

Xk =x+ AIA (10-80)

Thus, once we know the increment and the value of x, at any step, we get the
next-value by adding the increment to the value at that step. The increment Ax, at
each step is called the forward difference. If we divide the total range of u into
subintervals of fixed size & then two successive x positions occur at x, = x(u)
and x;,; = x(u;,,), where

Uy = U + 9, k=0,12,... (10-81

and uy = 0.

Section 10-13

Displaying Spline Curves and
Surfaces

351

Chapter 10

352

Three-Dimensional Object
Representations

To illustrate the method, suppose we have the linear spline representation
x(u) = a,u + b, Two successive x-coordinate positions are represented as

X, = au + b,
(10-82)
oy = au, + 8) + b,

Subtracting the two equations, we obtain the forward difference: Ax, = a,8. In
this case, the forward difference is a constant. With higher-order polynomials, the
forward difference is itself a polynornial function of parameter « with degree one
less than the original polvnomial.

For the cubic spline representation in Eq. 10-78, two successive x-coordinate
positions have the polynomial representations

I

X = au +ba 4o+ d,

Yo = a8+ by + 8+ clu + 8 +d (10-83)
The forward difference now evaluates to
Ax; = 3a,8u" + (32,87 + 26,8, + (a,8% + b.8% + ¢,.8) (10-84)
which is a quadratic function of parameter u,. Since Ax, is a polynomial function
of u, we can use the same incremental procedure to obtain successive values of
Ax,. That is,
Ay, = Axg + A, (10-85)
where the second forward difference is the linear function
Alx, = 6a,06%u, + 62,5 + 2b,8° (10-86)
Repeating this process once more, we can write
Alrp = Alx + Ay (10-87)
with the third forward ditference as the constant
Ay, = 6a,8° (10-88)
Equations 10-80, 10-85, 10-87, and 10-88 provide an incremental forward-differ-
ence calculation of points along the cubic curve. Starting at u, = 0 with a step size
8, we obtain the initial values for the x coordinate and its first two forward differ-

ences as

Xo = d.x
Axo = a8+ b8+ c 8 (10-89)
Ay, = 6a,8% + 2b,8?

Once these initial values have been computed, the calculation for each successive
x-coordinate position requires only three additions.

We can apply forward-difference methods to determine positions along
spline curves of any degree n. Each successive coordinate position (x, y, 2) is
evaluated with a series of 3n additions. For surfaces, the incremental calculations
are applied to both parameter u and parameter v.

Subdivision Methods

Recursive spline-subdivision procedures are used to repeatedly divide a given
curve section in half, increasing the number of control points at each step. Subdi-
vision methods are useful for displaying approximation spline curves since we
can continue the subdivision process until the control graph approximates the
curve path. Control-point coordinates then can be plotted as curve positions. An-
other application of subdivision is to generate more control points for shaping
the curve. Thus, we could design a general curve shape with a few control points,
then we could apply a subdivision procedure to obtain additional control points.
With the added control points, we can make fine adjustments to small sections of
the curve.

Spline subdivision is most easily applied to a Bézier curve section because
the curve passes through the first and last control points, the range of parameter
u is always between 0 and 1, and it is easy to determine when the control points
are “near enough” to the curve path. Bézier subdivision can be applied to other
spline representations with the following sequence of operations:

1. Convert the spline representation in use to a Bézier representation.
2. Apply the Bézier subdivision algorithm.
3. Convert the Bézier representation back to the original spline representation.

Figure 10-52 shows the first step in a recursive subdivision of a cubic Bézier
curve section. Positions along the Bézier curve are described with the parametric
point function P(x) for 0 =u = 1. At the first subdivision step, we use the
halfway point P(0.5) to divide the original curve into two sections. The first sec-
tion is then described with the point function P,(s), and the section is described
with P,(t), where

s = 2u, for0=u=05
(10-90)
! =2u—-1, for0.5=u=1

Each of the two new curve sections has the same number of control points as the
original curve section. Also, the boundary conditions (position and parametric

p P.
‘. .’ py; Pr3=Pn p,,
{/\ P1MDH
Ps P2 P Pz
Before After
Subdivision Subdivision
Figure 10-52

Subdividing a cubic Bézier curve section into two
sections, each with four control points.

Section 10-13

Displaying Spline Curves and
Surfaces

353

Chapter 10

354

Three-Dimensional Object
Representations

slope) at the two ends of each new curve section must match the position and
slope values for the original curve P(u). This gives us four conditions for each
curve section that we can use to determine the control-point positions. For the
first half of the curve, the four new control points are

Pio = Po
P = ';‘(Po +py)

. (10-91)
Piz= ;1{Po+ 2P * P2
P13 = %(Po +3p; + 3p; + p3)

And for the second half of the curve, we obtain the four control points
P2o = %(Pn +3p; +3p: + pa)
Pu = %(P'l + 2p; + p3)
(10-92)

P.2 = %(Pz + py)
P23 = P3

An efficient order for computing the new control points can be set up with only
add and shift (division by 2) operations as

Pio = Po
P = %(PO +py
T= %(P\ +p2)

Pi2= l7(P1,1 +1
P23~ Ps (10-93)

P12 = %(Pl + pa)
P = 3(T+p,2)

Po = %(PI,Z + pay)

Pis = Pao

_ These steps can be repeated any number of times, depenaing on whether
we are subdividing the curve to gain more control points or whether we are try-
ing to locate approximate curve positions. When we are subdividing to obtain a
set of display points, we can terminate the subdivision procedure when the curve
sections are small enough. One way to determine this is to check the distances
between adjacent pairs of control points for each section. If these distances are
“sufficiently” small, we can stop subdividing. Or we could stop subdividing
when the set of control points for each section is nearly along a straight-line
path.)

Subdivision methods can be applied to Bézier curves of any degree. For a
Bézier polynomial of degree n — 1, the 2n control points for each half of the curve
at the first subdivision step are

k
Pi,kz%zc(k,i)l).‘, k=0,12,...,n
1 = (10-94)
Pax = 2—"_;ZC(n —kn-0p,
=k

where C(k, i) and C(n — k, n ~ 1) are the binomial coefficients.

We can apply subdivision methods directly to nonuniform B-splines by
adding values to the knot vector. But, in general, these methods are not as effi-
cient as Bézier subdivision.

10-14 ,
SWEEP REPRESENTATIONS

Solid-modeling packages often provide a number of construction techniques.
Sweep representations are useful for constructing three-dimensional objects that
possess translational, rotational, or other symmetries. We can represent such ob-
jects by specifying a two-dimensional shape and a sweep that moves the shape
through a region of space. A set of two-dimensional primitives, such as circles
and rectangles, can be provided for sweep representations as menu options.
Other methods for obtaining two-dimensional figures include closed spline-
curve constructions and cross-sectional slices of solid objects.

Figure 10-53 illustrates a translational sweep. The periodic spline curve in
Fig. 10-53(a) defines the object cross section. We then perform a translational

22} T_. ______ T P2 ‘\V
|
|
I
|

Pyl Plu, v) v

(a) (b)

Figure 16-53

Constructing a solid with a translational sweep. Translating the
control paints of the periodic spline curve in (a} generates the solid
shown in (b), whose surface can be described with point function
P(u,v). -

Section 10-14

Sweep Representations

355

356

Axds of
Rotation

Pig . . P

O

Plu)
Py @ ®p,

()

Plu, v} Figure 10-54
Constructing a solid with a
rotational sweep. Rotating the
control points of the periodic spline
D curve in (a) about the given rotation
axis generates the solid shown in
(b), whose surface can be described
) with point function P(u,v).

sweep by moving the control points p, through p; a set distance along a straight-
line path perpendicular to the plane of the cross section. At intervals along this
path, we replicate the cross-sectional shape and draw a set of connecting lines in
the direction of the sweep to obtain the wireframe representation shown in Fig.
10-53(b).

An example of object design using a rotational sweep is given in Fig. 10-54.
This time, the periodic spline cross section is rotated about an axis of rotation
specified in the plane of the cross section to produce the wireframe representa-
tion shown in Fig. 10-54(b). Any axis can be chosen for a rotational sweep. If we
use a rotation axis perpendicular to the plane of the spline cross section in Fig.
10-54(a), we generate a two-dimensional shape. But if the cross section shown in
this figure has depth, then we are using one three-dimensional object to generate
another.

In general, we can specify sweep constructions using any path. For rota-
tional sweeps, we can move along a circular path through any angular disfance
from 0 to 360°. For noncircular paths, we can specify the curve function describ-
ing the path and the distance of travel along the path. In addition, we can vary
the shape or size of the cross section along the sweep path. Or we could vary the
orientation of the cross section relative to the sweep path as we move the shape
through a region of space.

10-15
CONSTRUCTIVE SOLID-GEOMETRY METHODS

Another technique for solid modeling is to combine the volumes occupied by
overlapping three-dimensional objects using set operations. This modeling
method, called constructive solid geometry (CSG), creates a new volume by ap-
plying the union, intersection, or difference operation to two specified volumes.

Figures 10-55 and 10-56 show examples for forming new shapes using the
set operations. In Fig. 10-55(a), a block and pyramid are placed adjacent to each
other. Specifying the union operation, we obtain the combined object shown in
Fig. 10-55(b). Figure 10-56(a) shows a block and a cylinder with overlapping vol-
umes. Using the intersection operation, we obtain the resuiting solid in Fig. 10-
56(b). With a difference operation, we can get the solid shown in Fig. 10-56(c).

A CSG application starts with an initial set of three-dimensional objects
(primitives), such as blocks, pyramids, cylinders, cones, spheres, and closed
spline surfaces. The primitives can-be provided by the CSG package as menu se-
lections, or the primitives themselves could be formed using sweep methods,
spline constructions, or other modeling procedures. To create a new three-dimen-
sional shape using CSG methods, we first select two primitives and drag them
into position in some region of space. Then we select an operation (union, inter-
section, or difference) for combining the volumes of the two primitives. Now we
have a new obiject, in addition to the primitives, that we can use to form other ob-
jects. We continue to construct new shapes, using combinations of primitives and
the objects created at each step, until we have the final shape. An object designed
with this procedure is represented with a binary tree. An example tree represen-
tation for a CSG object is given in Fig. 10-57.

Ray-casting methods are commonly used to implement constructive solid-
geometry operations when objects are described with boundary representations.
We apply ray casting by constructing composite objects in world coordinates
with the xy plane corresponding to the pixel plane of a video monitor. This plane
is then referred to as the “firing plane” since we fire a ray from each pixel posi-
tion through the objects that are to be combined (Fig. 10-58). We then determine
surface intersections along each ray path, and sort the intersection points accord-
ing to the distance from the firing plane. The surface limits for the composite ob-
ject are then determined by the specified set operation. An example of the ray-
casting determination of surface limits for a CSG object is given in Fig. 10-59,
which shows yz cross sections of two primitives and the path of a pixel ray per-
pendicular to the firing plane. For the union operation, the new volume is the
combined interior regions occupied by either or both primitives. For the intersec-
tion operation, the new volume is the interior region common to both primitives.

(a) (b) (c)

Figure 10-56

(a) Two overlapping objects. (b) A wedge-shaped CSG object
formed with the intersection operation. (c) A CSG object
formed with a difference operation by subtracting the
overlapping volume of the cylinder from the block volume.

Section 10-15

Constructive Solid-Geometry
Methods

(a) (b}

Figure 10-55

Combining two objects

(a) with a union operation
produces a single, composite
solid object (b).

357

Firing
Plane

. - Pixel
Ray

CSG
Object

Figure 10-57
A C5G tree representation for an
object.

Xy
obj, obj,
46\ Pixel Ray Operation | Surface Limits
4
— B 1
A B8 Union A D
\'/ Intersection c.8
Firing — Difference 8,D
Plane | (obj, - objy) |
z |
(a) ib}

Figure 10-58
Implementing CSG
operations using ray casting.

Firing
Plane \
y -
A'/
/AI

Figure 10-60
Determining object volume
along a ray path for a smatl
area A, on the firing plane.

358

Figure 10-59
Determining surface limuts along a pixel ray.

And a difference operation subtracts the volume of one primitive from the other.

Each primitive can be defined in its own local (modeling) coordinates.
Then, a composite shape can be formed by specifying the modeling-transforma-
tion matrices that would place two primitives in an overlapping position in
world coordinates. The inverse of these modeling matrices can then be used to
transform the pixel rays to modeling coordinates, where the surface-intersection
calculations are carried out for the individual primitives. Then surface intersec-
tions for the two objects are sorted and used to determine the composite object
limits according to the specified set operation. This procedure is repeated for
each pair of objects that are to be combined in the CSG tree for a particular object.

Once a CSG object has been designed, ray casting is used to determine
physical properties, such as volume and mass. To determine the volume of the
object, we can divide the firing plane into any number of small squares, as shown
in Fig. 10-60. We can then approximate the volume V, of the object for a cross-
sectional slice with area A, along the path of a ray from the square at position (i,
D as

V, = A,dz,

{10-95)

where Az, is the depth of the object along the ray from position (i, j). It the object
has internal holes, Az; is the sum of the distances between pairs of intersection
points along the ray. The total volume of the CSG object is then calculated as

v=>V, (10-96)

Given the density function, p(x, y, z), for the object, we can approximate the
mass along the ray from position (i, j) as

m, = A,)jp(x,,, Yy, 2)dz (10-97)

where the one-dimensional integral can often be approximated without actually
carrying out the integration, depending on the form of the density function. The
total mass of the CSG object is then approximated as

m =

M, (10-98)

V]

m,

Other physical properties, such as center of mass and moment of inertia, can be
obtained with similar calculations. We can improve the approximate calculations
for the values of the physical properties by taking finer subdivisions in the firing
plane.

If object shapes are represesned with octrees, we can implement the set op-
erations in CSG procedures by scanning the tree structure describing the contents
of spatial octants. This procedure, described in the following section, searches the
octants and suboctants of a unit cube to locate the regions occupied by the two
objects that are to be combined.

10-16
OCTREES

Hierarchical tree structures, called octrees, are used to represent solid objects in
some graphics systems. Medical imaging and other applications that require dis-
plays of object cross sections commonly use octree representations. The tree
structure is organized so that each node corresponds to a region of three-dimen-
sional space. This representation for solids takes advantage of spatial coherence
to reduce storage requirements for three-dimensional objects. It also provides a
convenient representation for storing information about object interiors.

The octree encoding procedure for a three-dimensional space is an exten-
sion of an encoding scheme for two-dimensional space, called quadtree encod-
ing. Quadtrees are generated by successively dividing a two-dimensional region
(usually a square) into quadrants. Each node in the quadtree has four data ele-
ments, one for each of the quadrants in the region (Fig. 10-61). If all pixels within
a quadrant have the same color (a homogeneous quadrant), the corresponding
data element in the node stores that color. In addition, a flag is set in the data ele-
ment to indicate that the quadrant is homogeneous. Suppose all pixels in quad-
rant 2 of Fig. 10-61 are found to be red. The color code for red is then placed in
data element 2 of the node. Otherwise, the quadrant is said to be heterogeneous,
and that quadrant is itself divided into quadrants (Fig. 10-62). The corresponding
data element in the node now flags the quadrant as heterogeneous and stores the
pointer to the next node in the quadtree.

An algorithm for generating a quadtree tests pixel-intensity values and sets
up the quadtree nodes accordingly. If each quadrant in the original space has a

Section 10-16

Octrees

359

Chapter 10

360

Three-Dimensional Object
Representations

Quadrant Quadrant
0]
0 1 2 3
Quadrant Quadrant . Data E\ements_
3 2 in the Representative
Quadtree Node
Region of a
Two-Dimensional
Space

Figure 10-61

Region of a two-dimensional space divided into numbered
quadrants and the associated quadtree node with four
data elements.

single color specification, the quadtree has only one node. For a heterogeneous
region of space, the successive subdivisions into quadrants continues until all
quadrants are homogeneous. Figure 10-63 shows a quadtree representation for a
region containing one area with a solid color that is different from the uniform
color specified for all other areas in the region.

Quadtree encodings provide considerable savings in storage when large
color areas exist in a region of space, since each single-color area can be repre-
sented with one node. For an area containing 2" by 2" pixels, a quadtree repre-
sentation contains at most 11 levels. Each node in the quadtree has at most four
immediate descendants.

An octree encoding scheme divides regions of three-dimensional space
(usually cubes) into octants and stores eight data elements in each node of the
tree (Fig. 10-64). Individual elements of a three-dimensional space are called vol-
ume elements, or voxels. When all voxels in an octant are of the same type, this

/
0 1
0 1 2 3
\
1
3 0 2 3
Quadtree
Representation
Region of a
Two-Dimensional
Space
Figure 10-62

Region of a two-dimensional space with two levels of quadrant
divisions and the associated quadtree representation

:A“ of{ 112123

Figure 10-63
Quadtree representation for a region containing one foreground-color
pixel on a solid background,

type value is stored in the corresponding data element of the node. Empty re-
gions of space are represented by voxel type “void.” Any heterogeneous octant is
subdivided into octants, and the corresponding data element in the node points
to the next node in the octree. Procedures for generating octrees are similar to
those for quadtrees: Voxels in each octant are tested, and octant subdivisions con-
tinue until the region of space contains only homogeneous octants. Each node in
the octree can now have from zero to eight immediate descendants.

Algorithms for generating octrees can be striictured to accept definitions of
objects in any form, such as a polygon mesh, curved surface patches, or solid-
geometry constructions. Using the minimum and maximum coordinate values of
the object, we can define a box (parallelepiped) around the object. This region of
three-dimensional space containing the object is then tested, octant by octant, to
generate the octree representation.

Once an octree representation has been established for a solid object, vari-
ous manipulation routines can be applied to the solid. An algorithm for perform-
ing set operations can be applied to two octree representations for the same re-
gion of space. For a union operation, a new octree is constructed with the
combined regions for each of the input objects. Similarly, intersection or differ-

O

<5 >

%’
HE [of:]2]a]a]s]s]"]

Data Elements
in the Representative
Octree Node

Region of a
Three-Dimensional
Space

Figure 10-64
Region of a three-dimensional space divided into numbered
octants and the associated octree node with eight data elements.

Section 10-16

Octrees

361

Chapter 10

Three-Dimensional Object
Representations

ence operations are perforined by looking for regions of overlap in the two oc-
trees. The new octree is then formed by either storing the octants where the two
objects overlap or the region occupied by one object but not the other.

Three-dimensonal octree iotations are accomplished by applying the trans-
formations to the occupied octants. Visible-surface identification is carried out by
searching the octants from front to back. The first object detected is visible, so
that information can be transferred to a quadtree representation for display.

10-17
BSP TREES

This representation scheme is similar to octree encoding, except we now divide
space into two partitions instead of eight at each step. With a binary space-parti-
tioning (BSP) tree, we subdivide a scene into two sections at each step with a
plane that can be at any position and orientation. In an octree encoding, the scene
is subdivided at each step with three mutually perpendicular planes aligned with
the Cartesian coordinate planes.

For adaptive subdivision of space, BSP trees can provide a more efficient
partitioning since we can position and orient the cutting planes to suit the spatial
distribution of the objects. This can reduce the depth of the tree representation for
a scene, compared to an octree, and thus reduce the time to search the tree. In ad-
dition, BSP trees are useful for identifying visible surfaces and for space parti-
tioning in ray-tracing algorithms.

10-18
FRACTAL-GEOMETRY METHODS

All the object representations we have considered in the previous sections used
Euclidean-geometry methods; that is, object shapes were described with equa-
tions. These methods are adequate for describing manufactured objects: those
that have smooth surfaces and regular shapes. But natural objects, such as moun-
tains and clouds, have irregular or fragmented features, and Euclidean methods
do not realistically model these objects. Natural objects can be realistically de-
scribed with fractal-geometry methods, where procedures rather than equations
are used to model objects. As we might expect, procedurally defined objects have
characteristics quite different from objects described with equations. Fractal-
geometry representations for objects are commonly applied in many fields to de-
scribe and explain the features of natural phenomena. In computer graphics, we
use fractal methods to generate displays of natural objects and visualizations of
various mathematical and physical systems.

A fractal object has two basic characteristics: infinite detail at every point
and a certain self-similarity between the object parts and the overall features of the
object. The self-similarity properties of an object can take different forms, de-
pending on the choice of fractal representation. We describe a fractal object with a
procedure that specifies a repeated operation for producing the detail in the ob-
ject subparts. Natural objects are represented with procedures that theoretically
repeat an infinite number of times. Graphics displays of natural objects are, of
course, generated with a finite number of steps.

If we zoom in on a continuous Euclidean shape, no matter how compli-
cated, we can eventually get the zoomed-in view to smooth out. But if we zoom

AN

Distant
Mountain
Closer
View
Closer
Yet
Figure 10-65

The ragged appearance of a mountain outline at different levels of
magnification.

in on a fractal object, we continue to see as much detail in the magnification as
we did in the original view. A mountain outlined against the sky continues to
have the same jagged shape as we view it from a closer and closer position (Fig.
10-65). As we near the mountain, the smaller detail in the individual ledges and
boulders becomes apparent. Moving even closer, we see the outlines of rocks,
then stones, and then grains of sand. At each step, the outline reveals more twists
and turns. If we took the grains of sand and put them under a microscope, we
would- again see the same detail repeated down through the molecular level.
Similar shapes describe coastlines and the edges ofplants and clouds.

Zooming in on a graphics display of a fractal object is obtained by selecting
a smaller window and repeating the fractal procedures to generate the detail in
the new window. A consequence of the infinite detail of a fractal object is that it
has no definite size. As we consider more and more detail, the size of an object
tends to infinity, but the coordinate extents of the object remain bound within a
finite region of space.

We can describe the amount of variation in the object detail with a number
called the fractal dimension. Unlike the Euclidean dimension, this number is not
necessarily an integer. The fractal dimension of an object is sometimes referred to
as the fractional dimension, which is the basis for the name “fractal”.

Fractal methods have proven useful for modeling a very wide variety of
natural phenomena. In graphics applications, fractal representations are used to
model terrain, clouds, water, trees and other plants, feathers, fur, and various
surface textures, and just to make pretty patterns. In other disciplines, fractal pat-
terns have been found in the distribution of stars, river islands, and moon craters;
in rain fields; in stock market variations; in music; in traffic flow; in urban prop-
erty utilization; and in the boundaries of convergence regions for numerical-
analysis techniques.

Fractal-Generation Procedures

A fractal object is generated by repeatedly applying a specified transformation
function to points within a region of space. If P, = (xq, yo, 2y is a selected initial
point, each iteration of a transformation function F generates successive levels of
detail with the calculations

P,=F(P,), P,=F{P), P,=FP), . . (10-99

Section 10-18

Fractal-(;eomelr;/ Methods

363

Chapter 10

364

Three-Dimensional Object
Representations

In general, the transformation function can be applied to a specified point
set, or we could apply the transformation function to an initial set of primitives,
such as straight lines, curves, color areas, surfaces, and solid objects. Also, we can
use either deterministic or random generation procedures at each iteration. The
transformation function may be defined in terms of geometric transformations
(scaling, translation, rotation), or it can be set up with nonlinear coordinate trans-
formations and decision parameters.

Although fractal objects, by definition, contain infinite detail, we apply the
transformation function a finite number of times. Therefore, the objects we dis-
play actually have finite dimensions. A procedural representation approaches a
“true” fractal as the number of transformations is increased to produce more and
more detail. The amount of detail included in the final graphical display of an ob-
ject depends on the number of iterations performed and the resolution of the dis-
play system. We cannot display detail variations that are smaller than the size of
a pixel. To see more of the object detail, we zoom in on selected sections and re-
peat the transformation function iterations.

Classification of Fractals

Self-similar fractals have parts that are scaled-down versions of the entire object.
Starting with an initial shape, we construct the object subparts by apply a scaling
parameter s to the overall shape. We can use the same scaling factor s for all sub-
parts, or we can use different scaling factors for different scaled-down parts of
the object. If we also apply random variations to the scaled-down subparts, the
fractal is said to be statistically self-similar. The parts then have the same statistical
properties. Statistically self-similar fractals are commonly used to model trees,
shrubs, and other plants.

Self-affine fractals have parts that are formed with different scaling para-
meters, 5., 5, 5;, in different coordinate directions. And we can aiso include ran-
dom variations to obtain statistically self-affine fractals. Terrain, water, and clouds
are typically modeled with statistically self-affine fractal construction methods.

Invariant fractal sets are formed with nonlinear transformations. This class
of fractals includes self-squaring fractals, such as the Mandelbrot set, which are
formed with squaring functions in complex space; and self-inverse fractals,
formed with inversion procedures.

Fractal Dimension

The detail variation in a iractal object can be described with a number D, called
the fractal dimension, which is a measure of the roughness, or fragmentation, of
the object. More jagged-looking objects have larger fractal dimensions. We can set
up some iterative procedures to generate fractal objects using a given value for
the fractal dimension D. With other procedures, we may be able to determine the
fractal dimension from the properties of the constructed object, although, in gen-
eral, the fractal dimension is difficult to calculate.

An expression for the fractal dimension of a self-similar fractal, constructed
with a single scalar factor s, is obtained by analogy with the subdivision of a Eu-
clidean object. Figure 10-66 shows the relationships between the scaling factor s
and the number of subparts n for subdivision of a unit straight-line segment, a
square, and a cube. With s = 1/2, the unit line segment (Fig. 10-66(a)) is divided
into two equal-length subparts. Similarly, the square in Fig. 10-66(b) is divided
into four equal-area subparts, and the cube (Fig. 10-66(c)) is divided into eight
equal-volume subparts. For each of these objects, the relationship between the

= |}t
1
— | |o———|
De =1 s=1/,n=2
n
ns =1
(a)
_A
a=4
/
A =

(b) V=

3l<

Figure 10-66
Subdividing objects with Euclidean dimensions
(@) Dy =1, () D, = 2, and (c) D¢ = 3 using scaling
factor s = 1/2.

number of subparts and the scaling factor is n - s’ = 1. In analogy with Euclid-
ean objects, the fractal dimension D for self-similar objects can be obtained from

nst =1 (10-100)

Solving this expression for D, the fractal similarity dimension, we have

_ Inn
In(1/s)

(10-10h

For a self-similar fractal constructed with different scaling factors for the different
parts, the fractal similarity dimension is obtained from the implicit relationship

i

=1 (o-102)

>
)

where s, is the scaling factor for subpart number k.

In Fig. 10-66, we considered subdivision of simple shapes (straight line, rec-
tangle, box). If we have more complicated shapes, including curved lines and ob-
jects with nonplanar surfaces, determining the structure and properties of the
subparts is more difficult. For general object shapes, we can use topological cover-

Section 10-18

Fractal-Geometry Methods

365

Chapter 10

Three-Dimensional Object
Representations

Figure 10-67
Box covering of an irregularly
shaped object.

366

ing methods that approximate object subparts with simple shapes. A subdivided
curve, for example, can be approximated with straight-line sections, and a subdi-
vided polygon could be approximated with small squares or rectangles. Other
covering shapes, such as circles, spheres, and cylinders, can also be used to ap-
proximate the features of an object divided into a number of smaller parts. Cov-
ering methods are commonly used in mathematics to determine geometric prop-
erties, such as length, area, or volume, of an object by summing the properties of
a set of smaller covering objects. We can also use covering methods to determine
the fractal dimension D of some objects.

Topological covering concepts were originally used to extend the meaning
of geometric properties to nonstandard shapes. An extension of covering meth-
ods using circles or spheres led to the notion of a Hausdorff-Besicovitch dimension,
or fractional dimension. The Hausdorff-Besicovitch dimension can be used as the
fractal dimension of some objects, but, in general, it is difficult to evaluate. More
commonly, the fractal dimension of an object is estimated with box-covering meth-
ods using rectangles or parallelepipeds. Figure 10-67 illustrates the notion of a
box covering. Here, the area inside the large irregular boundary can be approxi-
mated by the sum of the areas of the small covering rectangles.

We apply box-covering methods by first determining the coordinate extents
of an object, then we subdivide the object into a number of small boxes using the
given scaling factors. The number of boxes n that it takes to cover an object is
called the box dimension, and n is related to the fractal dimension D of the object.
For statistically self-similar objects with a single scaling factor s, we can cover the
object with squares or cubes. We then count the number 1 of covering boxes and
use Eq. 10-101 to estimate the fractal dimension. For self-affine objects, we cover
the object with rectangular boxes, since different directions are scaled differently.
In this case, the number of boxes 7 is used with the affine-transformation para-
meters to estimate the fractal dimension.

The fractal dimension of an object is always greater than the corresponding
Euclidean dimension (or topological dimension), which is simply the least num-
ber of parameters needed to specify the object. A Euclidean curve is one-dimen-
sional, a Euclidean surface is two-dimensional, and a Euclidean solid is three-di-
mensional.

For a fractal curve that lies completely within a two-dimensional plane, the
fractal dimension D is greater than 1 (the Euclidean dimension of a curve). The
closer D is to 1, the smoother the fractal curve. If D = 2, we have a Peano curve;
that is, the “curve” completely fills a finite region of two-dimensional space. For
2 < D <3, the curve self-intersects and the area could be covered an infinite
number of times. Fractal curves can be used to model natural-object boundaries,
such as shorelines.

Spatial fractal curves (those that do not lie completely within a single plane)
also have fractal dimension D greater than 1, but D can be greater than 2 without
self-intersecting. A curve that fills a volume of space has dimension D = 3, and a
self-intersecting space curve has fractal dimension D > 3.

Fractal surfaces typically have a dimension within the range 2 < D = 3. If
D = 3, the “surface” fills a volume of space. And if D > 3, there is an overlapping
coverage of the volume. Terrain, clouds, and water are typically modeled with
fractal surfaces.

The dimension of a fractal solid is usually in the range 3 < D = 4. Again, if
D > 4, we have a self-overlapping object. Fractal solids can be used, for example,
to model cloud properties such as water-vapor density or temperature within a
region of space.

Generator

/ R
/ N

Initiator

Figure 10-68
[nitiator and generator for the Koch curve.

Geometric Construction of Deterministic Self-Similar Fractals

To geometrically construct a deterministic (nonrandom) self-similar fractal, we
start with a given geometric shape, called the initiator. Subparts of the initiator
are then replaced with a pattern, called the generator.

As an example, if we use the initiator and generator shown in Fig. 10-68, we
can construct the snowflake pattern, or Koch curve, shown in Fig. 10-69. Each
straight-line segment in the initiator is replaced with four equal-length line seg-
ments at each step. The scaling factor is 1/3, so the fractal dimension is D = In
4/In 3 = 1.2619. Also, the length of each line segment in the initiator increases by

AN

(a) b

(c) (d
Figure 10-69
First three iterations in the generation of the Koch

curve.

Section 10-18

Fractal-Geometry Methods

367

Figuye 10-73
A snowflake-filling Peano
curve.

368

Segment Length =1 Segment Length = % Segment Length - %

' T VJ/\\
\ N
\ -
/ 5
/' s
Length = 1 Length = % Length = %5
Figure 10-70
Length of each side of the Koch curve increases by a factor of 4/3 at
each step, while the line-segment lengths are reduced by a factor of 1/3.
Segment Segment Segment
Length = 1/, 7 Length = 1/¢ Length = 1/6
D~ 1.129 D = 1.500 ~ 1613
(a) (b (c}

Vigure 10-71
Self-similar curve constructions and associated fractal dimensions.

> L]
R (3]
[e] o6 90
—e oo ¢+ |-—-9 ——-+4 6+ e
Segment Segment Segrment
Length = 1/3 Length = 1/8 Length = 1/8
D =~ 0631 D ~ 1.333 0= 1.333

Figure 10-72
Generators with multiple, disjoint parts.

a factor of 4/3 at each step, so that the length of the fractal curve tends to infinity
as more detail is added to the curve (Fig. 10-70). Examples of other self-similar,
fractal-curve constructions are shown in Fig. 10-71. These examples illustrate the
more jagged appearance of objects with higher fractal dimensions.

We can also use generators with multiple disjoint components. Some exam-
ples of compound generators are shown in Fig. 10-72. Using random variations
with compound generators, we can model various natural objects that have com-
pound parts, such as island distributions along coastlines.

Figure 10-73 shows an example of a self-similar construction using multi-
ple scaling factors. The fractal dimension of this object is determined from Eq.
10-102.

As an example of self-similar fractal construction for a surface, we scale the
regular tetrahedron shown in Fig. 10-74 by a factor of 1/2, then place the scaled

Section 10-18

Fractal-Geometry Methods

Front Face

Scaled Copy
of Tetrahedron

(b)

Figure 10-74

Scaling the tetrahedron in (a) by a factor of 1/2 and positioning the
scaled version on one face of the original tetrahedron produces the
fractal surface (b).

object on each of the original four surfaces of the tetrahedron. Each face of the
original tetrahedron is converted to 6 smaller faces and the original face area is
increased by a factor of 3/2. The fractal dimension of this surface is

_—

D=8 _ ;58196
n2

—

which indicates a fairly fragmented surface.

Another way to create self-similar fractal objects is to punch holes in a given
initiator, instead of adding more surface area. Fig. 10-75 shows some examples of
fractal objects created in this way.

Geometric Construction of Statistically Self-Similar Fractals

One way we can introduce some randomness into the geometric construction of a
self-similar fractal is to choose a generator randomly at each step from a set of
predefined shapes. Another way to generate random self-similar objects is to
compute coordinate displacements randomly. For example, in Fig. 10-76 we cre-
ate a random snowflake pattern by selecting a random, midpoint-displacement
distance at each step.

369

Figure 10-76

A modified “snowflake” pattern using random midpoint displacement.

370

Displays of trees and other plants can be constructed with similar geometric
methods. Figure 10-77 shows a seif-similar construction for a fern. In (a) of this
figure, each branch is a scaled version of the total object, and (b) shows a fully
rendered fern with a twist applied to each branch. Another example of this
method is shown in Fig. 10-78. Here, random scaling parameters and branching
directions are used to model the vein patterns in a leaf.

Once a set of fractal objects has been created, we can model a scene by plac-
ing several transformed instances of the fractal objects together. Figure 10-79 il-
lustrates instancing with a simple fractal tree. In Fig. 10-80, a fractal forest is dis-
played.

To model the gnarled and contorted shapes of some trees, we can apply
twisting functions as well as scaling to create the random, self-similar branches.

(b)

Figure 10-77
- Self-similar constructions for a fern.
(Courtesy of Peter Oppenheimer, Computer
- Graphics Lab, New York Institute of
Technology.)

Fighire 10-78

Random, self-similar construction
of vein branching in a fall leaf.
Boundary of the leaf is the limit of

the vein growth. (Courtesy of Peter
Oppenheimer, Computer Graphics Lab, New
York Institute of Technology.)

Figure 10-79

Modeling a scene using multiple object instancing. Fractal leaves are attached to a tree,
and several instances of the tree are used to form a grove. The grass is modeled with
multiple instances of green cones. (Courtesy of John C. Hart, Washington State University.)

This technique is illustrated in Fig. 10-81. Starting with the tapered cylinder on
the left of this figure, we can apply transformations to produce (in succession
from left to right) a spiral, a helix, and a random twisting pattern. A tree modeled
with random twists is shown in Fig. 10-82. The tree bark in this display is mod-
eled using bump mapping and fractal Brownian variations on the bump patterns,
as discussed in the following section.

1

X

Figure 10-83

An example of Brownian
motion (random walk) in the
xy plane.

372

Figure 10-82
Tree branches modeled with

random squiggles. (Courfesy of Peter
Oppenheimer, Computer Graphics Lab, New
' York Institute of Technology.)

Affine Fractal-Construction Methods

We can obtain highly realistic representations for terrain and other natural objects
using affine fractal methods that model object features as fractional Brownian mo-
tion. This is an extension of standard Brownian motion, a form of “random
walk”, that describes the erratic, zigzag movement of particles in a gas or otner
fluid. Figure 10-83 illustrates a random-walk path in the xy plane. Starting from a
given position, we generate a straight-line segment in a random direction and
with a random length. We then move to the endpoint of the first line segment
and repeat the process. This procedure is repeated for any number of line seg-
ments, and we can calculate the statistical properties of the line path over any
time interval ¢. Fractional Brownian motion is obtained by adding an additional
parameter to the statistical distribution describing Brownian motion. This addi-
tional parameter sets the fractal dimension for the “motion” path.

A single fractional Brownian path can be used to model a fractal curve.
With a two-dimensional array of random fractional Brownian elevations over a

Figure 10-84

A Brownian-motion planet observed from the surface
of a fractional Brownian-motion planet, with added
craters, in the foreground. (Courtesy of R. V. Voss and B. B.

Mandelbrot, adapted from The Fractal Geometry of Nature by
Benoit B. Mandelbrot (New York. W. H. Freeman and Co., 1983).)

ground plane grid, we can model the surface of a mountain by connecting the el-
evations to form a set of polygon patches. If random elevations are generated on
the surface of a sphere, we can model the mountains, valleys, and oceans of a
planet. In Fig. 10-84, Brownian motion was used to create the elevation variations
on the planet surface. The elevations were then color coded so that lowest eleva-
tions were painted blue (the oceans) and the highest elevations white (snow on
the mountains). Fractional Brownian motion was used to create the terrain fea-
tures in the foreground. Craters were created with random diameters and ran-
dom positions, using affine fractal prc.cedures that closely describe the distribu-
tion of observed craters, river islands, rain patterns, and other similar systems of
objects.

By adjusting the fractal dimension in the fractional Brownian-motion calcu-
lations, we can vary the ruggedness of terrain features. Values for the fractal di-
mension in the neighborhood of D =~ 2.15 produce realistic mountain features,
while higher values close to 3.0 can be used to create unusual-looking extrater-
restrial landscapes. We can also scale the calculated elevations to deepen the val-
leys and to increase the height of mountain peaks. Some examples of terrain fea-
tures that can be modeled with fractal procedures are given in Fig. 10-85. A scene
modeled with fractal clouds over a fractal mountain is shown in Fig. 10-86.

Random Midpoint-Displacement Methods

Fractional Brownian-motion calculations are time-consuming, because the eleva-
tion coordinates of the terrain above a ground plane are calculated with Fourier
series, which are sums of cosine and sine terms. Fast Fourier transform (FFT)

methods are typically used, but it is still a slow process to generate fractal-moun-

tain scenes. Therefore, faster random midpoint-displacement methods, similar
to the random displacement methods used in geometric constructions, have been
developed to approximate fractional Brownian-motion representations for terrain
and other natural phenomena. These methods were originally used to generate
animation frames for science-fiction films involving unusual terrain and planet
features. Midpoint-displacement methods are now commonly used in many ap-
plications, including television advertising animations.

Although random midpoint-displacement methods are faster than frac-
tional Brownian-motion calculations, they produce less realistic-looking terrain
features. Figure 10-87 illustrates the midpoint-displacement method for generat-
ing a random-walk path in the xy plane. Starting with a straight-line segment, we
calculate a displaced y value for the midposition of the line as the average of the
endpoint y values plus a random offset:

1
Ymia = E[y(") +y+r (10-103)

To approximate fractional Brownian motion, we choose a value for r from a
Gaussian distribution with a mean of 0 and a variance proportional to b —al®,
where H =2 - D and D > 1 is the fractal dimension. Another way to obtain a
random offset is to take r = sr, Ib—al, with parameter s as a selected “surface-
roughness” factor, and reasa Gaussian random value with mean 0 and variance
1. Table lookups can be used to obtain the Gaussian values. The process is then
repeated by calculating a displaced y value for the midposition of each half of the
subdivided line. And we continue the subdivision until the subdivided line sec-
tions are less than some preset value. At each step, the value of the random vari-

Section 10-18

Fractal-Geometry Methods

373

(a]

Figure 10-85
Variations in terrain features modeled with fractional
Brownian motion. (Courtesy of (a) R. V. Voss and B. B. Mandelbrot,
adapted from The Fractal Geometry of Nature by Benoit B. Mandelbrot
(New York: W. H. Freeman and Co., 1983); and (b) and {(c) Ken
Musgrave and Benoit B. Mandelbrot, Mat} ics and Comput

374 Science, Yale University.)

Figure 10-86
A scene modeled with fractal clouds and mountains.
(Courtesy of Ken Musgrave and Benoit B. Mandelbrot,

Mathematics and Computer Science, Yale University.)

y 14
y (b} / =y v
y(a) yia \/

Yenid
+
e b x a a+b b x
2

Figtire 10-87

Random midpoint-displacement of a straight-line segment.

able r decreases, since it is proportional to the width |b — a | of the line section to
be subdivided. Figure 10-88 shows a fractal curve obtained with this method.
Terrain features are generated by applying the random midpoint-displace-
ment procedures to a rectangular ground plane (Fig. 10-89). We begin by assign-
ing an elevation z value to each of the four corners (a, b, ¢, and d in Fig. 10-89) of
the ground plane. Then we divide the ground plane at the midpoint of each edge
to obtain the five new grid positions: e, f, g, h, and m. Elevations at midpositions

1 4 14
a b a : b
1
'
: .
ground m
plane hfp----= T f
]
/ i
/ 1
d c . d [] c x
(a) {b)
Figuire 10-89

A rectangular ground plane (a) is subdivided into four
equal grid sections (b) for the first step in a random
midpoint-displacement procedure to calculate terrain
elevations.

Section 10-18
Fractal-Geometry Methods

(a)

{b)

Figure 10-88

A random-walk path
generated from a straight-line
segment with four iterations
of the random midpoint-
displacement procedure.

375

Chapter 10

Three-Dimensional Object
Representations

Figure 10-90

Eight surface patches formed
over a ground plane at the
first step of a random

mid point-displacement
procedure for generating
terrain features.

376

e, f, g and h of the ground-plane edges can be calculated as the average eleva-
tion of the nearest two vertices plus a random offset. For example, elevation z, at
midposition e is calculated using vertices a and b, and the elevation at midposi-
tion f is calculated using vertices b and ¢

z,= (2, +2,)/2 + 1, zp=Az,~ z)/2+r

Random values r, and r, can be obtained from a Gaussian distribution with mean
0 and variance proportional to the grid separation raised to the 2H power, with H
=3 ~ D, and where D > 2 is the fractal dimension for the surface. We could also
calculate random offsets as the product of a surface-roughness factor times the
grid separation times a table lookup value for a Gaussian value with mean 0 and
variance 1. The elevation z,, of the ground-plane midposition m can be calculated
using positions e and g, or positions f and h. Alternatively, we could calculate z,,
using the assigned elevations of the four ground-plane corners:

zn =gtz tz.+2/4+r,

This process is repeated for each of the four new grid sections at each step until
the grid separation becomes smaller than a selected value.

Triangular surface patches can be formed as the elevations are generated.
Figure 10-30 shows the eight surface patches formed at the first subdivision step.
At each level of recursion, the triangles are successively subdivided into smaller
planar patches. When the subdivision process is completed, the patches are ren-
dered according to the position of the light sources, the values for other illumina-
tion parameters, and the selected color and surface texture for the terrain.

The random midpoint-displacement method can be applied to generate
other components of a scene besides the terrain. For instance, we could use the
same methods to obtain surface features for water waves or cloud patterns above
a ground plane.

Controlling Terrain Topography

One way to control the placement of peaks and valleys in a fractal terrain scene
modeled with a midpoint-displacement method is to constrain the calculated ele-
vations to certain intervals over different regions of the ground plane. We can ac-
complish this by setting up a set of contrel surfaces over the ground plane, as illus-
trated in Fig. 10-91. Then we calculate a random elevation at each midpoint grid
position on the ground plane that depends on the difference between the control
elevation and the average elevation calculated for that position. This procedure
constrains elevations to be within a preset interval about the control-surface ele-
vations.

Figure 10-91
Control surfaces over a ground plane.

Control surfaces can be used to model existing terrain features in the Rocky
Mountains, or some other region, by constructing the plane facets using the ele-
vations in a contour plot for a particular region. Or we could set the elevations
for the vertices of the control polygons to design our own terrain features. Also,
cantrol surfaces can have any shape. Planes are easiest to deal with, but we could
use spherical surfaces or other curve shapes.

We use the random midpoint-displacement method to calculate grid eleva-
tions, but now we select random values from a Gaussian distribution where the
mean p and standard deviation o are functions of the control elevations. One
way to set the values for p and o is to make them both proportional to the differ-
ence between the calculated average elevation and the predefined control eleva-
tion at each grid position. For example, for grid position e in Fig. 10-89, we set
the mean and standard deviation as

pe=2¢,— (z, + 2,)/2, og,=Ss |p.,|

where z¢, is the control elevation for ground-plane position ¢, and 0 <s <1lisa
preset scaling factor. Small values for s (say, s <0.1) produce tighter conformity
to the terrain envelope, and larger values of s allow greater fluctuations in terrain
height.

To determine the values of the control elevations over a plane control sur-
face, we first calculate the plane parameters A, B, C, and D. For any ground-plane
position (x, y), the elevation in the plane containing that control polygon is then
calculated as

2z = (—Ax—By—-D)/C

Incremental methods can then be used to calculate control elevations over posi-
tions in the ground-plane grid. To efficiently carry out these calculations, we first
subdivide the ground plane into a mesh of xy positions, as shown in Fig. 10-92.
Then each polygon control surface is projected onto the ground plane. We can
then determine which grid positions are within the projection of the control poly-
gon using procedures similar to those in scan-line area filling. That is, for each y
“scan line” in the ground-plane mesh that crosses the polygon edges, we calcu-
late scan-line intersections and determine which grid positions are in the interior
of the projection of the control polygon. Calculations for the control elevations at
those grid positions can then be performed incrementally as

ZC,‘_,,L}- = ZC,-J - AX(A/C), ZCijy = 20 — Ay(B/C) (10-104)
. I .
i to
- L
Figure 10-92
_ _ Projection of a triangular control

= surface onto the ground-plane grid.

Section 10-18

Fractal-Geometry Methods

377

Chapter 10

378

Three-Dimensional Object
Representations

Figure 10-93

A composite scene modeled with a random
midpoint-displacement method and planar control
surfaces over a ground plane. Surface features for
the terrain, water, and clouds were modeled and
rendered separately, then combined to form the
composite picture. (Courtesy of Eng-Kiat Koh, Information
Technology Institute, Republic of Singapore.)

with Ax and Ay as the grid spacing in the x and y directions. This procedure is
particularly fast when parallel vector methods are applied to process the control-
plane grid positions.

Figure 10-93 shows a scene constructed using control plar.es to structure the
surfaces for the terrain, water, and clouds above a ground plane. Surface-render-
ing algorithms were then applied to smooth out the polygon edges and to pro-
vide the appropriate surface colors.

Self-Squaring Fractals

Another method for generating fractal objects is to repeatedly apply a transfor-
mation function to points in complex space. In two dimensions, a complex num-
ber can be represented as z = x + iy, where x and y are real numbers, and i =
—1. In three-dimensional and four-dimensional space, points are represented
with quaternions. A complex squaring function f(z) is one that involves the calcu-
lation of 22 and we can use some self-squaring functions to generate fractal
shapes.

pesDepending on the initial position selected for the iteration, repeated appli-
cation of a self-squaring function will produce one of three possible results (Fig.
10-94):

* The transformed position can diverge to infinity.

* The transformed position can converge to a finite limit point, called an at-
tractor.

¢ The transformed position remains on the boundary of some object.

As an example, the nonfractal squaring operation f(z) = z? in the complex plane
transforms points according to their relation to the unit circle (Fig. 10-95). Any

(attractor) Frgure 10-94

Possible outcomes of a self-
squaring transformation f(z) in the
complex plane, depending on the
Julia Set position of the selected initial
position.

point z whose magnitude Izl is greater than 1 is transformed through a sequence
of positions that tend to infinity. A point with |z| < 1 is transformed toward the
coordinate origin. Points on the circle, |z] =1, remain on the circle. For some
functions, the boundary between those points that move toward infinity and
those that tend toward a finite limit is a fractal. The boundary of the fractal object
is called the Julia sef.

In general, we can locate the fractal boundaries by testing the behavior of
selected positions. If a selected position either diverges to infinity or converges to
an attractor point, we can try another nearby position. We repeat this process
until we eventually locate a position on the fractal boundary. Then, iteration of
the squaring transformation generates the fractal shape. For simple transforma-
tions in the complex plane, a quicker method for locating positions on the fractal
curve is to use the inverse of the transformation function. An initial point chosen
on the inside or outside of the curve will then converge to a position on the frac-
tal curve (Fig. 10-96).

A function that is rich in fractals is the squaring transformation

7= f2) = Al — 2) (10-105)
where A is assigned any constant complex value. For this function, we can use
the inverse method to locate the fractal curve. We first rearrange terms to obtain
the quadratic equation:

2Z2-z+2/A=0 (10-106)

The inverse transformation is then the quadratic formuila:
1
z=f1@) = 5(1 = Vi-4z'/a) (10-107)

Using complex arithmetic operations, we solve this equation for the real and
imaginary parts of z as

Figure 10-96

Locating the fractal boundary with
the inverse, self-squaring function
2" = 2).

jzl =1
N

NI

Figure 10-95

A unit circle in the complex
plane. The noufractal, .
complex squaring function
f(z) = 22 moves points that
are inside the circle toward
the origin, while points
outside the circle are moved
farther away from the circle.
Any initial point on the circle
remains on the circle.

379

Chapter 10

Three-Dimensional Object

el

]

[SENTRN

o~

Figure 10-97

Representations

x - Relz) = %(1 - \/ldiscr| +2Re(discr))

(10-108)
discr | —Re(discr)

1
= Im = + —
! @ 2 2

with the discriminant of the quadratic formula as discr = 1 - 42’/ A. A few initial
values for x and y (say, 10) can be calculated and discarded before we begin to
plot the fractal curve. Also, sirce this function yields two possible transformed
(x, y) positions, we can randomly choose either the plus or the minus sign at each
step of the iteration as long as Im{(discr) = 0. Whenever Im{(discr} <0, the two
possible positions are in the second and fourth quadrants. In this case, x and y
must have opposite signs. The following procedure gives an implementation of
this self-squaring function, and two example curves are plotted in Fig. 10-97.

#include <math.h>
#include <values.h>
#include ~graphics.h"

typedef struct {
float x, y:
} Complex;

void calculatePoint (Complex lambda, Complex * z)
{
float lambdaMagSq, discrMag;
Complex discr;
static Complex fourOverLambda = { 0, 0 };
static firstPoint = TRUE;

if (firstPoint} |
/* Compute 4 divided by lambda */
lam>daMagSq = lambda.x * lambéa.x + lambda.y * lambda.y;
fourQverLambda.x = 4 * lambda.x / lambdaMagSq:

- ""’B
s -
et 3f - .
1 - ~ * Tl
faite b . S e,
- - ¢ R
3 [e >
U T :
- - L. 3
X < PR
- : ! A
-J) .)
4 - - oA
e [N .
12 .)
- - 4 s
S éw 3 el
) -
2 w -
D
o~
v

Two fractal curves generated with the inverse of the function f(z) = Az(1-z) by procedure
selfSquare:{a) A =3and (b) A = 2 + i Each curve is plotted with 10,000 points.

380

fourCveriLambda.y = -4 * lampda.y / lambdaMagSq:
firstPoint = FALSE;
}
discr.x = 1.0 - (z->x * fourOverLambda.x - z-»>y * fourOver-
Lambda.y};
discr.y = z->x * fourOverLambda.y + z->y * fourOverLambda.x;
discrMag = sgrt (discr.x * discr.x + discr.y * discr.y);

/* Update z, checking to avoid the sqgrt of a negative number */
if {(discrMag + discr.x < 0) .
z->x = 0;
else
z->X = sqrt ((discrMag + discr.x) / 2.0);
if (discrMag - discr.x < 0)
z->y = 0:
e.se
z->y = 0.5 * sqrt ((discrMag - diser.x) / 2.0):

/* Por half the points, use negative root, placing point in quad-
rant 3 */
if (random|) < MAXINT/2) {
Z->X = -T->X:
z->y = -z->y;

)

/* When imaginary part of discriminant is negative, point
should lie in quadrant 2 or 4, so reverse sign of x */
if (diser.y < 0) z->x = -z->x;

/* Finish up calculation for the real part of z */
z->x = 0.5 * (1 - z->x);

)

void selfSquare (Complex lambda, Complex z, int count)
{
irt k:

/* Skip the first few points */
fer (k=0; k<l0; k++)
calculatePoint (lambda, &z2!;
for (k=0; k<count; k++) {
calculatePoint {(lambda, &z);
/* Scale point to fit window and draw */
pPoint (z.xX*WINDOW_WIDTH, 0.5*WINDOW_HEIGHT+z.y*WINDOW_HEIGHT) ;
}

A three-dimensional plot in variables x, y, and A of the self-squaring func-
tion f(z) = Az(1-2), with [A] =1, is given in Fig. 10-98. Each cross-sectional slice
of this plot is a fractal curve in the complex plane.

A very famous fractal shape is obtained from the Mandelbrot set, which is
the set of complex values z that do not diverge under the squaring transforma-
tion:

Zg= 2
¢ (10-10
zZ=22_, + 2, k=1,2,3,...

That is, we first select a point z in the complex plane, then we compute the trans-
formed position 22 + z. At the next step, we square this transformed position and
add the original z value. We repeat this procedure until we can determine

381

382

Figure 10-98

The function f(z) = Az(1-2)
plotted in three dimensions

with normalized A values

plotted as the vertical axis.
(Courtesy of Alan Nortont, IBM Research.)

whether or not the transformation is diverging. The boundary of the convergence
region in the complex plane is a fractal.

To implement transformation 10-109, we first choose a window in the com-
plex plane. Positions in this window are then mapped to color-coded pixel posi-
tions in a selected screen viewport (Fig. 10-99). The pixel colors are chosen ac-
cording to the rate of divergence of the corresponding point in the complex plane
under transformation 10-109. If the magnitude of a complex number is greater
than 2, then it will quickly diverge under this self-squaring operation. Therefore,
we can set up a loop to repeat the squaring operations until either the magnitude
of the complex number exceeds 2 or we have reached a preset number of itera-
tions. The maximum number of iterations is usually set to some value between
100 and 1000, although lower values can be used to speed up the calculations.
With lower settings for the iteration limit, however, we do tend to lose some de-
tail along the boundary (Julia set) of the convergence region. At the end of the
loop, we select a color value according to the number of iterations executed by
the loop. For example, we can color the pixel black if the iteration count is at the

Viewport

imaginary

Window —

Figure 10-99

Mapping positions in the complex plane to color-coded pixel positions
on a video monitor.

maximum value, and we can color the pixel red if the iteration count is near 0.
Other color values can then be chosen according to the value of the iteration
count within the interval from 0 to the maximum value. By choosing different
color mappings, we can generate a variety of dramatic displays for the Mandel-
brot set. One choice of color coding for the set is shown in Fig. 10-100(a).

An algorithm for displaying the Mandelbrot set is given in the following
procedure. The major part of the set is contained within the following region of
the complex plane:

—2.25 = Re(2) = 0.75

-125=Im(2) = 1.25
We can explore the details along the boundary of the set by choosing successively
smaller window regions so that we can zoom in on selected areas of the display.

Figure 10-100 shows a colorcoded display of the Mandelbrot set and a series of
zooms that illustrate some of the features of this remarkable set.

(a}

Figure 10-100

Zooming in on the Mandelbrot set. Starting with a display of the Mandelbrot set (a), we
zoom in on selected regions (b) through (f). The white box outline shows the window area
selected for each successive zoom. (Courtesy of Brian Evans, Vanderbilt University.)

Section 10-18

Fractat-Geometry Methods

383

384

#inc_ude “graphics.h" E
typedef struct { float =, y; Complex;

Comp.ex complexSquare . Zomplex <)
{
Complex c¢Sg;

cSq.x = Cc.x JUX - L.yt CLy;
cSq.y = 2 * Cc.x *f oLy
return {cSg):

int iterate (Complex Tini1t, int maxIter
({
Complex z
int cnt =

= zInit;
0;

/* Quit when z * z ~ 4 =/
while ((z.x * 2.x + =.y * 2.y <= 4.0) && (cnt < maxIter)) {
= complexScquare zi;

.x += zInit.x;

Ly += zInit.y:

nt++;

O NN N

)

return {cnt);

}

void mandelbrot (int nx, int ny, int maxIter, float realMin,
float realMax, float imagMin, float imagMax)

float reallnc = (realMax - realMin) , nx;:
float imagInc¢ = (imagMax - imagMin) / ny;
Complex z; :

int %, yi

int cnt;

for (x=0, z.x=realVir; x<nx; x++, z.x+=reallnc)
for (y=0, z.y=imagkin; y<ry: y++, z.y+=imagInc) {
cnt = ilterate (z maxIter;:
1f (cnt == maxlter)
setColor (BLACK);
else
setColor (cnt) -
pPoint (x, y);
}

Complex-function transformations, such as Eq. 10-105, can be extended to
produce fractal surfaces and fractal solids. Methods for generating these objects
use quaternion representations (Appendix A) for transforming points in three-
dimensional and four-dimensional space. A quaternion has four components,
one real part and three imaginary parts, and can be represented as an extension
of the concept of a number in the complex plane:

g=s+ia+jb+kc (1o-110

wherei? = 2 = k2 = —1.Thereal partsisalsoreferred toas the scalar part of the quater-
nion, and the imaginary terms are called the quaternionvector part v = (a, b,c).

Using the rules for quaternion multiplication and addition discussed in Ap-
pendix A, we can apply self-squaring functions and other iteration metheds to
generate surfaces of fractal objects instead of fractal curves. A basic procedure is
to start with a position inside a fractal object and generate successive points from
that position until an exterior (diverging) point is identified. The previous inte-
rior point is then retained as a surface point. Neighbors of this surface point are
then tested to determine whether they are inside (converging) or outside (diver-
rging). Any inside point that connects to an outside point is a'surface point. In
this way, the procedure threads its way along the fractal boundary without gen-
erating points that are too far from the surface. When four-dimensional fractals
are generated, three-dimensional slices are projected onto the two-dimensional
surface of the video monitor.

Procedures for generating self-squaring fractals in four-dimensional space
require considerable computation time for evaluating the iteration function and
for testing points. Each point on a surface can be represented as a small cube, giv-
ing the inner and outer limits of the surface. Output from such programs for the
three-dimensional projections of the fractal typically contain over a million ver-
tices for the surface cubes. Display of the fractal objects is performed by applying
illumination models that determine the lighting and color for each surface cube.
Hidden-surface methods are then applied so that only visible surfaces of the ob-
jects are displayed. Figures 10-101 and 10-102 show examples of self-squaring,
four-dimensional fractals with projections into three-dimensions.

Self-Inverse Fractals

Various geometric inversion transformations can be used to create fractal shapes.
Again, we start with an initial set of points, and we repeatedly apply nonlinear
inversion operations to transform the initial points into a fractal.

As an example, we consider a two-dimensional inversion transformation
with respect to a circle with radius 7 and center at position Py = (x,, yp). Any
point P outside the circle will be inverted to a position P’ inside the circle (Fig.
10-103) with the transformation

(PPYPP) = 7 (10-141)

Section 10-18

fractal-Geometry Methods

Figure 10-101

Three-dimensional projections of four-dimensional fractals generated with the self-
squaring, quaternion function f(g) = Aq(1—g):(a) A = 1.475 + 0.9061i,and (b) A = —0.57 + 1.

(Courtesy of Alan Norton, IBM Research.)

385

Chapter 10

386

Three-Dimensionat Object
Representations

Figure 10-102

A three-dimensional surface projection of a four-
dimensional object generated with the self-
squaring, quaternion function f(q) = ¢> — 1.
(Courtesy of Alan Norton, IBM Research.)

Figure 10-103
Inverting point P to a position P
inside a circle with radius r.

Reciprocally, this traiisformation inverts any point inside the circle to a point out-
side the circle. Both P and P’ lie on a straight line passing through the circle cen-
ter Po.

If the coordinates of the two points are P = (x, y) and P’ = (¥, y), we can
write Eq. 10-111 as

[(x—xo)’+ (y_yo)2]1/2[(1/_x0)2 + (]/_yo)zll/z _ ,.z

Also, since the two points lie along a line passing through the circle center, we

have (y — yp)/(x — xp) = (¥ — yp}/ (X’ — x¢). Therefore, the transformed coordi-
nate values are

r*(x — xp) ™y — yo)
=y +
= x)? + (y -y’ Y=Y (x — x2 + (y — yo?

Y =x3+

(10-112)

Figure 10-104 illustrates the inversion of points along another circle bound-
ary. As long as the circle to be inverted does not pass through Py, it will transform
to another circle. But if the circle circumference passes through Py, the circle

_— Original
Circle

Inverted .
Circle ™,

Figure 10-104
Inversion of a circle with respect to
another circle.

transforms to a straight line. Conversely, points along a straight line not passing
through P, invert to a circle. Thus, straight lines are invariant under the inversion
transformation. Also invariant under this transformation are circles that are or-
thogonal to the reference circle. That is, the tangents of the two circles are perpen-
dicular at the intersection points.

We can create various fractal shapes with this inversion transformation by
starting with a set of circles and repeatedly applying the transformation using
different reference circles. Similarly, we can apply circle inversion to a set of
straight lines. Similar inversion methods can be developed for other objects. And,
we can generalize the procedure to spheres, planes, or other shapes in three-di-
mensional space.

10-19
SHAPE GRAMMARS AND OTHER PROCEDURAL METHODS

A number of other procedural methods have been developed for generating ob-
ject details. Shape gramumars are sets of production rules that can be applied to
an initial object to add layers of detail that are harmonious with the original
shape. Transformations can be applied to alter the geometry (shape) of the object,
or the transformation rules can be applied to add surface-color or surface-texture
detail.

Given a set of production rules, a shape designer can then experiment by
applying different rules at each step of the transformation from a given initial ob-
ject to the final structure. Figure 10-105 shows four geometric substitution rules
for altering triangle shapes. The geometry transformations for these rules can be

o -

Figure 10-105

Four geometric substitution rules for subdividing and altering the shape
of an equilateral triangle.

387

Chapter 10

388

Three-Dimensional Object
Representations

(@)

written algorithmically by the system based on an input picture drawn with a
production-rule editor. That is, each rule can be described graphically by show-
ing the initial and final shapes. Implementations can then be set up in Mathemat-
ica or some other programming language with graphics capability.

An application of the geometric substitutions in Fig. 10-105 is given in Fig.
10-106, where Fig. 10-106(d) is obtained by ‘applying the four rules in succession,
starting with the initial triangle in Fig. 10-106(a). Figure 10-107 shows another
shape created with triangle substitution rules.

(b) ()

Figure 10-106
An equilateral triangle (a) is
converted to shape (b) using
substitution rules 1 and 2 in Fig.
10-105. Rule 3 is then used to
convert (b) into shape (c), which in
. turn is transformed to (d) using
rule 4. (Copyright © 1992 Andrew
Glassner, Xerox PARC (Palo Alto Research
4 Center).)

Figure 10-107
A design created with geometric
substitution rules for altering

triangle shapes. (Copyright © 1992
Andrew Glassner, Xerox PARC (Palo Alto
Research Center))

Vi

Figure 10-108

A design created with geometric
substitution rules for altering prism
shapes. The initial shape for this
design was a representation of

Rubik’s Snake. (Copyright © 1992
Andrew Glassner, Xerox PARC (Palo Alto
Research Center).)

Three-dimensional shape and surface features are transformed with similar
operations. Figure 10-108 shows the results of geometric substitutions applied to
polyhedra. The initial shape for the objects shown in Figure 10-109 is an icosahe-
dron, a polyhedron with 20 faces. Geometric substitutions were applied to the
plane faces of the icosahedron, and the resulting polygon vertices were projected
to the surface of an enclosing sphere.

Another example of using production rules to describe the shape of objects
is L-grammars, or graftals. These rules provide a method for describing plants. For
~ instance, the topology of a tree can be described as a trunk, with some attached
branches and leaves. A tree can then be modeled with rules to provide a particu-
lar connection of the branches and the leaves on the individual branches. The
geometrical description is then given by placing the object structures at particular
coordinate positions.

Figure 10-110 shows a scene containing various plants and trees, con-
structed with a commercial plant-generator package. Procedures in the software
for constructing the plants are based on botanical laws.

Figure 10-169

Designs created on the surface of a
sphere using triangle substitution
rules applied to the plane faces of
an icosahedron, followed by
projections to the sphere surface.

(Copyright © 1992 Andrew Glassner, Xerox
PARC (Palo Alto Research Center).)

389

390

Figure 10-110
Realistic scenery generated with the TDI-AMAP software package, which can generate

over 100 varieties of plants and trees using procedures based on botanical laws. (Courtesy of
Thomson Digital Image.)

10-20

PARTICLE SYSTEMS

A method for modeling natural objects, or other irregularly shaped objects, that
exhibit “fluid-like” properties is particle systems. This method is particularly
good for describing objects that change over time by flowing, billowing, spatter-
ing, or expanding. Objects with these characteristics include clouds, smoke, fire,
fireworks, waterfalls, water spray, and clumps of grass. For example, particle sys-
tems were used to model the planet explosion and expanding wall of fire due to

the “genesis bomb” in the motion picture Star Trek II—The Wrath of Khan.

Random processes are used to generate objects within sorme defined region
of space and to vary their parameters over time. Af some random time, each ob-
ject is deleted. During the lifetime of a particle, its path and surface characteris-
tics may be color-coded and displayed.

Particle shapes can be small spheres, ellipsoids, boxes, or other shapes. The
size and shape of particles may vary randomly over time. Also, other properties
such as particle transparency, color, and movement all can vary randomly. In
some applications, particle motion may be controlled by specified forces, such as
a gravity field.

As each particle moves, its path is plotted and displayed in a particular
color. For example, a fireworks pattern can be displayed by randomly generating
particles within a spherical region of space and allowing them to move radially

Figure 10-111

Modeling fireworks as a particle system with particles
traveling radially outward from the center of the
sphere.

outward, as in Fig. 10-111. The particle paths can be color-coded from red to yel-
low, for instance, to simulate the temperature of the exploding particles. Simi-
larly, realistic displays of grass clumps have been modeled with “trajectory” par-
ticles (Fig. 10-112) that are shot up from the ground and fall back to earth under
gravity. In this case, the particle paths can originate within a tapered cylinder,
and might be color-coded from green to yellow.

Figure 10-113 illustrates a particle-system simulation of a waterfall. The
water particles fall from a fixed elevation, are deflected by an obstacle, and then
splash up from the ground. Different colors are used to distinguish the particle

Figure 10-112

Modeling a clump of grass by firing
particles upward within a tapered
cylinder. The particle paths are
parabolas due to the downward
force of gravity.

Figure 10-113

Simulation of the behavior of a
waterfall hitting a stone circle). The
water particles are deflected by the
stone and then splash up from the

ground. (Courfesy of M. Brooksand T. L.
J. Howard, Department of Computer
Science, University of Martchester)

391

Chapter 10

392

Three-Dimensional Object
Representations

paths at each stage. An example of an animation simulating the disintegration of
an object is shown in Fig. 10-114. The object on the left disintegrates into the par-
ticle distribution on the right. A composite scene formed with a variety of repre-
sentations is given in Fig. 10-115. The scene is modeled using particle-system
grass, fractal mountains, and texture mapping and other surface-rendering pro-
cedures.

Figure 10-114

An object disintegrating into a cloud of particles. (Courtesy of
Autodesk, Inc.)

Figure 10-115
A scene, entitled Road to Point Reyes, showing particle-system grass,

fractal mountains, and texture-mapped surfaces. (Courtesy of Pixar.
Copyright © 1983 Pixar.)

10-21
PHYSICALLY BASED MODELING

A nonrigid object, such as a rope, a piece of cloth, or a soft rubber ball, can be
represented with physically based modeling methods that describe the behavior
of the object in terms of the interaction of external and internal forces. An accu-
rate discription of the shape of a terry cloth towel drapped over the back of a
chair is obtained by considering the effect of the chair on the fabric loops in the
cloth and the interaction between the cloth threads.

A common method for modeling a nonrigid object is to approximate the ob-
ject with a network of point nodes with flexible connections between the nodes.
One simple type of connection is a spring. Figure 10-116 shows a section of a two-
dimensional spring network that could be used to approximate the behavior of a
sheet of rubber. Similar spring networks can be set up in three dimensions to
model a rubber ball or a block of jello. For a homogeneous object, we can use
identical springs throughout the network. If we want the object to have different
properties in different directions, we can use different spring properties in differ-
ent directions. When external forces are applied to a spring network, the amount
of stretching or compression of the individual springs depends on the value set
for the spring constant k, also called the force constant for the spring,.

Horizontal displacement x of a node position under the influence of a force
F, is illustrated in Fig. 10-117. If the spring is not overstretched, we can closely
approximate the amount of displacement x from the equilibrium position using
Hooke’s l[aw:

F,=-F, = —kx ISR RY

where F, is the equal and opposite restoring force of the spring on the stretched
node. This relationship holds also for horizontal compression of a spring by an
amount x, and we have similar relationships for displacements and force compo-
nents in the y and z directions.

If objects are completely flexible, they return to their original configuration
when the external forces are removed. But if we want to model putty, or some
other deformable object, we need to modify the spring characteristics so that the
springs do not return to their original shape when the external forces are re-
moved. Another set of applied forces then can deform the object in some other
way.

|
k i

—rﬁm\-——+ (unstretched pasiton}

X

[}
—T T 0T ———
F\ Figure 10-117
An external force F, pulling on one
end of a spring, with the other end
rigidly fixed.

Figure 10-110

A two-dimensional spring
network, constructed with
dentical spring constants k.

393

Chapter 10

394

Three-Dimensional Object
Representations

Instead of using springs, we can also model the connections between nodes
with elastic materials, then we minimize strain-energy functions to determine ob-
ject shape under the influence of external forces. This method provides a better
model for cloth, and various energy functions have been devised to describe the
behavior of different cloth materials.

To model a nonrigid object, we first set up the external forces acting on the
object. Then we consider the propagation of the forces throughout the network
representing the object. This leads to a set of simultaneous equations that we
must solve to determine the displacement of the nodes throughout the network.

Figure 10-118 shows a banana peel modeled with a spring network, and the
scene in Fig. 10-119 shows examples of cloth modeling using energy functions,
with a texture-mapped pattern on one cloth. By adjusting the parameters in a
network using energy-function calculations, different kinds of cloth can be mod-
eled. Figure 10-120 illustrates models for cotton, wool, and polyester cotton mate-
rials draped over a table.

Physically based modeling methods are also applied in animations to more
accurately describe motion paths. In the past, animations were often specified
using spline paths and kinematics, where motion parameters are based only on

Figure 10-118

Modeling the flexible behavior of a
banana peel with a spring network.
(Copyright © 1992 David Laidlaw, John
Snyder, Adam Woodbury, and Alan Barr,
Computer Graphics Lab, California Institute
of Technology.)

Figure 10-119

Modeling the flexible behavior of
cloth draped over furniture using
energy-function minimization.
(Copyright © 1992 Gene Greger and David

E. Breen, Design Research Center,
Rensselaer Polytechnic Institufe.)

1) i

Figure 10-120
Modeling the characteristics of (a) cotton, (b) wool, and (c) polyester

cotton using energy-function minimization. (Copyright © 1992 David E.
Breen and Donald H. House, Design Research Center, Rensselaer Polytechnic Institute.)

position and velocity. Physically based modeling describes motion using dynam-
ical equations, involving forces and accelerations. Animation descriptions based
on the equations of dynamics produce more realistic motions than those based on
the equations of kinematics.

10-22
VISUALIZATION OF DATA SETS

The use of graphical methods as an aid in scientific and engineering analysis is
commonly referred to as scientific visualization. This involves the visualization
of data sets and processes that may be difficult or impossible to analyze without
graphical methods. For example, visualization techniques are needed to deal
with the output of high-volume data sources such as supercomputers, satellite
and spacecraft scanners, radio-astronomy telescopes, and medical scanners. Mil-
lions of data points are often generated from numerical solutions of computer
simulations and from observational equipment, and it is difficult to determine
trends and relationships by simply scanning the raw data. Similarly, visualization
techniques are useful for analyzing processes that occur over a long time period
or that cannot be observed directly, such as quantum-mechanical phenomena
and special-relativity effects produced by objects traveling near the speed of
light. Scientific visualization uses methods from computer graphics, image pro-
cessing, computer vision, and other areas to visually display, enhance, and ma-
nipulate information to allow better understanding of the data. Similar methods
employed by commerce, industry, and other nonscientific areas are sometimes re-
ferred to as business visualization.

Data sets are classified according to their spatial distribution and according
to data type. Two-dimensional data sets have values distributed over a surface,
and three-dimensional data sets have values distributed over the interior of a
cube, a sphere, or some other region of space. Data types include scalars, vectors,
tensors, and multivariate data.

Visual Representations for Scalar Fields

A scalar quantity is one that has a single value. Scalar data sets contain values
that may be distributed in time, as well as over spatial positions. Also, the data

Section 10-22

Visualization of Data Sets

395

Chapter 10

396

Three-Dimensional Object
Representations

values may be functions of other scalar parameters. Some examples of physical
scalar quantities are energy, density, mass, temperature, pressure, charge, resis-
tance, reflectivity, frequency, and water content.

A common method for visualizing a scalar data set is to use graphs or
charts that show the distribution of data values as a function of other parameters,
such as position and time. If the data are distributed over a surface, we could plot
the data values as vertical bars rising up from the surface, or we can interpolate
the data values to display a smooth surface. Pseudo-color methods are also used
to distinguish different values in a scalar data set, and color-coding techniques
can be combined with graph and chart methods. To color code a scalar data set,
we choose a range of colors and map the range of data values to the color range.
For example, blue could be assigned to the lowest scalar value, and red could be
assigned to the highest value. Figure 10-121 gives an example of a color-coded
surface plot. Color coding a data set can be tricky, because some color combina-
tions can lead to misinterpretations of the data.

Contour plots are used to display isolines (lines of constant scalar value) for
a data set distributed over a surface. The isolines are spaced at some convenient
interval to show the range and variation of the data values over the region of
space. A typical application is a contour plot of elevations over a ground plane.
Usually, contouring methods are applied to a set of data values that is distributed
over a regular grid, as in Fig. 10-122. Regular grids have equally spaced grid
lines, and data values are known at the grid intersections. Numerical solutions of
computer simulations are usually set up to produce data distributions on a regu-
lar grid, while observed data sets are often irregularly spaced. Contouring meth-
ods have been devised for various kinds of nonregular grids, but often nonregu-
lar data distributions are converted to regular grids. A two-dimensional
contouring algorithm traces the isolines from cell to cell within the grid by check-
ing the four corners of grid cells to determine which cell edges are crossed by a

Figure 10-121
A financial surface plot showing

' stock-growth potential during the
October 1987 stock-market crash.
Red indicates high returrs, and the
plot shows that low-growth stocks
performed better in the crash.

(Courtesy of Eng-Kiat Koh, Information
Technology Institute, Republic of
Singapore.)

: 4 Fignre 10-122

i+ A regular, two-dimensional grid

2a with data values at the intersection
. o ; - of the grid lines. The x grid lines
have a constant Ax spacing, and the
y grid lines have a constant Ay
spacing, where the spacing in the x
and y directions may not be the

Ax same.

particular isoline. The isolines are usually plotted as straight-line sections across
each cell, as illustrated in Fig. 10-123. Sometimes isolines are plotted with spline
curves, but spline fitting can lead to inconsistencies and misinterpretation of a
data set. For example, two spline isolines could cross, or curved isoline paths
might not be a true indicator of the data trends since data values are known only
at the cell corners. Contouring packages can allow interactive adjustment of iso-
lines by a researcher to correct any inconsistencies. An example of three, overlap-
ping, color-coded contour plots in the xy plane is given in Fig. 10-124, and Fig.
10-125 shows contour lines and olor coding for an irregularly shaped space.

For three-dimensional scalar data fields, we can take cross-sectional slices
and display the two-dimensional data distributions over the slices. We could ei-
ther color code the data values over a slice, or we could display isolines. Visual-
ization packages typically provide a slicer routine that allows cross sections to be

Figure 10-124

Color-coded contour plots for three
data sets within the same region of
the xy plane. (Courtesy of the National
Center for Supercomputing Applications,
University of Minois at Urbana-
Champaign.)

Figure 10-125
Color-coded contour plots over the surface of an

apple-core-shaped region of space. (Courtesy of Greg
Nielson, Department of Computer Science and Engineering,
Arizona State University.)

Section 10-22
Visualization of Data Sets

Figure 10-123
The path of an isoline across
five grid cells.

397

398

Figure 10-126
Cross-sectional slices of a three-

dimensional data set. (Courtesy of
Spyglass, Inc.)

taken at any angle. Figure 10-126 shows a display generated by a commercial
slicer-dicer package.

Instead of looking at two-dimensional cross sections, we can plot one or
more isosurfaces, which are simply three-dimensional contour plots (Fig. 10-
127). When two overlapping isosurfaces are displayed, the outer surface is made
transparent so that we can view the shape of both isosurfaces. Constructing an
isosurface is similar to plotting isolines, except now we have three-dimensional
grid cells and we need to check the values of the eight corners of a cell to locate
sections of an isosurface. Figure 10-128 shows some examples of isosurface inter-
sections with grid cells. Isosurfaces are modeled with triangle meshes, then sur-
face-rendering algorithms are applied to display the final shape.

Figure 10-127
An isosurface generated from a set
—of watef-content values obtained
from a numerical model of a
thunderstorm. (Courtesy of Bok
Wilhelmson. Department of Atmospheric
Sciences and National Center for
Supercomputing Applications, University of
Iilinots at Urbana Champaign.)

Figure 10-128

Isosurface intersections with grid cells, modeled with triangle patches.

Volume rendering, which is often somewhat like an X-ray picture, is an-
other method for visualizing a three-dimensional data set. The interior informa-
tion about a data set is projected to a display screen using the ray-casting meth-
ods introduced in Section 10-15. Along the ray path from each screen pixel (Fig.
10-129), interior data values are examined and encoded for display. Often, data
values at the grid positions are averaged so that one value is stored for each
voxel of the data space. How the data are encoded for display depends on the ap-
plication. Seismic data, for example, is often examined to find the maximum and
minimum values along each ray. The values can then be color coded to give in-
formation about the width of the interval and the minimum value. In medical ap-
plications, the data values are opacity factors in the range from 0 to 1 for the tis-
sue and bone layers. Bone layers are completely opaque, while tissue is
somewhat transparent (low opacity). Along each ray, the opacity factors are accu-
mulated until either the total is greater than or equal to 1, or until the ray exits at
the back of the three-dimensional data grid. The accumulated opacity value is
then displayed as a pixel-intensity level, which can be gray scale or color. Figure
10-130 shows a volume visualization of a medical data set describing the struc-
ture of a dog heart. For this volume visualization, a color-coded plot of the dis-
tance to the maximum voxel value along each pixel ray was displayed.

Pixel
Ray
e--~""]
Data
Volume
Pixel
Plane

Figure 10-129
Volume visualization of a regular, Cartesian data grid using
ray casting to examine interior data values.

Figure 10-130

Volume visualization of a data

set for a dog heart, obtained by
plotting the colorcoded distance to
the maximum voxel value for each
pixel. (Courtesy of Patrick Moyan and
Clinton Potter, National Cenler for
Supercomputing Applications, Unmwersity
of meis at Urbana-Champaign)

Section 10-22

Visualizalion of Data Sets

399

Chaptler 10

400

Three-Dimensional Object
Representations

Visual Representations for Vector Fields

A vector quantity V in three-dimensional space has three scalar values (V,, V,,
V,), one for each coordinate direction, and a two-dimensional vector has two
components (V,, V,). Another way to describe a vector quantity is by giving its
magnitude IV | and its direction as a unit vector u. As with scalars, vector quan-
tities may be functions of position, time, and other parameters. Some examples of
physical vector quantities are velocity, acceleration, force, electric fields, magnetic
fields, gravitational fields, and electric current.

One way to visualize a vector field is to plot each data point as a small
arrow that shows the magnitude and direction of the vector. This method is most
often used with cross-sectional slices, as in Fig. 10-131, since it can be difficult to
see the data trends in a three-dimensional region cluttered with overlapping ar-
rows. Magnitudes for the vector values can be shown by varying the lengths of
the arrows, or we can make all arrows the same size, but make the arrows differ-
ent colors according to a selected color coding for the vector magnitudes.

Figure 10-131

Arrow representation for a vector field over cross-
sectional slices. (Courtesy of the National Center for
Supercomputing Applications, University of lllinois at Urbana-
Champaign.)

We can also represent vector values by plotting field lines or streamlines.
Field lines are commonly used for electric, magnetic, and gravitational fields. The
magnitude of the vector values is indicated by the spacing between field lines,
and the direction is the tangent to the field, as shown in Fig. 10-132. An example
of a streamline plot of a vector field is shown in Fig. 10-133. Streamlines can be
displayed as wide arrows, particularly when a whirlpool, or vortex, effect is pre-
sent. An example of this is given in Fig. 10-134, which displays swirling airflow
patterns inside a thunderstorm. For animations of fluid flow, the behavior of the
vector field can be visualized by tracking particles along the flow direction. An

_—\

hi 'h Figure 10-132
! fgher Field-line representation for a
lower vector data set.

Frgure 10-133

Visualizing airflow around a
cylinder with a hemispherical cap
that is tilted slightly relative to the
incoming direction of the airflow.
(Courtesy of M. Gerald-Yamasaki, |.

Huiltquist, and Sam Uselton, NASA Ames
Research Center.)

Figure 10-134

Twisting airflow patterns,
visualized with wide strezmlines
inside a transparent isosurface plot
of a thunderstorm. (Courtesy of Bob
Wilhelmson, Department of Atmospheric
Sciences and National Center for
Supercomputing Applications, University
of Hlinois at Urbana-Champaign.)

I Figure 10-135

Airflow patterns, visualized with
both streamlines and particle

* motion inside a transparent
isosurface plot of a thunderstorm.
Rising sphere particles are colored
orange, and falling sphere particles
are blue. (Courtesy of Bob Wilhelmson,
Department of Atmospheric Sciences and
National Center for Supercomputing
Applications, University of Hlinots at
Urbana-Champaign.)

example of a vector-field visualization using both streamlines and particles is
shown in Fig. 10-135.

Sometimes, only the magnitudes of the vector quantities are displayed. This
is often done when multiple quantities are to be visualized at a single position, or
when the directions do not vary much in some region of space, or when vector
directions are of less interest.

Visual Representations tor Tensor Fields

A tensor quantity in three-dimensional space has nine components and can be
represented with a 3 by 3 matrix. Actually, this representation is used for a sec-
ond-order tensor, and higher-order tensors do occur in some applications, particu-
larly general relativity. Some examples of physical, second-order tensors are

Visualization of Data Sets

401

Chapter 10

402

Three-Dimensional Object
Representations

stress and strain in a material subjected to external forces, conductivity (or resis-
tivity) of an electrical conductor, and the metric tensor, which gives the proper-
ties of a particular coordinate space. The stress tensor in Cartesian coordinates,
for example, can be represented as

v % Ta (10-11-H

Tensor quantities are frequently encountered in anisotropic materials,
which have different properties in different directions. The x, xy, and xz elements
of the conductivity tensor, for example, describe the contributions of electric field
components in the x, y, and z directions to the current in the x direction. Usually,
physical tensor quantities are symmetric, so that the tensor has only six distinct
values. For instance, the xy and yx components of the stress tensor are the same.

Visualization schemes for representing all six components of a second-order
tensor quantity are based on devising shapes that have six parameters. One
graphical representation for a tensor is shown in Fig. 10-136. The three diagonal
elements of the tensor are used to construct the magnitude and direction of the
arrow, and the three off-diagonal terms are used to set the shape and color of the
elliptical disk.

Instead of trying to visualize all six components of a tensor quantity, we can
reduce the tensor to a vector or a scalar. Using a vector representation, we can
simply display a vector representation for the diagonal elements of the tensor.
And by applying tensor-contraction operations, we can obtain a scalar representa-
tion. For example, stress and strain tensors can be contracted to generate a scalar
strain-energy density that can be plotted at points in a material subject to external
forces (Fig. 10-137).

Visual Representations for Multivariate Data Fields

In some applications, at each grid position over some region of space, we may
have multiple data values, which can be a mixture of scalar, vector, and even ten-

Figure 10-136
Representing stress and strain tensors with an
elliptical disk and a rod over the surface of a

stressed material. (Courtesy of Bob Haber, National Center for
Supercomputing Applications, University of Illinois at Urbana-
Champaign.)

Figure 10-137

Representing stress and strain tensors with a strain-
energy density plotin a visualization of crack
propagation on the surface of a stressed material.

(Courtesy of Bob Haber, National Center for Supercomputing
Applications, University of Illinois at Urbana-Champaign.)

sor values. As an example, for a fluid-flow problem, we may have fluid velocity,
temperature, and density values at each three-dimensional position. Thus, we
have five scalar values to display at each position, and the situation is similar to
displaying a tensor field.

A method for displaying multivariate data fields is to construct graphical
objects, sometimes referred to as glyphs, with multiple parts. Each part of a
glyph represents a physical quantity. The size and color of each part can be used
to display information about scalar magnitudes. To give directional information
for a vector field, we can use a wedge, a cone, or some other pointing shape for
the glyph part representing the vector. An example of the visualization of a mul-
tivariate data field using a glyph structure at selected grid positions is shown in
Fig. 10-138.

Ligure 10-138

Orne frame from an animated visualization of a
multivariate data field using glyphs. The wedge-
shaped part of the glyph indicates the direction of a

vector quantity at each point. (Courtesy of the National
Center for Supercomputing Applications, University of Illinors at
Urbana-Champaign.)

Visualization of Data Sets

403

Chapter 10

404

Three-Dimensional Object
Representations

SUMMARY

Many representations have been developed for modeling the wide variety of ob-
jects that might be displayed in a graphics scene. “Standard graphics objects” arc
those represented with a surface mesh of polygon facets. Polygon-mesh represen-
tations are tvpically derived from other representations.

Surface functions, such as the quadrics, are used to describe spheres and
other smooth surfaces. For design applications, we can use superquadrics,
splines, or blabby objects to represent smooth surface shapes. In addition, con-
struction techniques, such as CSG and sweep representations, are useful for de-
signing compound object shapes that are built up from a set of simpler shapes.
And interior, as well as surface, information can be stored in octree representa-
tions.

Descriptions for natural objects, such as trees and clouds, and other irregu-
larly shaped objects can be specified with fractals, shape grammars, and particle
systems. Finally, visualization techniques use graphic representations to display
numerical or other types of data sets. The various types of numerical data in-
clude scalar, vector, and tensor values. Also many scientific visualizations require
methods for representing multivariate data sets, that contain a combination of
the various data types.

REFERENCES

A detailed discussion of superquadrics 1s contained in Barr (19811, For more information on
blobby object modeling see Blinn 11982). The metaball moda! is discussed in Nishimura
(1985); and the soft-object model is discussed 1in Wyville, Wi ille, and McPheeters (1987)

Sources of information on paramelric curve and surface representations include Bezier
(1972), Burt and Adelson (1983). Barsky (1983, 1984), Kochanek and Bartels (1984).
Farouki and Hinds (19851, Huitrjic and Nahas 11985), Mortensen (19851, Farin (19881, and
Rogers and Adams (1990

Octrees and quadtrees are discussed by Doctor (1981), Yamaguchi. Kumi, and Fujimura
(1984}, and by Carlbom. Chakravarty, and Vanderschel (19851, Solic-modeling references
include Casale and Staten 11985) and Requicha and Rossignac 119921,

For turther information on ractal representations see Mandelbrol (1977 1982, Fourmer
Fussel, and Carpenter (1982), Norton (1982), Peitgen and Richter (1986), Patgen and
Saupe (1988 Koh and Hearn (1992), and Barnsley (1992). Shape grammars are disc ussed
in Glassner 11992), and particle systems are discussed in Reeves (19831, A discussion ot
physically based modeling is given in Barzel (1992).

A general introduction to visualization methods is given ir Hearn and Baker (1991 Addi
tional information on specific visuahization methods can be found in Sahin 11985).
Lorensen and Cline (1987), Drebin, Carpenter, and Hanrahan {1988), Sabella 11988,
Upson and Keeler (19881, Frenkel (1989), Nielson, Shriver. and Rosenblum 119901 and
Ntelson (1993, Guidelines for visual displavs of information are given i Tu'te (1983,
19901

EXERCISES

10-10 Setup geometne data tables as i Fig, 10-2 tor a uni: cube

10-2 Set up geometric data tables tor a unit cube using only e vertex and polvgon tables.
and (bt a single polvgon table Compare the two methods tor representng the unit
cube with arepresentation using three data tables, and eimate <storage requirerments
for cach

10-3.

10-4.

10-5.

10-6.

i0-8.

10-9.

10-10.

10-1

10-12.

10-13.

10-14.

10-15.

10-16.

10-17.

10-18.

10-19.
10-20.
10-21.
10-22.

10-23.

10-24.

10-25.

10-26.

10-27.

10-28.

Define an efficient polygon representation for a cylinder. justify your chaice of repre-
sentation.

Set up a procedure for establishing polygon tables for any input set of data points
defining an object.

Devise routines for checking the data tables in Fig. 10-2 for consistency and com-
pleteness.

Write a program that calculates parameters A, B, C, and D for any set of three-di-
mensional plane surfaces defining an object.

. Given the plane parameters A, B, C, and D for all surfaces of an object, devise an al-

gorithm to determine whether any specified point is inside or outside the object.
How would the values for parameters A, B, C, and D in the equation of a plane sur-
face have to be altered if the coordinate reference is changed from a right-handed
system 10 a lefi-handed system?

Set up an algorithm for converting any specified sphere, ellipsoid, or cylinder to a
polygon-mesh representation.

Set up an algorithm for converting a specified superellipsoid to a polygon-mesh rep-
resentation.

. Set up an algorithm for converting a metaball representation to a polygon-mesh rep-

resentation.

Write a routine to display a two-dimensional, cardinal-spline curve, given an input
set of control points in the xy plane.

Write a routine to display a two-dimensional, Kochanek-Bartels curve, given an input
set of control points in the xy plane.

Determine the quadratic Bézier blending functions for three control points. Plot each
function and label the maximum and minimum values.

Determine the Bézier blending functions for five control paoints. Plot each function
and label the maximum and minimum values. ’

Write an efficient routine to display two-dimensional, cubic Bézier curves, given a
set of four control points in the xy plane.

Write a routine to design two-dimensional, cubic Bezier curve shapes that have first-
order piecewise continuity. Use an interactive technique for selecting control-point
positions in the xy plane for each section of the curve.

Write a routine to design two-dimensional, cubic Bézier curve shapes that have sec-
ond-order piecewise continuity. Use an interactive technique for selecting control-
point positions in the xy plane for each section of the curve.

Write a routine to display a cubic Bézier curve using a subdivision method.
Determine the blending functions for uniform, periodic B-spline curves for d = 5.
Determine the blending functions for uniform, periodic B-spline curves for d = 6.
Write a program using forward differences to calculate points along a two-dimen-
sional, uniform, periodic, cubic B-spline curve, given an input set of control points.
Write a routine to display any specified conic in the xy plane using a rational Bézier
spline representation.

Write a routine to display any specified conic in the xy plane using a rational
B-spline representation.

Develop an algorithm for calculating the normal vector to a Bezier surface at the
point P(u, vi.

Write a program to display any specified quadratic curve using forward differences to
calculate points along the curve path.

Write a program to display any specified cubic curve using forward differences Lo
calculate points along the curve path.

Derive expressions for calculating the forward differences for any specified quadratic
curve.

Exercises

405

Chaoter 10

406

Three-Dimensional Obyect
Represertations

10-29.

10-30.

10-31.

10-32.

10-33.

10-34.

10-35.

10-36.

10-37.

10-38.

10-39.

10-40.

10-41.

10-42.

10-43.

10-44.

10-45.

10-46.

10-47.

10-48.

10-49.

10-50.

10-51

10-52.

Derive expressions tor calcu'ating the forward differences for any specified cubic
curve.,

Set up procedures 1cr generating the description of a three-dimensional object from
input parameters thai define the object interms of a translational sweep.

Develop procedures for generating the description of a three-dimensional object
using input parameters that define the object in terms of a rotational sweep.

Devise an algorithm for generating solid objects as combinations of three-dimen-
sional primitive shapes, each defined as a set of surfaces, using cunstructive solid-
geometsy methods.

Develop an algorithm for performing constructive solid-geometry modeling using a
primitive set of solids defined in octree structures.

Develop an algorithm for encoding a two-dimensional scene as a quadtree represen-
tation.

Set up an algonthm for loading a quadtree representation of a scene into a frame
buffer for displav of te scene.

Write a routine to convert the polygon definition of a three-dimensional object into
an octree representation.

Using the random, midpoint-displacement method, write a routine to create a moun-
tain outhine, starting with a horizontal line in the xy plane

Write a routine to calculate elevations above a ground plane using the random, mid-
point-disptacement method.

Write a program tor generating a fractal snowtlake (Koch curve) for any given num-
ber of iterations.

Write a program to generate a fractal curve for a specified number of iterations using
one of the generators in Fig. 10-71 or 10-72. What is the fractal dimension of vour
curve?

Write a program 1ty generate fractal curves using the self-squaring function
flz) = 2 + A. where A is any selected complex constant.

Write a program o generate fradtal curves using (he self-squaring tunction
fx) = 42" + 1), whera 1 = V=1.

Write & routine to interactively select different color combinations for displaying the
Mandelbrot set.

Write & program to interactively select arv rectangular region of the Mandelbrot set
and to zoom in on the selected region.

Write a routine to implement point inversion, Eg. 10-112, for any specified circle and
any given potnt position.

Devise a set of geometric-substitution rules for aftering the shape of an equilateral tri-.
angle.

Write a program to display the stages in the conversion of an equilateral triangle into
another shape, given a set of geometric-substitution rules.

Write a program to model an exploding firecracker in the xy plane using a particle
system.

Devise an algorithm for modeling a rectangle as a nonnigid body, using identical
springs for the four sides of the rectangle.

Write 2 routine to visualize a two-dimensional, scalar data set using pseudo-color
methods.

Write a routine to visualize a two-dimensional, scalar data set using contour hnes
Write a routine to visualize a two-dimensional, vector data set using an arrow repre-
sentation for the vector values. Make all arrows the same length, but display the ar-
rows with different cclors to represent the different vector magnitudes.

408

M ethods for geometric transformations and object modeling in three di-
mensions are extended from two-dimensional methods by including
considerations for the z coordinate. We now translate an object by specifying a
three-dimensional translation vector, which determines how much the object is to
be moved in each of the three coordinate directions. Similarly, we scale an object
with three coordinate scaling factors. The extension for three-dimensional rota-
tion is less straightforward. When we discussed two-dimensional rotations in the
xy plane, we needed to consider only rotations about axes that were perpendicu-
lar to the xy plane. In three-dimensional space, we can now select any spatial ori-
entation for the rotation axis. Most graphics packages handle three-dimensional
rotation as a composite of three rotations, one for each of the three Cartesian axes.
Alternatively, a user can easily set up a general rotation matrix, given the orienta-
tion of the axis and the required rotation angle. As in the two-dimensional case,
we express geometric transformations in matrix form. Any sequence of transfor-
mations is then represented as a single matrix, formed by concatenating the ma-
trices for the individual transfprmations in the sequence.

11-1
TRANSLATION

In a three-dimensional homogeneous coordinate representation, a point is trans-
lated (Fig. 11-1) from position P = (x, y, z) to position P' = (x’, y", 2’} with the ma-
trix operation

x’ 1 0 0 ¢ x
: 001 0 ¢
2 il I " ; (-
1 0 0 0 1 1
or
P=T:P (11-2

Parameters t,, t, and t,, specifying translation distances for the coordinate direc-
tions x, y, and z, are assigned any real values. The matrix representation in Eq.
11-1 is equivalent to the three equations

x'=u+ i, y':y+1y, 2" =z+t (113

v

y axis

olx,y, 2z

(x, v 2) T=(t,t,.t)

/ Figure 11-1
xaxis Iranslating a point with translation
2 axis vector T = (I, 1, 1)
y axis
oix, v, 2z
(x, v, 2) T=it.1.1,)
Figure 11-2
x Translating an object with

z axis translation vector T.

An object is translated in three dimensions by transforming each of the
defining points of the object. For an object represented as a set of polygon sur-
faces, we translate each vertex of each surface (Fig. 11-2) and redraw the polygon
facets in the new position.

We obtain the inverse of the translation matrix in Eq. 11-1 by negating the
translation distances t,, t,, and t,. This produces a translation in the opposite di-
rection, and the product of a translation matrix and its inverse produces the iden-
tity matrix.

11-2
ROTATION

To generate a rotation transformation for an object, we must designate an axis of
rotation (about which the object is to be rotated) and the amount of angular rota-
tion. Unlike two-dimensional applications, where all transformations are carried
out in the xy plane, a three-dimensional rotation can be specified around any line
in space. The easiest rotation axes to handle are those that are parallel to the coor-
dinate axes. Also, we can use combinations of coordinate-axis rotations {(along
with appropriate translations) to specify any general rotation.

By convention, positive rotation angles produce counterclockwise rotations
about a coordinate axis, if we are looking along the positive half of the axis to-
ward the coordinate origin (Fig. 11-3). This agrees with our earlier discussion of
rotation in two dimensions, where positive rotations in the xy plane are counter-
clockwise about axes parallel to the z axis.

Coordinate-Axes Rotations

The two-dimensional z-axis rotation equations are easily extended to three di-
mensions:

Section 11-2

Rotation

409

Chapter 11 ¥

Three-Dimensional Geometric
and Modeling Transformations

tal

(b)

Figure 11-3
. Positive rotation directions
o about the coordinate axes are
counterciockwise, when looking
toward the origin from a positive
e} coordinate position on each axis.

x'=xcosf— ysinh
¥ = xsin@ + ycosd -4

=z

Parameter 6 specifies the rotation angle. In homogeneous coordinate form, the
three-dimensional z-axis rotation equations are expressed as

X cos# —sing 0 0 S
, . 0
¥ | _{ sm8 cosb Y y 1.5)
hd 0 0 1 0 2
1 0 0 0 1 1

410

y Section 11-2

Rotation

e

X higure 11-4
Rotation of an object about the z
z axis.

which we can write more compactly as
P'=R/(0)-P (11-6)

Figure 11-4 illustrates rotation of an object about the z axis.

Transformation equations for rotations about the other two coordinate axes
can be obtained with a cyclic permutation of the coordinate parameters x, y, and
zin Eqs. 11-4. That is, we use the replacements

XYz) (11-7)
as illustrated in Fig. 11-5.
Substituting permutations 11-7 in Eqs. 11-4, we get the equations for an

x-axis rotation:

y =ycosf —zsin §
Z' = ysing + zcosd (11-8

X =x

which can be written in the homogeneous coordinate form

x 1 0 0 0 X
y _ 0 cos® —sin® 0 % (17.9)
7 0 siné cosf (} z ’
1 0 0 0 1 1
14 z X
I
== ﬁ-

z X y
Figure 1125

Cyclic permutation of the Cartesian-coordinate axes to produce the
three sets of coordinate-axis rotation equations.

411

Chapter 11

Three-Dimensional Geometric
and Modeling Transformations

412

z
Figure 11-6
Rotation of an object about the
x X axis.
or
P'=R,/(6)-P (11-10)

Rotation of an object around the x axis ts demonstrated in Fig. 11.6.
Cyclically permuting coordinates in Egs. 11-8 give us the transformation
equations for a y-axis rotation:

Z'=zcost — xsinf
X' =zsinf + x cosé (11-1h
y=uy

The matrix representation for y-axis rotation is

.

X cosf 0 sing O X
! 0 1 0 g
N N Y (1)
z -sing 0 cosf O z
1 0 0 0 1 1
or
PP=RJ8) P PEYRY
An example of y-axis rotation is shown in Fig. 11-7.
Y
!
|
// Figure 11-7
e + Rotation of an object about the
2 y axis.

An inverse rotation matrix is formed by replacing the rotation angle 8 by
- 6. Negative values for rotation angles generate rotations in a clockwise direc-
tion, so the identity matrix is produced when any rotation matrix is multiplied by
its inverse. Since anly the sine function is affected by the change in sign of the ro-
tation angle, the inverse matrix can also be obtained by interchanging rows and
columns. That is, we can calculate the inverse of any rotation matrix R by evalu-
ating its transpose (R™! = R"). This method for obtaining an inverse matrix holds
also for any composite rotation matrix.

General Three-Dimensional Rotations

A rotation matrix for any axis that does not coincide with a coordinate axis can
be set up as a composite transformation involving combinations of translations
and the coordinate-axes rotations. We obtain the required composite matrix by
first setting up the transformation sequence that moves the selected rotation axis
onto one of the coordinate axes. Then we set up the rotation matrix about that co-
ordinate axis for the specified rotation angle. The last step is to obtain the inverse
transformation sequence that returns the rotation axis to its original position.

In the special case where an object is to be rotated about an axis that is par-
allel to one of the coordinate axes, we can attain the desired rotation with the fol-
lowing transformation sequence.

1. Translate the object so that the rotation axis coincides with the parallel coor-
dinate axis.
2. Perform the specified rotation about that axis.

3. Translate the object so that the rotation axis is moved back to its original po-
sition.

The steps in this sequence are illustrated in Fig. 11-8. Any coordinate position P
on the object in this figure is transformed with the sequence shown as

P=T!R(TP
where the composite matrix for the transformation is
RO =T"'" R(T

which is of the same form as the two-dimensional transformation sequence for
rotation about an arbitrary pivot point.

When an object is to be rotated about an axis that is not parallel to one of
the coordinate axes, we need to perform some additional transformations. In this
case, v'e also need rotations to align the axis with a selected coordinate axis and
to bring the axis back to its original orientation. Given the specifications for the
rotation axis and the rotation angle, we can accomplish the required rotation in
five steps

1. Translate the object so that the rotation axis passes through the coordinate
origin.

2. Rotate the object so that the axis of rotation coincides with one of the coor-
dinate axes.

3. Perform the specified rotation about that coordinate axis.

Section 11-2

Ratation

413

Chapter 11

Three-Dimensional Geometric
and Modeling Transformations

414

(a)
Original Position o* Object (c)
Rotate Object Through Angle 8

Y 1 ‘
|
| . _Ro,;
T~
! ‘ s‘lgll’qxis
< /Jﬁ\‘\
z X z X
(b}
Translate Rotation Axis onto x Axis (d)

Translate Rotation
Axis to Original Position

Figurce 11-8
Sequence of transformations for rotating an object about an axis that is
parallel to the x axis

4. Apply inverse rotations to bring the rotation axis back to its original orien-
tation.

5. Apply the inverse translation to bring the rotation axis back to its original
position.

We can transform the rotation axis onto any of the three coordinate axes. The z
axis is a reasonable choice, and the following discussion shows how to set up the
transformation matrices for getting the rotation axis onto the z axis and returning
the rotation axis to its original position (Fig. 11-9).

A rotation axis can be defined with two coordinate positions, as in Fig. 11-
10, or with one coordinate point and direction angles (or direction cosines) be-
tween the rotation axis and two of the coordinate axes. We will assume that the
rotation axis is defined by two points, as illustrated, and that the direction of ro-
tation is to be counterclockwise when looking along the axis from P, to P,. An
axis vector is then defined by the two points as

V=P, -P,
g
= —x, =y, 2 -2y
A unit vector u is then defined along the rotation axis as
v -
u:lT|=((l,l’7,C) (17-15)

P,e
;
N i
; P,e
/;_._,_1_
7 r X
~
2
Initial Step 1 z
Positton Translate Step 2

P, 1o the Origin Rotate P;
onto the z Axis

X
Step 4 Step 5
Step 3 Rotate the Axis Translate the
Rotate the to the Criginal Rotation Axis
Object Around the Orientation to the Original
7 Axis Position

Figure 11-9
Five transformation steps for obtaining a composite matrix for rotation
about an arbitrary axis, with the rotation axis projected onto the z axis.

where the components 4, b, and ¢ of unut vector u are the direction cosines for the
rotation axis:

XX b_yz'}/l _AhToy

az_—l r
2 vl

(11-16)

If the rotation is to be in the opposite direction (clockwise when viewing from P,
to P)), then we would reverse axis vector V and unit vector u so that they point
from P, to P,.

The first step in the transformation sequence for the desired rotation is to
set up the translation matrix that repositions the rotation axis so that it passes
through the coordinate origin. For the desired direction of rotation (Fig. 11-10),
we accomplish this by moving point P, to the origin. (If the rotation direction had
been specified in the opposite direction, we would move P, to the origin.) This
translation matrix is

1 0 0 -x
0 1 0 -y

T= 1-17
000 1 -2 (11-17)
0 0 0 1

which repositions the rotation axis and the object, as shown in Fig. 11-11.

Section 11-2

Rotation

Figure 11-10

An axis of rotation (dashed
line) defined with points

P, and P,. The direction for
the unit axis vector u is
determined by the specified
rotation direction.

415

Figure 11-11
Translation of the rotation

axis to the coordinate ongin.

Figure 11-13
Rotation of u around the x

axis into the rz plane is
accomplished by rotating v’
(the projection of u in the yz
plane) through angle o onto
the z axis.

416

(Xt

(a) (b)
Figure 11-12
Unit vector u is rotated about the x axis to bring it
into the xz plane (a), then it is rotated around the y
axis to align it with the z axis (b).

Now we need the transformations that will put the rotation axis on the z
axis. We can use the coordinate-axis rotations to accomplish this alignment in
two steps. There are a number of ways to perform the two steps. We will first ro-
tate about the x axis to transform vector u into the xz plane. Then we swing u
around to the z axis using a y-axis rotation. These two rotations are illustrated in
Fig. 11-12 for one possible orientation of vectoru.

Since rotation calculations involve sine and cosine functions, we can use
standard vector operations (Appendix A) to obtain elements of the two rotation
matrices. Dot-product operations allow us to determine the cosine terms, and
vector cross products provide a means for obtaining the sine terms.

We establish the transformation matrix for rotation around the x axis by de-
termining the values for the sine and cosine of the rotation angle necessary to get
u into the xz plane. This rotation angle is the angle between the projection of u in
the yz plane and the positive z axis (Fig. 11-13). If we designate the projection of u
in the yz plane as the vector u” = (0, b, ¢), then the cpsine of the rotation angle «
can be determined from the dot product of u” and the unit vector u, along the z
axis:

u'su, &
Cos a = =

Tollal 4 aris
where d is the magnitude of u":

d=Vp?+? (H-7en

Similarly, we can determine the sine of « from the cross product of u’ and u,. The
coordinate-independent form of this cross product is

u‘><u;=u_,lu’| |u1|sina (1{-2in
and the Cartesian form for the cross product gives us

leuz=ux'b l.‘v.‘. /‘A/l

Equating the right sides of Eqs. 11-20 and 11-21, and noting that lu,| =1 and
luw| =d, wehave

dsina =b

or
(11-22)

. b
ine = -
sina = -

Now that we have determined the values for cosx and sina in terms of the com-
ponents of vector u, we can set up the matrix for rotation of u about the x axis:

1 0 0 0
0 c/d —b/d 0

= 23

R@=10 4 c/d o {23
0 0 0 1

This matrix rotates unit vector u about the x axis into the xz plane.

Next we need to determine the form of the transformation matrix that will
swing the unit vector in the xz plane counterclockwise around the y axis onto the
positive z axis. The orientation of the unit vector in the xz plane (after rotation
about the x axis) is shown in Fig. 11-14. This vector, labeled u”, has the value a for
its x component, since rotation about the x axis leaves the x component un-
changed. Its z component is d (the magnitude of u’), because vector u’ has been
rotated onto the z axis. And the y component of u” is 0, because it now lies in the
xz plane. Again, we can determine the cosine of rotation angle 8 from expres-
sions for the dot product of unit vectors u” and u;:

»”

u”u,)
cosp = 1 =d (1-24)
lu"] fu,l
since |u,l = fu"| = 1. Comparing the coordinate-independent form of the cross

product
u”><uz=uy|u”| |uz|sinB =25

with the Cartesian form

u’ Xu, =u,-(-al 1120
we find that
sinff = ~a 27
Thus, the transformation matrix for rotation of u” about the y axis is
d 0 —a 0
R,B) = S (1) S 8 tH2%0
00 0 1

With transformation matrices 11-17, 11-23, and 11-28, we have aligned the
rotation axis with the positive z axis. The specified rotation angle 8 can now be
applied as a rotation about the z axis:

Section 11-2

Rotation

Figure 11-14
Rotation of unit vector u”
(vector u after rotation into
the xz plane) about the y axis.
Positive rotation angle 8
aligns u” with vector u..

Chapter 11

Three-Dimensional Geometric
and Modeling Transformations

Figure 11-15

Local coordinate system for a
rotation axis defined by unit
veclor u.

418

cosf —sind

R.(8) = (11-29)

0 0

0
sind o056 0
1
0 0 0

—_— 0 O O

To complete the required rotation about the given axis, we need to trans-
form the rotation axis back to its original position. This is done by applying the
inverse of transformations 11-17, 11-23, and 11-28. The transformation matrix for
rotation about an arbitrary axis then can be expressed as the composition of these
seven individual transformations:

R() =T R, o) R,7B)-RAO) - R(B)-R(m) - T (11-30)
A somewhat quicker, but perhaps less intuitive, method for obtaining the

composite rotation matrix Ry(B) - R,(a} is to take advantage of the form of the
composite matrix for any sequence of three-dimensional rotations:

' ha ra O

R = rm a0 (17-37)
rmorm o rs 0
0 0 0 1

The upper left 3 by 3 submatrix of this matrix is orthogonal. This means that the
rows (or the columns) of this submatrix form a set of orthogonal unit vectors that
are rotated by matrix R onto the x, y, and z axes, respectively:

™m 1 T 0 s 0
)= w2l r || =] 0 fam
T 0 15X 0 ra 1
1 1 1 1 1 1

Therefore, we can consider a local coordinate system defined by the rotation
axis and simply form a matrix whose columns are the local unit coordinate vec-
tors. Assuming that the rotation axis is not parallel to any coordinate axis, we can
form the following local set of unit vectors (Fig. 11-15):

u,=u
. u X u,
u, = bl
117-3.
y uxu, 11-33)
u,=u, X u,

If we express the elements of the local unit vectors for the rotation axis as

= (g, g, ugy)
wy = (ugy, g, 1) (-39

w, = (uy, upyp, uy)

then the required composite matrix, equal to the product R () - R,(a), is

Uy Uy U D

R=| Mo e te (11-35)
Uy oy Uy 0
0 0 0 1

This matrix transforms the unit vectors u;, ug, and u; onto the x, y, and z axes, re-
spectively. Thus, the rotation axis is aligned with the z axis, since u; = u.

Rotations with Quaternions

A more efficient method for obtaining rotation about a specified axis is to use a
quaternion representation for the rotation transformation. In Chapter 10, we dis-
cussed the usefulness of quaternions for generating three-dimensional fractals
using self-squaring procedures. Quaternions are useful also in a number of other
computer graphics procedures, including three-dimensional rotation calcula-
tions. They require less storage space than 4-by-4 matrices, and it is simpler to
write quaternion procedures for transformation sequences. This is particularly
important in animations that require complicated motion sequences and motion
interpolations between two given positions of an object.

One way to characterize a quaternion (Appendix A) is as an ordered pair,
consisting of a scalar part and a vector part:

q=1(s,v)

We can also think of a quaternion as & higher-order complex number with one
real part (the scalar part) and three complex parts {the elements of vector v). A
rotation about any axis passing through the coordinate origin is performed by
first setting up a unit quaternion with the following scalar and vector parts:

Y]
§=Cosz, vV = usin;

5 ; (11-36)

where u is a unit vector along the selected rotation axis, and f is the specified ro-
tation angle about this axis (Fig. 11-16). Any point position P to be rotated by this
quaternion can be represented in quaternion notation as

P =0 p

with the coordinates of the point as the vector part p = (x, y, 2). The rotation of
the point is then carried out with the quaternjon operation

P’ =gqPq ! (11-37)
where g7 = (s,—v) is the inverse of the unit quaternion g with the scalar and vec-

tor parts given in Eqs. 11-36. This transformatior. produces the new quaternion
with scalar part equal to 0:

P =0, p) (11-38)

and the vector part is calculated with dot and cross products as

Section 11-2
Rotation
4
b "
/
X

ra

7
Figure 11-16

Uinit quaternion parameters
& and u for rotation about
a specified axis.

419

Chapter 11

Three-Dimensional Geometric
and Modeling Transformations

420

PP+ v(pv) + 25(v X p)+ v X (v X Pl (11-39)

Parameters s and v have the rotation values given in Egs. 11-36. Many computer
graphics systems use ethcient hardware implementations of these vector calcula-
tions to perform rapid three-dimensional object rotations.

Transformation 11-37 is equivalent to rotation about an axis that passes
through the coordinate origin. This is the same as the sequence of rotation trans-
formations in Eq. 11-30 that aligns the rotation axis with the z axis, rotates about
z, and then returns the rotation axis to its original position.

Using the definition for quaternion multiplication given in Appendix A,
and designating the components of the vector part of ¢ as v = (a, b, 0), we can
evaluate the terms in Eq 11-39 to obtain the elements for the composite rotation
matrix R; '(a) - R, '(8) - R(#) - R(B) - R(a)in a 3 by 3 form as

1 — 262202 2ab — 2sc 2ac + 2sb
Mp(0y = 2ab + 2s¢ 1= 247 — 27 2be — 2sa (11-40)
2ac — 2sb 2bc + 2sa 1 — 2q> — 2b?

To obtain the complete general rotation equation 11-30, we need to include the
translations that move the rotation axis to the coordinate axis and back to its orig-
inal position That is,

RO =T M, T (11-41)

As an example, we can perform a rotation about the z axis by setting the
unit quaternion parameters as

4 6
<= C0s 3, v =1(0,0,1)sinz

2

where the quaternion vector elements are @ = b = 0 and ¢ = sin(6/2). Substitut-
ing these values into matrix 11-40, and using the following trigonometric identi-
ties

g _ o .0
> = ¢0s 8, 2c0525m2 =sing

we get the 3 by 3 version of the z-axis rotation matrix R,(8) in transformation
equation 11-5. Similarly, substituting the unit quaternion rotation values into the
transformation equation 11-37 produces the rotated coordinate values in Eqs.
11-4.

11-3
SCALING

The matrix expression tor the scaling transformation of a position P = (x, y, 2) rel-
ative to the coordinate crigin can be written as

Figure 11-17
Doubling the size of an object with
transformation 11-42 also moves the
2 x object farther from the origin.
x s, 0 0 0 x
Y 0 s, 0 0 y
= 11-42
z' 0 0 s O z ¢)
1 0 0 0 1 1
or
P=S-P (11-43)

where scaling parameters s,, s,, and s, are assigned any positive values. Explicit
expressions for the coordinate transformations for scaling relative to the origin
are

v r

x'=x-s, Y =y-s, 2 =2z-s, (11-44)

Scaling an object with transformation 11-42 changes the size of the object
and repositions the object relative to the coordinate origin. Also, if the transfor-
mation parameters are not all equal, relative dimensions in the object are
changed. We preserve the original shape of an object with a uniform scaling (s, =
s, = 5,). The result of scaling an object uniformly with each scaling parameter set
to 2 is shown in Fig. 11-17.

Scaling with respect to a selected fixed position (x, y, z,) can be represented
with the following transformation sequence:

1. Translate the fixed point to the origin.
2. Scale the object relative to the coordinate origin using Eq. 11-42.
3. Translate the fixed point back to its original position.

This sequence of transformations is demonstrated in Fig. 11-18. The matrix repre-
sentation for an arbitrary fixed-point scaling can then be expressed as the con-

catenation of these translate-scale-translate transformations as

S, 0 0 (1 - S\r)xf

0 s, 0 (-s)y ,

T(=x, ~y, ~2) = : : 45

Tlx, y. 20 - 86y, 8, 8,0 - T(—x, =y, ~2p 0 0 s (-s) SRESEY
0 0 0 1

We form the inverse scaling matrix for either Eq. 11-42 or Eq. 11-45 by re-
placing the scaling parameters s,, s, and s; with their reciprocals. The inverse ma-

(b}

14
*
(Xr Y, 2¢)
z X
{c)
4
(Xe: Ve 2¢)
; *
{d)
Figure 17-18

Scaling an object relative to a
selected fixed point is
equivalent to the sequence of
ransformations shown.

421

Chapter 11

Three-Dimensional Geometric
and Modeling Transformations

422

trix generates an opposite scaling transformation, so the concatenation of any
scaling matrix and its inverse produces the identity matrix.

11-4

OTHER TRANSFORMATIONS

In additior to translation, rotation, and scaling, there are various additional
transformations that are often useful in three-dimensional graphics applications.
Two of these are reflection and shear.

Reflections

A three-dimensional reflection can be performed relative to a selected reflection
axis or with respect to a selected reflection plane. In general, three-dimensional re-
flection matrices are set up similarly to those for two dimensions. Reflections rel-
ative to a given axis are equivalent to 180° rotations about that axis. Reflections
with respect to a plane are equivalent to 180° rotations in four-dimensional space.
When the reflection plane is a coordinate plane (either xy, xz, or yz), we can think
of the transformation as a conversion between left-handed and right-handed sys-
tems.

An example of a reflection that converts coordinate specifications from a
right-handed system to a left-handed system (or vice versa) is shown in Fig.
11-19. This transformation changes the sign of the z coordinates, leaving the x-
and y-coordinate values unchanged. The matrix representation for this reflection
of points relative to the xy plane is

10 00

01 00
F,= (11-46)
RE, 0 0 -1 0

00 01

Transformation matrices for inverting x and y values are defined similarly,
as reflections relative to the yz plane and xz plane, respectively. Reflections about
other planes can be obtained as a combination of rotations and coordinate-plane
reflections.

Reflection
Relative to the y
xy Plane

/; X x
e
z

Figure 11-19
Conversion of coordinate specifications from a right-
handed to a left-handed system can be carried out with
the reflection transformation 11-46.

Shears

Shearing transformations can be used to modify object shapes. They are also use-
ful in three-dimensional viewing for obtaining general projection transforma-
tions. In two dimensions, we discussed tranformations relative to the x or iy axes
to produce distortions in the shapes of objects. In three dimensions, we can also
generate shears relative to the z axis.

As an example of three-dimensional shearing. the following transformation
produces a z-axis shear:

SH. = (147

o o o -
o o = D
—

Parameters @ and b can be assigned any real values. The effect of this transforma-
tion matrix is to alter x- and y-coordinate values by an amount that is propor-
tional to the = value, while leaving the z coordinate unchanged. Boundaries of
planes that are perpendicular to the z axis are thus shifted by an amount propor-
tional to z. An example of the effect of this shearing matrix on a unit cube is
shown in Fig. 11-20, for shearing values @ = b = 1. Shearing matrices for the x
axis and y axis are defined similarly.

11-5
COMPOSITE TRANSFORMATIONS

As with two-dimensional transformations. we form a composite three-dimen-
sional transformation by multiplying the matrix representations for the individ-
ual operations in the transformation sequence. This concatenation is carried out
from right to left, where the rightmost matrix is the first transformation to be ap-
plied to an object and the leftmost matrix is the las: transformation. The follow-
ing program provides an example for implementing a composite transformation.
A sequence of basic, three-dimensional geometric transformations are combined
to produce a single composite transformation, which is then applied to the coor-
dinate definition of an object.

Section 11-5

Composite Transformations

(b}

Vigiure 11-20

A unit cube (a) is sheared
"b) by transformation matrix
11-47, witha — b~ 1.

#include <math.h>
#include "graphics.h"

#define P7 3.141%59

typedef float Matrixdx4a({4]1{4]:
Matrixd4x4d theMatrix;

vold matrixdx4Setidentity {(Matrixd4xd mi
{

int 1,

for (r=C; r<4; r++)
for tc=0: c<d; ce+)

/* Multiplies matrix a times b, putting result in b */
void matrix4dx4PreMultiply (Matrix4x4 a, Matrix4x4 b)

{
int r,c;
Matrixdx4d tmp;

for (r=0; r<4; r++)
for t(c=0; c<4; c++)

tmp(r]lc] = alr]10]*b{0)(c] + alr)(l1}*b.

i
‘ alrii21%bi2)(c) + alr)(3)*b(3](c];
for (r=0; r<4d; r++)
for {(c=3; c<4; c++)
birilc; = tmpirlicl:
)
1
]
i

void trarslatel (float tx, float ty, float tz)
{
Matrix4dx4 m;
matrix4x4Sevldercity (m);
m{0]1{3] = tx; m{1)(3) = ty; m[2]{3) = tz;
matrix4x4PreMulciply (m, theMatrix):
}
void scalel (float sx, float sy, float sz, wcPt3

Matrix4x4 m;

matrix4x4Setldentity (m);

m(0)[Q) = sx:
m{0)[3] = (1 - sx) * center.x;
m{1]{1] = sy;
m{l][3] = (1 - sy} * center.y;
m(2]{2] = sz;
m[2][3] = (1 - sz) * center.z;

matrix4x4PreMultiply (m, theMatrix);
J

{
float length = sqgrt ((p2.x - pl.x) * (p2.x -
{p2.y - pl.y) * (p2.y
(p2.z - pl.z) * (p2.z
float coshZ = cosf (radianAngle / 2.0);
float £inAZ = sinf (radianAngle / 2.0):
float a = sinA2 * (p2.x - pl.x} / length;
float b = sinA2 * (p2.y - pl.y) / length;
float ¢ = sinA2 * (p2.z - pl.z) / length;
Marrix4x4 m,

rranslate3 (-pl.x, -pl.y., -pl.z);
matrix4x4Setridentity {(m};
m(0] [0} = 1.0 - 2*b*b -~ 2*c*c;

m(0][1l] = 2*a*b - 2*cosA2*c;
m(0][2] = 2*a*c + 2"cosA2*b;
mil]{0) - 2*a*b +« 2*cosA2*c;
m(l}[l] = 1.0 - 2*a*a - 2*c*c;
m[l][2] = 2*b*c - 2*cosA2*a;
m{2][0) = 2*a*c - 2*cosA2"b;

424

center)

void rotatel (waPt3 pl, wcPt3 p2, flcat radianAngle)

pl.x) +

- pl.y) +

- pl.z)):

m(2].1] = 2*b*c + 2*cosA2%*a;
m(2]:2] = 1.0 - 2*a*a - 2*b*b;
matrix4x4PreMultiply (m, theMatrix);
translate3 (pl.x, pl.y, pl.z):

}

void transformPoints3 (int nPts, wcPt3 * pts)
{

int x, 3:

float tmp([3];

for (k=0; k<nPts; k++) {
for (3=0; j<3; j++)
tmpl[j)] = theMatrix(j][0] * ptsik].x + theMatrix|[j][1) * pts(k].y +
theMatrix{j)[2] * pts(k].z + theMatrix[j){3]):
setWcPt3 (&pts[k], tmp{0], tmp(l]). tmplz]);
}

void main (int argc, char ** argv)

{
wcPt3 pts(5) = { 10,10,0, 100,10,0, 125,50,0, 35.50,0, 10,10,0 }:
wcPt3 pl = { 10,10,0)}, p2 = { 10,10,10 }:
wcPt3 refPt = { 68.0,30.0,0.0);

long windowID = openGraphics (*argv, 200, 200};
setBackground {(WHITE);

setColor (BLUE):

pPolyline3 (5, pts);

matrix4x4Setldentity (theMatrix);
rotate3 (pl, p2, PI/4.0);

scale3 (0.75, 0.75, 1.0, refPt);
translated (25, 40, 0);
transformPoints3 (5, pts);
setColor (RED);

pPolyline3 (5, pts);

sleep (10};
L closeGraphics {windowlID) ;
)

11-6
THREE-DIMENSIONAL TRANSFORMATION FUNCTIONS

We set up matrices for modeling and other transformations with functions simi-
lar to those given in Chapter 5 for two-dimensional transformations. The major

difference is that we can now specify rotations around any coordinate axis. These
functions are

translate3d (translateVector, matrixTranslate!
rotateX (thetaX, xMatrixRotate)

rotateY {(thetaY, yMatrixRotate)

rotateZ (thetaZ, zMatrixRotate)

scale3 (scaleVector, matrixScale)

425

Chapter 11

Three-Dimensional Geometrtc
and Modeling Transformations

426

Each of these functions produces a 4 by 4 transformation matrix that can then be
used to transform coordinate positions expressed as homogeneous column vec-
tors. Parameter translateVector isa pointer to the list of translation distances
t, t,, and £,. Similarly, parameter scaleVector specifies the three scaling para-
meters s,, 5, and s,. Rotate and scale matrices transform objects with respect to
the coordinate origin.

And we can construct composite transformations with the functions

composeMatrixl
buildTransformationMat-ix3
composeTransforrationMatrix3

which have parameters similar to two-dimensional transformation functions for
setting up composite matrices, except we can now specify three rotation angles.
The order of the transformation sequence for the buildTransformationMa-
trix3 and composeTransformationMatrix3 functions is the same as in two
dimensions: (1) scale, (2) rotate, and (3) translate.

Once we have specified a transformation matrix, we can apply the matrix to
specified points with

transformPoint [inPoint, matrix, outPoint)

In addition, we can set the transformations for hierarchical constructions using
structures with the function

setlLocalTranstormation3 (matrix, type)
where parameter matri:: specifies the elements of a 4 by 4 transformation ma-

trix, and parameter type can be assigned one of the following three values: pre-
concatenate, postconcatenaty, or repla(ﬂ

11-7
MODELING AND COORDINATE TRANSFORNMATIONS

So far, we have discussed three-dimensional transformations as operations that
move objects from one position to another within a single reference frame. There
are many times, however. when we are interested in switching coordinates from
one system tu anc ther. General three-dimensional viewing procedures, for exam-
ple. involve an initial transformation of world-coordinate descriptions to a view-
ing-coordinate svstem. Then viewing coordinates are transformed to device coor-
dinates. And in modeling, objects are often described in a local (modeling)
coordinate reference frame, then the objects are repositioned into a world-coordi-
nate scene. For example, tables, chairs, and other furniture, each defined in a
local {modeling) coordinate system, can be placed into the description of a room,
defined in another reference frame, by transforming the furniture coordinates to
room coordinates. Then the room might be transformed into a larger scene, con-
structed in world coordinates.

An example of the use of multiple coordinate svstems and hierarchical
modeling with three-dimensional objects is given in Fig. 11-21. This figure illus-
trates simulation of tracte~ movement. As the tractor moves, the tractor coordi-
nate svstem and front-wheel coordinate system move in the world-coordinate

Tractor

System Y

z World X

Xpww

Z
™ Front-Wheel
System

Figure 11-21

Possible coordinate systems used in simulating tractor movement.
Wheel rotations are described in the front-wheel system. Turning of
the tractor is described by a rotation of the front-wheel system in
the tractor system. Both the wheel and tractor reference frames
move in the world-coordinate system.

system. The front wheels rotate in the wheel system, and the wheel system ro-
tates in the tractor system when the tractor turns.

Three-dimensional objects and scenes are constructed using structure (or
segment) operations similar to those discussed in Chapter 7. Modeling transfor-
matjon functions can be applied to create hierarchical representation for three-di-
mensional objects. We can define three-dimensional object shapes in local (mod-
eling) coordinates, then we construct a scene or a hierarchical representation with
instances of the individual objects. That is, we transform object descriptions from
modeling coordinates to world coordinates or to another system in the hierarchy.
An example of a PHIGS structure hierarchy is shown in Fig. 11-22. This display
was generated by the PHIGS Toolkit software, developed at the University of

Figure 11-22

Displaying an object hierarchy
using the PHIGS Toolkit package
developed at the University of
Manchester. The displayed object
tree is itself a PHIGS structure.

(Courtesy of T. L. |. Howard,]. G. Williams,
and W. T. Hewitt, Department of Computer
Science, University of Manchester, United
Kingdom.)

Section 11-7

Modeling and Coordinate
Transformations

427

428

Figure 11-23

Three-dimensional modeling: (a) A
ball-and-stick representation for
key amino acid residues interacting
with the natural substrate of
Thymidylate Synthase, modeled
and rendered by Julie Newdoll,
UCSF Computer Graphics Lab. (b) A
CAD model showing individual
engine components, rendered by
Ted Malone, FTI/3D-Magic.
(Courtesy of Silicon Graphics, inc.)

Manchester, to provide an editor, windows, menus, and other interface tools for
PHIGS applications. Figure 11-23 shows two example applications of three-
dimensional modeling,.

Coordinate descriptions of objects are transferred from one system to an-
other with the same procedures used to obtain two-dimensional coordinate
transformations. We need to set up the transformation matrix that brings the two
coordinate systems into alignment. First, we set up a translation that brings the
new coordinate origin to the position of the other coordinate origin. This is fol-
lowed by a sequence of rotations that corresponding coordinate axes. If different
scales are used in the two coordinate systems, a scaling transformation may also
be necessary to compensate ‘or the differences in coordinate intervals.

If a second coordinate system is defined with origin (x;, yo, o) and unit axis
vectors as shown in Fig. 11-24, relative to an existing Cartesian reference frame,
we first construct the translation matrix T(~x,, —yo —2¢). Next, we can use the
unit axis vectors to form the coordinate rotation matrix

Figure 11-24

Transformation of an object
description from one coordinate
system to another.

Uy U W 0

R=| % M2 s O (11-48)
upy Uy Uy 0
0 0 0 1

which transforms unit vectors u}, u;,, and uj onto the x, y, and z axes, respec-
tively. The complete coordinate-transformation sequence is then given by the
composite matrix R - T. This matrix correctly transforms coordinate descriptions
from one Cartesian system to another even if one system is left-handed and the
other is right-handed.

SUMMARY

Three-dimensional transformations useful in computer graphics applications in-
clude geometric transformations within a single coordinate system and tranfor-
mations between different coordinate systems. The basic geometric transforma-
tions are translation, rotation, and scaling. Two additional object transformations
are reflections and shears. Transformations between different coordinate systems
are common elements of modeling and viewing routines. In three dimensions,
transformation operations are represented with 4 by 4 matrices. As in two-di-
mensional graphics methods, a composite transformation in three-dimensions is
obtained by concatenating the matrix representations for the individual compo-
nents of the overall transformation.

Representations for translation and scaling are straightforward extensions
of two-dimensional transformation representations. For rotations, however, we
need more general representations, since objects can be rotated about any speci-
fied axis in space. Any three-dimensional rotation can be represented as a combi-
nation of basic rotations around the x, y, and z axes. And many graphics pack-
ages provide functions for these three rotations. In general, however, it is more
efficient to set up a three-dimensional rotation using either a local rotation-axis
reference frame or a quaternion representation. Quaternions are particutarly use-
ful for fast generation of repeated rotations that are often required in animation
sequences.

Reflections and shears in three dimensions can be carried out relative to any
reference axis in space. Thus, these transformations are also more involved than
the corresponding transformations in two dimensions. Transforming object de-
scriptions from one coordinate system to another is equivalent to a transforma-
tion that brings the two reference frames into coincidence. Finally, object model-
ing often requires a hierarchical transformation structure that ensures that the
individual components of an object move in harmony with the overall structure.

REFERENCES

for additional techniques involving matrices, modeling, and three-dimensional transforma-
tions, see Glassner (1990), Arvo (1991), and Kirk (1992). A detailed discussion of quater-
nton rotations is given in Shoemake (1985). Three-dimensional PHICGS and PHICS + trans-
formation functions are discussed in Howard et al. (1991), Gaskins (1992), and Blake
11993).

Summary

429

Chapter 11

Three-Dimensional Geometric
and Modeling Transformations

430

EXERCISES

-1

11-8.
11-9.

11-10.
11-11.

11-12.
11-13.
11-14.
15,

1-16.

Prove thal the multiplication of three-dimensional transformation matrices for each
of the following sequence of operations is commuative:

(a) Any two successive translations.

{b) Any two successive scaling operations.

(¢) Any two successive rotations about any one of the coordinate axes.

. Using either Eq. 11-30 or £q. 11-41, prove that any two successive rotations about a

given rotation axis is commutative.

. By evaluating the terms in Eq. 11-39, derjve the e.ements for general rotation matrix

given in Eq. 11-40.

. Show that rotation matrix 11-35 is equal to the compusite matrix R (3} - R ta).
. Prove that the quaternion rotation matrix EG. 11-40 reduces to the matrix representa-

tion in €q. 11-5 when the rotation axis is the coordinate 7 axis.

. Prove that Eg. 1141 is equivalent to the general rotatron transformation given in Eq.

11-30.

. Write a procedure to implement general rotation transtormations using the rotation

matrix 11-35.

Write a routine 10 implement quaternion rotations, £g 11-41, for any specified axie.
Derive the transtormation matrix for scaling an object by a scaling factor s in a direc-
tion defined by the direction angles a, 8, and .

Develop an algorithm for scaling an object defined in an octree representation.
Develop a procedure for animating an object by incrementallv rotating it about any
specified axis Uw: appropriate approximations to the (rigonometric equations to
speed up the calculations, and reset the object to ts initial pusition after each com-
plete revolution about the axis.

Devise a procedure for rotating an abject that is represented in an actree stiucture.
Develop a routine "o reflect an object about an arbitrarly selected plane.

Write a program to shear an object with respect to anv of the three coordinate axes,
using input values for the shearing parameters.

Develop a procedure for converting an object definitior in one ¢oordinate reference
to any other courdinate system defined relative to the tirst system.

Develop a complete algorithm for implementing the procecures for constructive
solid modcehng by combining three-dimensional pumits es 10 generate new shapes.
Initially, the primitives can be combined to form subassemblies. then the subassem-
blies can be comb ned witk each other and with primitive shapes to form the final
assemblv. Interactive input of translation and rotation parameters can be used to po-
sition the objects. Output of the algorithm is to he the sequence of operatians
needed to produce the final CSG object.

431

432

I n two-dimensional graphics applications, viewing operations transfer posi-
tions from the world-coordinate plane to pixel positions in the plane of the
output device. Using the rectangular boundaries for the world-coordinate win-
dow and the device viewport, a two-dimensional package maps the world scene
to device coordinates and clips the scene against the four boundaries of the view-
port. For three-dimensional graphics applications, the situation is a bit more in-
volved, since we now have more choices as to how views are to be generated.
First of all, we can view an object from any spatial position: from the front, from
above, or from the back. Or we could generate a view of what we would see if we
were standing in the middle of a group of objects or inside a single object, such as
a building. Additionally, three-dimensional descriptions of objects must be pro-
jected onto the flat viewing surface of the output device. And the clipping
boundaries now enclose a volume of space, whose shape depends on the type of
projection we select. In this chapter, we explore the general operations needed to
produce views of a three-dimensional scene, and we also discuss specific viewing
procedures provided in packages such as PHIGS and GI..

12-1
VIEWING PIPELINE

The steps for computer generation of a view of a three-dimensional scene are
somewhat analogous to the processes involved in taking a photograph. To take a
snapshot, we first need to position the camera at a particular point in space. Then
we need to decide on the camera orientation (Fig. 12-1): Which way do we point
the camera and how should we rotate it around the line of sight to set the up di-
rection for the picture? Finally, when we snap the shutter, the scene is cropped to
the size of the “window" (aperture) of the camera, and light from the visible sur-

14
-
- Figure 12-1
< Photographing a scene involves
selection of a camera position and
z orientation.

Modeling

; World Viewing
Coordinates

Coordinates . Transfarmation

—_

Viewing
Coordinates

Projection ~ Workstation
Coordinates

Trensformation

Device
Coordinates

Figure 12-2

General three-dimensional transformation pipeline, from modeling coordinates to final

device coordinates.

faces is projected onto the camera film. We need to keep in mind, however, that
the camera analogy can be carried only so far, since we have more flexibility and
many more options for generating views of a scene with a graphics package than
we do with a camera.

Figure 12-2 shows the general processing steps for modeling and convert-
ing a world-coordinate description of a scene to device coordinates. Once the
scene has been modeled, world-coordinate positions are converted to viewing co-
ordinates. The viewing-coordinate system is used in graphics packages as a refer-
ence for specifying the observer viewing position and the position of the projec-
tion plane, which we can think of in analogy with the camera film plane. Next,
projection operations are performed to convert the viewing-coordinate descrip-
tion of the scene to coordinate positions on the projection plane, which will then
be mapped to the output device. Objects outside the specified viewing limits are
clipped from further consideration, and the remaining objects are processed
through visible-surface identification and surface-rendering procedures to pro-
duce the display within the device viewport.

12-2
VIEWING COORDINATES

Generating a view of an object in three dimensions is similar to photographing
the object. We can walk around and take its picture from any angle, at various
distances, and with varying camera orientations. Whatever appears in the
viewfinder is projected onto the flat film surface. The type and size of the camera
lens determines which parts of the scene appear in the final picture. These ideas
are incorporated into three-dimensional graphics packages so that views of a
scene can be generated, given the spatial position, orientation, and aperture size
of the “camera”.

Specifying the View Plane

We choose a particular view for a scene by first establishing the viewing-coordi-
nate system, also called the view reference coordinate system, as shown in
Fig. 12-3. A view plane, or projection plane, is then set up perpendicular to the

|
Yoo *
P4

Po= (x;. Yor 20}

I'e

w

Fuguere 12-3

A right-handed viewing-
coordinate system, with axes
¥, ¥, and z,, relative to a
waorld-coordinate scene.

433

View Plane
Yw
N
xw
zw
(a}
View Plane
—
Xu
N
b}
Figure 12-4

Orientations of the view
plane for specified normat
vector coordinates relative to
the world origin, Position (1,
0, 0) orients the view plane as
in (a), while (1, G, 1) gives the
orientation in (b).

Figure 12-6
Specifying the view-up vector
with a twist angle 6,

434

viewing z, axis. We can think of the view plane as the film plane in a camera that
has been positioned and orniented for a particular shot of the scene. World-coordi-
nate positions in the scene are transformed to viewing coordinates, then viewing
coordinates are projected onto the view plane.

To establish the viewing-coordinate reference frame, we first pick a world-
coordinate position called the view reference point. This point is the origin of
our viewing-coordinate system. The view reference point is often chosen to be
close to or on the surface of some object in a scene. But we could also choose a
point that is at the center of an object, or at the center of a group of objects, or
somewhere out in front of the scene to be displayed. If we choose a point that is
near to or on some object, we ¢an think of this point as the position where we
might want to aim a camera to take a picture of the object. Alternatively, if we
choose a point that is at some distance from a scene, we could think of this as the
camera position.

Next, we select the positive direction for the viewing z, axis, and the orien-
tation of the view plane, by specifying the view-plane normal vector, N. We
choose a world-coordinate position, and this point establishes the direction for N
relative either to the world origin or to the viewing-coordinate origin. Graphics
packages such as GKS and PHIGS, for example, orient N relative to the world-
coordinate origin, as shown in Fig. 12-4. The view-plane normal N is then the di-
rected line segment from the werld origin to the selected coordinate position. In
other words, N is simply specified as a world-coordinate vector. Some other
packages (GL from Silicon Graphics, for instance) establish the direction for N
using the selected coordinate position as a look-at point relative to the view refer-
ence point iviewing-coordinate origin). Figure 12-5 illustrates this method for
defining the direction of N, which is from the look-at point to the view reference
point. Another possibility is to set up a left-handed viewing system and take N
and the positive z, axis from the viewing origin to the look-at point. Only the di-
rection of N is nceded to establish the z, direction; the magnitude is irrelevant,
because N will be normalized to a unit vector by the viewing calculations.

Finally. we choose the up direction for the view by specifying a vector V,
called the view-up vector. This vector is used to establich the positive direction
for the y. axis. Vector V also can be defined as a world-coordinate vector, or in
some packages, it is spedified with a fwrst angle 6, about the z. axis, as shown in
Fig. 12-6. For a general crientation of the normal vector, it can be difficult (or at
least time consuming) to deternune the direction for V that is precisely perpen-
dicular to N Therefore, viewing procedures typically adjust the user-defined ori-
entation of vector V, as shown in Fig. 12-7, so that V is projected into a plane that
is perpendicular to the normal vector. We can choose the view-up vector V to be
in any convenient direction, as long as it is not parallel to N. As an example, con-

WP ‘ Figure 12-5
e — Orientation ol the view plane for a
o / - x o . .
- N specified look-at point P, relative to
Yo

the viewing-coordinale origin Py,

sider an interactive specification of viewing reference coordinates using PHIGS,
where the view reference point is often set at the center of an object to be viewed.
If we then want to view the object at the angled direction shown in Fig. 12-8, we
can simply choose V as the world vector (0, 1, 0), and this vector will be projected
into the plane perpendicular to N to establish the y, axis. This is much easier than
trying to input a vector that is exactly perpendicular to N.

Using vectors N and V, the graphics package can compute a third vector U,
perpendicular to both N and V, to define the direction for the x, axis. Then the di-
rection of V can be adjusted so that it is perpendicular to both N and U to estab-
lish the viewing y, direction. As we will see in the next section (Transformation
from World to Viewing Coordinates), these computations are conveniently car-
ried out with unit axis vectors, which are also used to obtain the elements of the
world-to-viewing-coordinate transformation matrix. The viewing system is then
often described as a uvn system (Fig. 12:9).

Generally, graphics packages allow users to choose the position of the view
plane (with some restrictions) along the z, axis by specifying the view-plane dis-
tance from the viewing origin. The view plane is always parallel to the x,y, plane,
and the projection of objects to the view plane correspond to the view of the
scene that will be displayed on the output device. Figure 12-10 gives examples of
view-plane positioning. If we set the view-plane distance to the value 0, the x,y,
plane (or uv plane) of viewing coordinates becomes the view plane for the projec-
tion transformation. Occasionally, the term “uv plane” is used in reference to the
viewing plane, no matter where it is positioned in relation to the x,y, plane. But
we will only use the term “uv plane” to mean the x,y, plane, which is not neces-
sarily the view plane.

Left-handed viewing coordinates are sometimes used in graphics packages
50 that the viewing direction is in the positive z, direction. But right-handed
viewing systems are more common, because they have the same orientation as
the world-reference frame. This allows graphics systems to deal with only one
coordinate orientation for both world and viewing references. We will follow the
convention of PHIGS and GL and use a right-handed viewing system for all al-
gorithm development.

To obtain a series of views of a scene, we can keep the view reference point
fixed and change the direction of N, as shown in Fig. 12-11. This corresponds to
generating views as we move around the viewing-coordinate origin. In interac-

Yv

7 e

Figure 12-10
— View-plane positioning along the z.
Z, axis.

Adjusted
Vv -

P, N

Figure 12-7

Adjusting the input position
of the view-up vector V to a
position perpendicular to the
normal vector N.

Desired
Y IV /UpDirection

u
Figure 12-8

Chersing V along the y, axis
sets the up orientation for the

view plane in the desired
direction.

Z,

w

Figurc 12-9

A right-handed viewing
systern defined with unit
vectors u, v, and n.

435

Chapter 12

436

Three-Dimensiona! Viewing

Figure 12-11
Viewing a scene from different directions with a fixed view-reference
point.

tive applications, the normal vector N is the viewing parameter that is most often
changed. By changing only the direction of N, we can view a scene from any di-
rection except along the line of V. To obtain either of the two possible views
along the line of V, we would need to change the direction of V. If we want to
simulate camera motion through a scene, we can keep N fixed and move the
view reference point around (Fig. 12-12).

) L~ ; ' Figure 12-12
o . L ‘ Moving around ina scerie by
[changing the position of the view
‘ reference point.

Transformation from World 1o Viewing Coordinates

Before object descriptions can be projected to the view plane, they must be trans-
ferred to viewing coordinates. Conversion of object descriptions from world to
viewing coordinates is equivalent to a transformation that superimposes the
viewing reference frame onto the world frame using the basic geometric trans-
late-rotate operations discussed in Section 11-7. This transformation sequence is

1. Translate the view reference point to the origin of the world-coordinate sys-
tem.

2. Apply rotations to align the x,, y,, and z, axes with the world x,, y,., and z,,
axes, respectively.

If the view reference point is specified at world position (xq, y;, z;), this point is
translated to the world origin with the matrix transformation

1 0 0 -x

-1 10 W (12-1
0 0 1 -z
0 0 0 1

The rotation sequence can require up to three coordinate-axis rotations, de-
pending on the direction we choose for N. In general, if N is not aligned with any
world -coordinate axis, we can superimpose the viewing and world systems with
the transformation sequence R, - R, * R,. That is, we first rotate around the world
x,, axis to bring z,. into the x,z,, plane. Then, we rotate around the world y,, axis to
align the z, and z, axes. The final rotation is about the z,, axis to align the y,, and
¥, axes. Further, if the view reference system is left-handed, a reflection of one of
the viewing axes (for example, the z, axis) is also necessary. Figure 12-13 illus-
trates the general sequence of translate-rotate transformations. The composite
transformation matrix is then applied to world-coordinate descriptions to trans-
fer them to viewing coordinates.

Another method for generating the rotation-transformation matrix is to cal-
culate unit uvn vectors and form the composite rotation matrix directly, as dis-

Figure 12-13
Aligning a viewing system with the world-coordinate axes using a
sequence of translate-rotate transformations.

Section 12-2

Viewtng Coordinates

437

Chapter 12 cussed in Section 11-7. (Given vectors N and V, these unit vectors are calculated
Three-Dimensional Viewing as

N
n = m = (1, "y, 13)

V X N)
u= W = (uy, Uy, 4) (12-2)

v =mn Xu= (v, vy, U3)

This method also automatically adjusts the direction for V so that v is perpendic-
ular to n. The composite rotation matrix for the viewing transformation is then

U, u; uy 0O
o omon 0 123

n ony oy 0

0 0 0 1

which transforms u onto the world x, axis, v onto the v, axis, and n onto the z,
axis. In addition, this matrix automatically performs the reflection necessary to
transform a left-handed viewing system onto the right-handed world system.

The complete world-to-viewing coordinate transformation matrix is ob-
tained as the matrix product

Mycye = R-T (12-4)

This transformation is then applied to coordinate descriptions of objects in the
scene to transfer them to the viewing reference frame.

12-3
PROJECTIONS

Once world-coordinate descriptions of the objects in a scene are converted to
viewing coordinates, we can project the three-dimensional objects onto the two-
dimensional view plane. There are two basic projection methods. In a parallel
projection, coordinate positions are transformed to the viewfplane along parallel
lines, as shown in the example of Fig. 12-14. For a perspective projection (Fig.
12-15), object positions are transformed to the view plane along lines that con-
verge to a point called the projection reference point (or center of projection).
The projected view of an object is determined bv calculating the intersection of
the projection lines with the view plane.

View
Plane

Figure 12-14
Parallel projection ¢f an object to
the view plane

438

View
Plane

_ Projection
=*® Reference Point

Figure 12-15
Perspective projection of an object
i the view plane.

A parallel projection preserves relative proportions of objects, and this is
the method used in drafting to produce scale drawings of three-dimensional ob-
jects. Accurate views of the various sides of an object are obtained with a parallel
projection, but this does not give us a realistic representation of the appearance of
a three-dimensional object. A perspective projection, on the other hand, produces
realistic views but does not preserve relative proportions. Projections of distant
objects are smaller than the projections of objects of the same size that are closer
to the projection plane (Fig. 12-16).

Parallel Projections

We can specify a parallel projection with a projection vector that defines the di-
rection for the projection lines. When the projection is perpendicular to the view
plane, we have an orthographic parallel projection. Otherwise, we have an
oblique parallel projection. Figure 12-17 illustrates the two types of parallel pro-
jections. Some graphics packages, such as GL on Silicon Graphics workstations,
do not provide for oblique projections. In this package, for example, a parallel
projection is specified by simply giving the boundary edges of a rectangular par-
allelepiped.

ikg

_____ Projection

Reference
Point

View
Plane

Figure 12-16
Perspective projection of equal-sized objects at different distances [rom the view plane.

Section 12-3

Projections

439

\;’135)1&(12 T T T Tt T

Three-[imens.onal Wewmg v, \V»,

QOrthegraphic Prog2ction Oblique Projection
(a) {hy

Vrgure 12-17
Orientation of the projection vector V, to produce an orthographic
projection a) and an obhque projection (b).

Orthographic projections are most often used to produce the front, side, and
top views of an object, as shown in Fig. 12-18. Front, side, and rear orthographic
projections of an object are called elevations; and a top orthographic projection is
called a plan view. Engineering and architectural drawings commonly employ
these orthographic projections, because lengths and angles are accurately de-
picted and can be measur=d from the drawings.

We can also form orthographic projections that display more than one face
of an object. Such views are called axonometric orthographic projections. The
most commonly used axenometric projection is the isometric projection. We gen-
etate an isometric project-on by aligning the projection plane so that it intersects
each coordinate axis in whuch the object is defined (called the principal axes) at the
same distance from the origin. Figure 12-19 shows an isometric projection for a

Plan View

<

Side Elevation View

Front Elevation View

Figure 12418

Orthographe projections o1 m object, displaying plan and clevation views.

440

Figure 12-19
Isometric projection for a cube.

cube. The isometric projection is obtained by aligning the projection vector with
the cube diagonal. There are eight positions, one in each octant, for obtaining an
isometric view. All three principal axes are foreshortened equally in an isometric
projection so that relative proportions are maintained. This is not the case in a
general axonometric projection, where scaling factors may be different for the
three principal directions.

Transformation equations for an orthographic parallel projection are
straightforward. If the view plane is placed at position z,, along the z, axis (Fig.
12-20), then any point (x, ¥, z) in viewing coordinates is transformed to projection
coordinates as

X, = X, Y=y (12-5)
where the original z-coordinate value is preserved for the depth information
needed in depth cueing and visible-surface determination procedures.

An oblique projection is obtained by projecting points along parallel lines
that are not perpendicular to the projection plane. In some applications packages,
an oblique projection vector is specified with two angles, a and ¢, as shown in
Fig. 12-21. Point (x, y, 2) is projected to position (x,, y,) on the view plane. Ortho-
graphic projection coordinates on the plane are (x, y). The oblique projection line
from (x, y, 2} to (x,, y,) makes an angle a with the line on the projection plane that
joins (x,, ¥,) and (x, y). This line, of length L, is at an angle ¢ with the horizontal
direction in the projection plane. We can express the projection coordinates in
terms of x, y, L, and ¢ as

(x y. 2) Al

Figure 12-20
Orthographic projection of a point
onto a viewing plane.

Section 12-3

Projections

441

Chapter 12

442

Three-Dimensional Viewing

x\

Figure 12-21

Oblique projection of coordinate
position (x y, 2) to position (x,, y,)
on the view plane.

X, =Y + Lcoso
(12-0)

Y=Y + Lsing

Length L depends on the angle a and the z coordinate of the point to be pro-
jected:

tana = — (rrm
L
Thus,
L=—
tana)
=zl

where L, is the inverse of tana, which is alsc the value of L when z = 1. We can
then write the oblique projection equations 12-6 as

x, =x + z(L; cosd)

Y, =y + (L, sing)

(129

The transformation matrix for producing any parallel projection onto the
xyY, plane can be written as

1 0 Lycos¢p 0
0 1 L, si 0

\% S psiné 2o
F 00 0 0
0 0 0 1

An orthographic projection is obtained when L, = 0 (which occurs at a projection
angle o of 90°), Oblique projections are generated with nonzero values for L.
Projection matrix 12-10 has a structure similar to that of a z-axis shear matrix. In
fact, the effect of this projection matrix is to shear planes of constant z and project
them onto the view plane. The x- and y-coordinate values within each plane of
constant z are shifted by an amount proportional to the = value of the plane so
that angles, distances, and parallel lines in the plane are projected accurately. This

effect is shown in Fig. 12-22, where the back plane of the box is sheared and over-
lapped with the front plane in the projection to the viewing surface. An edge of
the box connecting the front and back planes is projected into a line of length L,
that makes an angle ¢ with a horizontal line in the projection plane.

Common choices for angle ¢ are 30° and 45°, which display a combination
view of the front, side, and top (or front, side, and bottom) of an object. Two com-
monly used values for a are those for which tana = 1 and tana = 2. For the first
case, @ = 45° and the views obtained are called cavalier projections. All lines per-
pendicular to the projection plane are projected with no change in length. Exam-
ples of cavalier projections for a cube are given in Fig. 12-23.

When the projection angle « is chosen so that tana = 2, the resulting view is
called a cabinet projection. For this angle (=~63.4°), lines perpendicular to the
viewing surface are projected at one-half their length. Cabinet projections appear
more realistic than cavalier projections because of this reduction in the length of
perpendiculars. Figure 12-24 shows examples of cabinet projections for a cube.

Perspective Projections

To obtain a perspective projection of a three-dimensional object, we transform
points along projection lines that meet at the projection reference point. Suppose
we set the projection reference point at position z,, along the z, axis, and we

| £

1
1
1
1
+ 4
2 S 4
I”
/’ &
’1
@ x by
z, Original Coordinste Projection on the
Description of Object Viewing Plane

Figure 1222
Oblique projection of a box onto the z,. = 0 plane.

Figure 12-23

Cavalier projections of a cube onto a view plane for two values of
angle ¢.

Note: Depth of the cube is projected equal to the width and height.

Section 12-3

Projections

443

Chapter 12

444

Three-Dimensional Viewing

P]

NN n

Figure 12-24

Cabinet projections of a cube onto a view plane for two values of
angle ¢. Depth is projected as one-half that of the width and
height.

place the view plane at z,,, as shown in Fig. 12-25. We can write equations de-
scribing coordinate positions along this perspective projection line in parametric
form as

X' =x—xu
y':y—yu (12-1n
2 =z-(z— z,,,,,)u

Parameter u takes values from 0 to 1, and coordinate position (x’, y', 2') repre-
sents any point along the projection line. When u = 0, we are at position P = (x,
¥, z). At the other end of the line, ¥ = 1 and we have the projection reference
point coordinates (0, 0, z,,). On the view plane, 2’ = z,, and we can solve the 2’
equation for parameter u at this position along the projection line:

Zpy — 2
u=-"2 - (12-12)
Zyy — 2

Substituting this value of u into the equations for x' and y’, we obtain the per-
spective transformation equations

P=ixy2
..
RN G
e, Figure 12-25
2 Zoro % Perspective projection of a point

v P with coordinates (x, y, 2) to

lew .~ 1t 1
Plane position (x,,, y,, z,,) on the view

plane.

2y — Zy, d
2z, 2 2 z

prp e (
12-13)
Yp = y(z"”’ ~ Z””) = y(%)
2y~ Z Zyp 2

whered, = z,,, — z,,isthe distance of the view plane from the projection refer-
ence point.

Using a three-dimensjonal homogeneous-coordinate representation, we can
write the perspective-projection transformation 12-13 in matrix form as

% 10 0 0 x
Y ¢ 1 0 0 y (
= 12-14)
2 0 0 -z,/d, 2z,(z,/d) z
h 0 0 -1/4, Zpp/d, 1
In this representation, the homogeneous factor is
hem 2 (12-15)
d

P

and the projection coordinates on the view plane are calculated from the homo-
geneous coordinates as

x,,——-x,,/h, y,,:y,,/h (12-16)

where the original z—coordinate value would be retained in projection coordinates
for visible-surface and other depth processing.

In general, the projection reference point does not have to be along the z,
axis. We can select any coordinate position (x,,, ¥, 2,,) On either side of the
view plane for the projection reference point, and we discuss this generalization
in the next section.

There are a number of special cases for the perspective transformation
equations 12-13. If the view plane is taken to be the uv plane, then z,, = 0 and the
projection coordinates are

S Foterd I bl
4 Zp, ~ 2 1~-2/z,,

) (2y): (1) (12-17)
Yo=Y Zyp = Z y 1-z/2,,

And, in some graphics packages, the projection reference point is always taken to
be at the viewing-coordinate origin. In this case, z,,, = 0 and the projection coor-
dinates on the viewing plane are

e

(12-18

Section 12-3

Projections

445

Chapter 12

446

Three-Dimensional Viewing

When a three-dimensional object is projected onto a view plane using per-
spective transformation equations, any set of parallel lines in the object that are
not parallel to the plane are projected into converging lines. Parallel lines that are
parallel to the view plane will be projected as parallel lines. The point at which a
set of projected parallel lines appears to converge is called a vanishing point.
Each such set of projected parallel lines will have a separate vanishing point; and
in general, a scene can have any number of vanishing points, depending on how
many sets of parallel lines there are in the scene.

The vanishing point for any set of lines that are parallel to one of the princi-
pal axes of an object is referred to as a principal vanishing point. We control the
number of principal vanishing points (one, two, or three) with the orientation of
the projection plane, and perspective projections are accordingly classified as
one-point, two-point, or three-point projections. The number of principal vanish-
ing points in a projection is determined by the number of principal axes intersect-
ing the view plane. Figure 12-26 illustrates the appearance of one-point and two-
point perspective projections for a cube. In Fig. 12-26(b), the view plane is
aligned parailel to the xy object plane so that only the object z axis is intersected.

Figure 12-26

Perspective views and principal vanishing points of a cube for
various orientations of the view plane relative to the principal
axes of the object.

This orientation produces a one-point perspective projection with a z-axis vanish-
ing point. For the view shown in Fig. 12-26(c}, the projection plane intersects both
the x and z axes but not the y axis. The resulting two-point perspective projection
contains both x-axis and z-axis vanishing points.

12-4
VIEW VOLUMES AND GENERAL PROJECTION
TRANSFORMATIONS

In the camera analogy, the type of lens used on the camera is one factor that de-
termines how much of the scene is caught on film. A wide-angle lens takes in
more of the scene than a regular lens. In three-dimensional viewing, a rectangu-
lar view window, or projection window, in the view plane is used to the same
effect. Edges of the view window are parallel to the x,y, axes, and the window
boundary positions are specified in viewing coordinates, as shown in Fig. 12-27.
The view window can be placed anywhere on the view plane.

Given the spedification of the view window, we can set up a view volume
using the window boundaries. Only those objects within the view volume will
appear in the generated display on an output device; all others are clipped from
the display. The size of the view volume depends on the size of the window,
while the shape of the view volume depends on the type of projection to be used
to generate the display. In any case, four sides of the volume are planes that pass
through the edges of the window. For a parallel projection, these four sides of the
view volume form an infinite parallelepiped, as in Fig. 12-28. For a perspective
projection, the view volume is a pyramid with apex at the projection reference
point (Fig. 12-29).

A finite view volume is obtained by limiting the extent of the volume in the
z, direction. This is done by specifying positions for one or two additional
boundary planes. These z,-boundary planes are referred to as the front plane and
back plane, or the near plane and the far plane, of the viewing volume. The
front and back planes are parallel to the view plane at specified positions zgq
and zp,..- Both planes must be on the same side of the projection reference point,
and the back plane must be farther from the projection point than the front plane.
Including the front and back planes produces a view volume bounded by six
planes, as shown in Fig. 12-30 With an orthographic parallel projection, the six
planes form a rectangular parallelepiped, while an oblique parallel projection
produces an oblique parallelepiped view volume. With a perspective projection,
the front and back clipping planes truncate the infinite pyramidal view volume
to form a frustum.

Front and back clipping planes allow us to eliminate parts of the scene from
the viewing operations based on depth. We can then pick out parts of a scene that
we would like to view and exclude objects that are in front of or behind the parl
that we want to look at. Also, in a perspective projection, we can use the front
clipping plane to take out large objects close to the view plane that can project
into unrecognizable sections within the view window. Similarly, the back clip-
ping plane can be used to cut out objects far from the projection reference point
that can project to small blets on the output device.

Relative placement of the view plane and the front and back clipping planes
depends on the type of view we want to generate and the limitations of a particu-
lar graphics package. With PHIGS, the view plane can be positioned anywhere
along the z, axis except that it cannot contain the projection reference point. And

Yy

(mell’ ywmll)

Figure 12-27

window specification on the
view plane, with minimum
and maximum coordinates

given in the viewing
reference system.

447

Chapter 12
Three-Dimensional Viewing
x,y, plane
zv
window

Orthographic- Or(hqgraphic-

Projection Projection
View Volume View Volume

{a) (b}
x,¥, plane
window v
Oblique-

?voieclion Oblique-

View Volume Projection
te) View Yolume

(d)

Figure 12-28

View volume for a parallel projection. In (a) and (b), the side and top
views of the view volume for an orthographic projection are shown; and
in () and (d), the side and top views of an oblique view volume are

shown.
Projection
Reference
Point
-nd°‘" Xy, plane X,Y, plane
W
window
A z, - z
window
Projection
Reference !
Point
{8} (b} (c)

Figure 12-29
Examples of a perspective-projection view volume for various positions of the projection
reference point.

448

Parallelpiped . Section 12-4
“ View Volume

View Volumes and General
Projection Transformations

Back
Plane

Frustum
View Volume

Front
Plane

Parallel Projection
{a}

Back - S Proiect
Plane / TTTm=e-ll y Projection
Reference
Front Point
Plane

Perspective Projection
(b)

Figure 12-30
View volumes bounded by front and back planes, and by top, bottom, and side planes. Front
and back planes are parallel to the view plane at positions 2z, and z,q along the z, axis.

the front and back planes can be in any position relative to the view plane as long
as the projection reference point is not between the front and back planes. Figure
12-31 illustrates possible arrangements of the front and back planes in relation to
the view plane. The default view volume in PHIGS is formed as a unit cube
using a parallel projection with z; 0 = 1, Zpaa. = 0, the view plane coincident with
the back plane, and the projection reference point at position (0.5, 0.5, 1.0) on the
front plane.

Orthographic parallel projections are not affected by view-plane position-
ing, because the projection lines are perpendicular to the view plane regardless of

Back Plane View Plane ——~—— Back Plane = View Plane
————— View Plane ———e——e Back Plane ~——e——- Front Plane
(c}
ZV IV
———— Front Plane == Front Plane
(a) (b}
Figure 12-31

Possible arrangements of the front and back clipping planes relative to the view plane.

449

Chapter 12
Three-Dimensional Viewing

window X
View Plane

View Plane /window /
v

o

Projection Projection
Reference Reference
Point Point
(a) (b!
Figure 12-32

Changing the shape of the oblique-projection view volume by
moving the window position, when the projection vector V, is
determined by the projection reference point and the window
position.

its location. Oblique projections may be affected by view-plane positioning, de-
pending on how the projection direction is to be specified. In PHIGS, the oblique
projection direction is parallel to the line from the projection reference point to
the center of the window. Therefore, moving the position of the view plane with-
out moving the projection reference point changes the skewness of the sides of
the view volume, as shown in Fig. 12-32. Often, the view plane is positioned at
the view reference point or on the front clipping plane when generating a parallel
projection.

Perspective effects depend on the positioning of the projection reference
point relative to the view plane, as shown in Figure 12-33. If we place the projec-

View View View
AN Window P \ Window / ! Window !
— —_— —_
~ - v ; | I
AN .’ !] ! !
~ ’ A i | i
A P - 1 /) |
AN ’ t / | 1
N \ ; { i
! i ! !
_— * / | |
Projection 1 , 1 l
Reference \ ' I I
. v ‘ | 1
Point . | / i |
(a v N ' '
‘\ 7 | '
‘ .)
\\ ’l h ‘
4 |
y | :
\
A /l ! 1
\ f | 1
¥ 1 1
. :
Projection Projection
Reference Reference
Point Very Far
(b from window
fc)
Figure 12-33
Changing perspective effects by moving the projection reference point away from the
view plane

450

window

window

\)

\
e e
Projection Projection
Reference Reference
Point Point
(a) (b)
Figure 12-34

Projected object size depends on whether the view plane is positioned in
front of the object or behind it, relative to the position of the projection
reference point.

tion reference point close to the view plane, perspective effects are emphasized;
that is, closer objects will appear much larger than more distant objects of the
same size. Similarly, as we move the projection reference point farther from the
view plane, the difference in the size of near and. far objects decreases. In the
limit, as we move the projection reference point infinitely far from the view
plane, a perspective projection approaches a parallel projection.

The projected size of an object in a perspective view is also affected by the
relative position of the object and the view plane (Fig. 12-34). If the view plane is
in front of the object (nearer the projection reference point), the projected size is
smaller. Conversely, object size is increased when we project onto a view plane in
back of the object.

View-plane positioning for a perspective projection also depends on
whether we want to generate a static view or an animation sequence. For a static
view of a scene, the view plane is usually placed at the viewing-coordinate ori-
gin, which is at some convenient point in the scene. Then it is easy to adjust the
size of the window to include all parts of the scene that we want to view. The
projection reference point is positioned to obtain the amount of perspective de-
sired. In an animation sequence, we can place the projection reference point at
the viewing-coordinate origin and put the view plane in front of the scene (Fig.
12-35). This placement simulates a camera reference frame. We set the field of
view (lens angle) by adjusting the size of the window relative to the distance of
the view plane from the projection reference point. We move through the scene
by moving the viewing reference frame, and the projection reference point will
move with the view reference point.

Section 12-4

View Volumes and General
Projection Transformations

451

Chapter 12

Three-Dimensional Viewing

Scene
motion

window

N

i
o

N
<

View
Plane

Figure 12-35
View-plane positioning to simulate a camera reference frame for an
animation sequence.

General Parallel-Projection Transformations

In PHIGS, the direction of a parallel projection is specified with a projection vec-
tor from the projection reference point to the center of the view window. Figure
12-36 shows the general shape of a finite view volume for a given projection vec-
tor and projection window in the view plane. We obtain the oblique-projection
transformation with a shear operation that converts the view volume in Fig.
12-36 to the regular parallelepiped shown in Fig. 12-37.

The elements of the shearing transformation needed to generate the view
volume shown in Fig. 12-37 are obtained by considering the shear transformation
of the projection vector. If the projection vector is specified in world coordinates,
it must first be transformed to viewing coordinates using the rotation matrix dis-
cussed in Section 12-2. (The projection vector is unaffected by the translation,
since it is simply a direction with no fixed position.) For graphics packages that
allow specification of the projection vector in viewing coordinates, we apply the
shear directly to the input elements of the projection vector.

Suppose the elements of the projection vector in viewing coordinates are

2, V, = (pu py P (12-19)
f N We need to determine the elements of a shear matrix that will align the projection
; : vector V, with the view plane normal vector N (Fig. 12-37). This transformation
: ; can be expressed as
Vo
View 2z,
Volume window N J

l'i_'\'n ve f2-37

v . —
Regular parallelepiped view ° Figure 12-36

volume obtained by shearing Oblique projection vector and
the view volume in Fig. 12-36. associated view volume.

452

= (12-20)

where M,y is equivalent to the parallel projection matrix 12-10 and represents
a z-axis shear of the form

1 0 a4 0
lo 1 5 0

Mt = 00 1 0 (12-21)
0 0 0 1

The explicit transformation equations from 12-20 in terms of shear parameters 2
and b are

0=p, + ap,
0=p, + bp, (12-22)

so that the values for the shear parameters are
< (12-23)

Thus, we have the general parallel-projection matrix in terms of the ele-
ments of the projection vector as

10 =p/p, O
|10t -p/p. O 7.9
M.t 0 0 1 0 (12-24)
00 0 1

This matrix is then concatenated with transformation R ¢ T, from Section 12-2, to
produce the transformation from world coordinates to parallel-projection coordi-
nates. For an orthographic parallel projection, p, = p, = 0, and Mp,qpe is the iden-
tity matrix. From Fig. 12-38, we can relate the components of the projection vec-
tor to parameters L, &, and ¢ (Section 12-3). By similar triangles, we see that

Lcos¢ _ _p

z P: (12-25)
L sing __b

z P

which illustrates the equivalence of the elements of transformation matrices 12-
10 and 12-24. In Eqs. 12-25, z and p, are of opposite signs, and for the positions il-
lustrated in Fig. 12-38, z < 0.

Section 12-4

View Volumes and General
Projection Transformations

453

Chagpter 12

454

Three-Dimensional Viewing

Y.

(%, ¥, 0}

Figure 12-38

Relationship between the parallel-
projection vector V, and parameters
L, «, and ¢.

General Perspective-Projection Transformations

With the PHIGS programming standard, the projection reference point can be lo-
cated at any position in the viewing system, except on the view plane or between
the front and back clipping planes. Figure 12-39 shows the shape of a finite view
volume for an arbitrary position of the projection reference point. We can obtain
the general perspective-projection transformation with the following two opera-
tions:

1. Shear the view volume so that the centerline of the frustum is perpendicu-
lar to the view plane.
2. Scale the view volume with a scaling factor that depends on 1/z.
The second step (scaling the view volume) is equivalent to the perspective trans-

formation discussed in Section 12-3.
A shear operation to align a general perspective view volume with the pro-

Frustum
Centerline

View Volume

View Plane

(Xpipe Vocor Toso)

Figure 12-39
General shape for the perspective view volume with a
projection reference point that is not on the . axis

Frustum
Centerline
(x* y" 2)
[
/ (x',y,2)
LI v
z o/
] !
1 1
1 !
I i /
[
A 1!
| ' i
\ 1,
\ 1y
\ Wy
View Mane (2 = 1.} \ %
7
\
\\ ‘Z)I\C Wi Figure 12-40
g enter of Window Shearing a general perspective view
\\{’ volume to center it on the projection
Xorp: Yorp: Zorp! window.

jection window is shown in Fig. 12-40. This transformation has the effect of shift-
ing all positions that lie along the frustum centerline, including the window cen-
ter, to a line perpendicular to the view plane. With the projection reference point
at a general position (X, ¥, Z,,,), the transformation involves a combination z-
axis shear and a translation:

1 0 a -4z,
01 b —bzm,
= 12-26)
Mshea.r 0 0 1 0 (
0 0 0 1

where the shear parameters are

_ X~ (g + XWy,) /2
z

€ (12-27)

b = __y;"P - (yu’mm + ywmax)/z
pa

Py

Points within the view volume are transformed by this operation as

X =x + alz — z,,)
y =yt blz-z,) (12-28)
=2z

When the projection reference point is on the z, axis, x,,, = ¥, = 0.

Once we have converted a position (x, y. z) in the original view volume to
position (x’, ¥, 2’) in the sheared frustum, we then apply a scaling transformation
to produce a regular parallelepiped (Fig. 17-4M. The transformation for this con-
version is

Section 12-4

View Volumes and General
Projection Transformations

455

Chapter 12

456

Three-Dimensional Viewing

Zyp — 2 Zyy — 2
= 1"(prp vy) + xwp< vp)
Zorp =t 2 2yp ™ 2

PP
(12-29)
Zpp = 2y Zypy — 2
= e
Zpp — 2 Zyp 2
and the homogeneous matrix representation is
1 0 " Xprp XprpZep T
Zprp T Zup Zprp ™ Zup
0 1 -yprp yFWZ”P
2y —Z 2,2
prr “vp prp “up
M. = (12-30)
00 1 0
0 0 -1 Zpp
L Zpip ™ Zup Zop ™ Zup

Therefore, the general perspective-projection transformation can be ex-
pressed in matrix form as

Mpenpechw.a = Mscale ' Mshear (12-31)
The complete transformation from world coordinates to perspective-projection
coordinates is obtained by right concatenating Mperspecine With the composite
viewing transformation R « T from Section 12-2.

12-5
CLIPPING

In this section, we first explore the general ideas involved in three-dimensional
clipping by considering how clipping could be performed using the view-vol-
ume clipping planes directly. Then we discuss more efficient methods using nor-
malized view volumes and homogeneous coordinates.)

An algorithm for three-dimensional clipping identifies and saves all surface
segments within the view volume for display on the output device. All parts of
objects that are outside the view volume are discarded. Clipping in three dimen-
sions can be accomplished using extensions of two-dimensional clipping meth-
ods. Instead of clipping against straight-line window boundaries, we now clip
objects against the boundary planes of the view volume.

To clip a line segment against the view volume, we would need to test the
relative position of the line using the view volume’s boundary plane equations.
By substituting the line endpoint coordinates into the plane equation of each
boundary in turn, we could determine whether the endpoint is inside or cutside
that boundary. An endpoint (x, y, z) of a line segment is outside a boundary plane
if Ax + By + Cz + D >0, where A, B, C, and D are the plane parameters for
that boundary. Similarly, the point is inside the boundary if Ax + By + Cz +
D < 0. Lines with both endpoints outside a boundary plane are discarded, and
those with both endpaints inside all boundary planes are saved. The intersection
of a line with a boundary is found using the line equations along with the plane
equation. Intersection coordinates (x;, y,, z)) are values that are on the line and
that satisfy the plane equation Ax; + By, + Cz; + D =0.

To clip a polygon surface, we can clip the individual polygon edges. First,
we could test the coordinate extents against each boundary of the view volume
to determine whether the object is completely inside or completely outside that

boundary. If the coordinate extents of the object are inside all boundaries, we
save it. If the coordinate extents are outside all boundaries, we discard it. Other-
wise, we need to apply the intersection calculations. We could do this by deter-
mining the polygon edge-intersection positions with the boundary planes of the
view volume, as described in the previous paragraph.

As in two-dimensional viewing, the projection operations can take place be-
fore the view-volume clipping or after clipping. All objects within the view vol-
ume map to the interior of the specified projection window. The last step is to
transform the window contents to a two-dimensional viewport, which specifies
the location of the display on the output device.

Clipping in two dimensions is generally performed against an upright rec-
tangle; that is, the clip window is aligned with the x and y axes. This greatly sim-
plifies the clipping calculations, because each window boundary is defined by
one coordinate value. For example, the intersections of all lines crossing the left
boundary of the window have an x coordinate equal to the left boundary.

View-volume clipping boundaries are planes whose orientations depend on
the type of projection, the projection window, and the position of the projection
reference point. Since the front and back clipping planes are parallel to the view
plane, each has a constant z-coordinate value. The z coordinate of the intersec-
tions of lines with these planes is simply the 2 coordinate of the corresponding
plane. But the other four sides of the view volume can have arbitrary spatial ori-
entations. To find the intersection of a line with one of the view volume bound-
aries means that we must obtain the equation for the plane containing that
boundary polygon. This process is simplified if we convert the view volume be-
fore clipping to a rectangular parallelepiped. In other words, we first perform the
projection transformation, which converts coordinate values in the view volume
to orthographic parallel coordinates, then we carry out the clipping calculations.

Clipping against a regular parallelepiped is much simpler because each sur-
face is now perpendicular to one of the coordinate axes. As seen in Fig. 1241, the
top and bottom of the view volume are now planes of constant y, the sides are
planes of constant x, and the front and back are planes of constant z. A line cut-
ting through the top plane of the parallelepiped, for example, has an intersection
point whose y-coordinate value is that of the top plane.

In the case of an orthographic parallel projection, the view volume is al-
ready a rectangular parallelepiped. As we have seen in Section 12-3, sblique-pro-
jection view volumes are converted to a rectangular parallelepiped by the shear-
ing operation, and perspective view volumes are converted, in general, with a

combination shear-scale transformation.
: 7

View
Volume

Figure 12-41
An object intersecting a rectangular
parallelepiped view volume.

Section 12-5

Clipping

457

Chapter 12

458

Three-Dimensional Viewing

Modeling
Coordinates

Normalized View Volumes

Figure 12-42 shows the expanded PHIGS transformation pipeline. At the first
step, a scene is constructed by transforming object descriptions from modeling
coordinates to world coordinates. Next, a view mapping converts the world de-
scriptions to viewing coordinates. At the projection stage, the viewing coordi-
nates are transformed to projection coordinates, which effectively converts the
view volume into a rectangular parallelepiped. Then, the parallelepiped is
mapped into the unit cube, a normalized view volume called the normalized
projection coordinate system. The mapping to normalized projection coordi-
nates is accomplished by transforming points within the rectangular paral-
lelepiped into a position within a specified three-dimensional viewport, which
occupies part or all of the unit cube. Finally, at the workstation stage, normalized
projection coordinates are converted to device coordinates for display.
The normalized view volume is a region defined by the planes

A similar transformation sequence is used in other graphics packages, with indi-
vidual variations depending on the system. The GL package, for example, maps
the rectangular parallelepiped into the interior of a cube with boundary planes at
positions *1 in each coordinate direction.

There are several advantages to clipping against the unit cube instead of the
original view volume or even the rectangular parallelepiped in projection coordi-
nates. First, the normalized view volume provides a standard shape for repre-
senting any sized view volume. This separates the viewing transformations from
any workstation considerations, and the unit cube then can be mapped to a
workstation of any size. Second, clipping procedures are simplified and stan-
dardized with unit clipping planes or the viewport planes, and additional clip-
ping planes can be specified within the normalized space before transforming to

_Modeling World Viewing) Viewing
Transformation Coordinates Transformation Coordinates

Projection Projection Normalization Normalized
Transformation Coordinates Transformation - Pro]e;t.on
Coordinates

Workstation
Transformation

Frguve 12-42

Device
— Coordinates —™

Expanded PHIGS transformation pipeline

device coordinates. Third, depth cueing and visible-surface determination are
simplified, since the z axis always points toward the viewer (the projection refer-
ence point has now been transformed to the z axis). Front faces of objects are
those with normal vectors having a component along the positive z direction;
and back surfaces are facing in the negative z direction.

Mapping positions within a rectangular view volume to a three-dimen-
sional rectangular viewport is accomplished with a combination of scaling and
translation, similar to the operations needed for a two-dimensional window-to-
viewport mapping. We can express the three-dimensional transformation matrix
for these operations in the form

D.l'

a0

-
-

(12-33)

N

ocoUc
oUoo
N oW a e

0
0
0

Factors D,, D, and D, are the ratios of the dimensions of the viewport and regu-
lar parallelepiped view volume in the x, y, and 2 directions (Fig. 12-43):
XVinax — XVpin
D, = XWmax ~ XWpyn
YVmax ~ Y¥Vmin
¥ YWoae ™ YWrmin (1239

ZUmax ~ ZUpyn

D

D, =

Zback — Zfromt

OWirais YWoraxs Zpacy)

Wonint YWoin: Ziyom!
{XVeine YVonio ¢ ZVemin)

Parallelepiped

Section 12-5
Clipping

(xvmll’ yvﬂ'\ll‘ zvmux)

3D
Viewport

View Volume Unit Cube

(@ tb)

Figure 12-43
Dimensions of the view volume and three-dimensional viewport.

459

Chapter 12

460

Three-Dimensional Viewing

where the view-volume boundaries are established by the window limits (xw,;,,
XWer, YWenine YWinax) AN the pOSItions Zggy and zy,q of the front and back planes.
Viewport boundaries are set with the coordinate values xvmin, Wmax: ¥¥mins YVimaxs
2V, aNd 20,,. The additive translation factors K, K, and K; in the transforma-
tion are

Kx = X¥min _xwmian
Ky = YWmin — YWDy
K. = 20nin — Zfont D: (12-35)

Viewport Clipping

Lines and polygon surfaces in a scene can be clipped against the viewport
boundaries with procedures similar to those used for two dimensions, except
that objects are now processed against clipping planes instead of clipping edges.
Curved surfaces are processed using the defining equations for the surface
boundary and locating the intersection lines with the parallelepiped planes.

The two-dimensional concept of region codes can be extended to three di-
mensions by considering positions in front and in back of the three-dimensional
viewport, as well as positions that are left, right, below, or above the volume. For
two-dimensional clipping, we used a four-digit binary region code to identify the
position of a line endpoint relative to the viewport boundaries. For three-dimen-
sional points, we need to expand the region code to six bits. Each point in the de-
scription of a scene is then assigned a six-bit region code that identifies the rela-
tive position of the point with respect to the viewport. For a line endpoint
at position (x, y, z), we assign the bit positions in the region code from right to
left as

bitl =1, if x < xvg,left)
bit2 =1, if X > XV, (right)
bit3 =1, if y < yvpnlbelow)
bit4 =1, if y > yop,,(above)
bit5 =1, if z <z (front)

bit6 =1, if z > zv,,,(back)

For example, a region code of 101000 identifies a point as above and behind the
viewport, and the region code 000000 indicates a point within the volume.

A line segment can be immediately identified as completely within the
viewport if both endpoints have a region code of 000000. If either endpoint of a
line segment does not have a region code of 0600000, we perform the logical and
operation on the two endpoint codes. The result of this and operation will be
nonzero for any line segment that has both endpoints in one of the six outside re-
gions. For example, a nonzero value will be generated if both endpoints are be-
hind the viewport, or both endpoints are above the viewport. If we cannot iden-
tify a line segment as completely inside or completely outside the volume, we
test for intersections with the bounding planes of the volume.

As in two-dimensional line clipping, we use the calculated intersection of a
line with a viewport plane to determine how much of the line can be thrown

away. The remaining part of the line is checked against the other planes, and we
continue until either the line is totally discarded or a section is found inside the
volume.

Equations for three-dimensional line segments are conveniently expressed
in parametric form. The two-dimensional parametric clipping methods of
Cyrus-Beck or Liang-Barsky can be extended to three-dimensional scenes. For a
line segment with endpoints P; = (x;, y;, 7)) and P, = (x,, y,, 2,), we can write the
parametric line equations as

x=x; + (x;— xu, O=su=l
y=y + {y2—yu
2=12z + (25— 2)u (12-36)

Coordinates (x, y, z) represent any point on the line between the two endpoints.
At u = 0, we have the point P,, and u = 1 puts us at P,.

To find the intersection of a line with a plane of the viewport, we substitute
the coordinate value for that plane into the appropriate parametric expression of
Eq. 12-36 and solve for u. For instance, suppose we are testing a line against the
2V Plane of the viewport. Then

U= ZWmin ~ % (12-37)
27z

When the calculated value for u is not in the range from 0 to 1, the line segment
does not intersect the plane under consideration at any point between endpoints
P, and P, (line A in Fig. 12-44). If the calculated value for u in Eq. 12-37 is in the
interval from 0 to 1, we calculate the intersection’s x and y coordinates as

xy=x + (x,- x,)(Lein — 21 Z')
2Tz

=yt G- yo(u) (12-38)
-z

If either x; or y, is not in the range of the boundaries of the viewport, then this
line intersects the front plane beyond the boundaries of the volume (lire B in Fig.
12-44).

Clipping in Homogeneous Coordinates

Although we have discussed the clipping procedures in terms of three-dimen-
sional coordinates, PHIGS and other packages actually represent coordinate posi-
tions in homogeneous coordinates. This allows the various transformations to be
represented as 4 by 4 matrices, which can be concatenated for efficiency. After all
viewing and other transformations are complete, the homogeneous-coordinate
positions are converted back to three-dimensional points.

As each coordinate position enters the transformation pipeline, it is con-
verted to a homogeneous-coordinate representation:

x,yz)->(xy2z21

Section 12-5

Clipping

461

Chapter 12

462

Three-Dimensional Viewing

Figure 12-44

Side view of two line segments that are to be clipped against the zv,,
plane of the viewport. For line A, Eq. 12-37 produces a value of u

that is outside the range from 0 to 1. For line'B, Eqs. 12-38 produce
intersection coordinates that are outside the range from yo,,, to

P

The various transformations are applied and we obtain the final homogeneous
point:

Xy ap &y 83 A4 X
h Ay A Ay Ay
Wl-= d (12-39
Zy Q3 @y 43 Oy 2z
h Qg Ap Ogp Ay 1

where the homogeneous parameter i may not be 1. In fact, /i can have any real
value. Clipping is then performed in homogeneous coordinates, and clipped ho-
mogeneous positions are converted to nonhomogeneous coordinates in three-
dimensional normalized-projection coordinates:

¥ == =2k =k B
Coy=y. =g (J2-40)

We will, of course, have a problem if the magnitude of parameter h is very small
or has the value 0; but normally this will not occur, if the transformations are car-
ried out properly. At the final stage in the transformation pipeline, the normal-
ized point is transformed to a three-dimensional device coordinate point. The xy
position is plotted on the device, and the z component is used for depth-informa-
tion processing.

Setting up dipping procedures in homogeneous coordinates allows hard-
ware viewing implementations to use a single procedure for both parallel and
perspective projection transformations. Objects viewed with a parallel projection
could be correctly clipped in three-dimensional normalized coordinates, pro-

vided the value h = 1 has not been altered by other operations. But perspective
projections, in general, produce a homogeneous parameter that no longer has the
value 1. Converting the sheared frustum to a rectangular parallelepiped can
change the value of the homogeneous parameter. So we must clip in homoge-
neous coordinates to be sure that the clipping is carried out correctly. Also, ratio-
nal spline representations are set up in homogeneous coordinates with arbitrary
values for the homogeneous parameter, including h < 1. Negative values for the
homogeneous parameter can also be generated in perspective projections when
coordinate positions are behind the projection reference point. This can occur in
applications where we might want to move inside of a building or other object to
view its interior.

To determine homogeneous viewport clipping boundaries, we note that
any homogeneous-coordinate position (x,, s, 2, h) is inside the viewport if it sat-
isfies the inequalities

TVpnin S% = XVpnans YVrmin S% = YV Win < % = 200, (12-41)
Thus, the homogeneous clipping limits are
hxvn =3 < hx0nae, WYUmin <Yy ShYomay, hzon, <z, Shzvg,, ifh>0
AXUpay SX4 SHhXVgin, AWmux <Yy SR YUmin, hzUpay < 2, < hzvgy, ifh <0

(12-42)

And clipping is carried out with procedures similar to those discussed in the pre-
vious section. To avoid applying both sets of inequalities in 12-42, we can simply
negate the coordinates for any point with & < 0 and use the clipping inequalities
forh > 0.

12-6
HARDWARE IMPLEMENTATIONS

Most graphics processes are now implemented in hardware. Typically, the view-
ing, visible-surface identification, and shading algorithms are available as graph-
ics chip sets, employing VLSI (very large-scale integration) circuitry techniques.
Hardware systems are now designed to transform, clip, and project objects to the
output device for either three-dimensional or two-dimensional applications.

Figure 12-45 illustrates an arrangement of components in a graphics chip
set to implement the viewing operations we have discussed in this chapter. The
chips are organized into a pipeline for accomplishing geometric transformations,
coordinate-system transformations, projections, and clipping. Four initial chips
are provided for matrix operations involving scaling, translation, rotation, and
the transformations needed for converting world coordinates to projection coor-
dinates. Each of the next six chips performs clipping against one of the viewport
boundaries. Four of these chips are used in two-dimensional applications, and
the other two are needed for clipping against the front and back planes of the
three-dimensional viewport. The last two chips in the pipeline convert viewport
coordinates to output device coordinates. Components for implementation of vis-
ible-surface identification and surface-shading algorithms can be added to this
set to provide a complete three-dimensional graphics system.

Section 12-6

Hardware Implementations

463

Figure 12-45

A hardware implementation of three-dimensional viewing operations using 12 chips for
the coordinate transformations and clipping operations.

464

Other specialized hardware implementations have been developed. These
include hardware systems for processing octree representations and for display-
ing three-dimensional scenes using ray-tracing algorithms (Chapter 14).

12-7
THREE-DIMENSIONAL VIEWING FUNCTIONS

Several procedures are usually provided in a three-dimensional graphics library
to enable an application program to set the parameters for viewing transforma-
tions. There are, of course, a number of different methods for structuring these
procedures. Here, we discuss the PHIGS functions for three-dimensional view-
ing.

With parameters specified in world coordinates, elements of the matrix for
transforming world-coordinate descriptions to the viewing reference frame are
calculated using the function

evaluateViewOrientationMatrix3 (x0, y0, z0, xN, yN, zN,
XV, yV, 2V, error, viewMatrix)

This function creates the viewMatrix from input coordinates defining the view-
ing system, as discussed in Section 12-2. Parameters x0, y0, and z0 specify the

origin (view reference point) of the viewing system. World-coordinate vector (xN,
yN, zN) defines the normal to the view plane and the direction of the positive z,
viewing axis. And world-coordinate vector (xV, yV, zV) gives the elements of the
view-up vector. The projection of this vector perpendicular to (xN, yN, zN) estab-
lishes the direction for the positive y, axis of the viewing system. An integer error
code is generated in parameter error if input values are not specified correctly.
For example, an error will be generated if we set (xV, yV, zV) parallel to (xN,
YN, zN).

To specify a second viewing-coordinate system, we can redefine some or all
of the coordinate parameters and invoke evaluateViewOrientationMa-
trix3 with a new matrix designation. In this way, we can set up any number of
world-to-viewing-coordinate matrix transformations.

The matrix projMatrix for transforming viewing coordinates to normal-
ized projection coordinates is created with the function

evaluateViewMappingMatrix3 {xwmin, xwmax, ywmin, ywmax,
Xvmin, Xvmax, yvmin, yvmax, zvmin, zvmax,
projType, xprojRef, yprojRef, zprojRef, zview,
zback, zfront, error, projMatrix)

Window limits on the view plane are given in viewing coordinates with parame-
ters xwmin, xwmax, ywmin, and ywmax. Limits of the three-dimensional viewport
within the unit cube are set with normalized coordinates xvmin, xvmax, yvmin,
yvmax, zvmin, and zvmax. Parameter projType is used to choose the projec-
tion type as either parallel or perspective. Coordinate position (xprojRef, yproj-
Ref, zprojRef) sets the projection reference point. This point is used as the cen-
ter of projection if projType is set to perspective; otherwise, this point and the
center of the view-plane window define the parallel-projection vector. The posi-
tion of the view plane along the viewing z, axis is set with parameter zview. Po-
sitions along the viewing z, axis for the front and back planes of the view volume
are given with parameters zfront and zback. And the error parameter re-
turns an integer error code indicating erroneous input data. Any number of pro-
jection matrix transformations can be created with this function to obtain various
three-dimensional views and projections.

A particular combination of viewing and projection matrices is selected on
a specified workstation with

setViewRepresentation3 (ws, viewIndex, viewMatrix, projMatrix,
xclipmin, xclipmax, yclipmin, yclipmax, zclipmin,
zclipmax, clipxy, clipback, clipfrent)

Parameter ws is used to select the workstation, and parameters viewMatrix and
projMatrix select the combination of viewing and projection matrices to be
used. The concatenation of these matrices is then placed in the workstation view
table and referenced with an integer value assigned to parameter viewIndex.
Limits, given in normalized projection coordinates, for clipping a scene are set
with parameters xclipmin, xclipmax, yclipmin, yclipmax, z¢clipmin, and
zclipmax. These limits can be set to any values, but they are usually set to the
limits of the viewport. Values of clip or noclip are assigned to parameters c1ipxy,
clipfront, and clipback to turn the clipping routines on or off for the xy
planes or for the front or back planes of the view volume (ot the defined clipping
limits).

Section 12-7

Three-Dimensional Viewing
Functions

465

Chapter 12

466

Three-Dimensional Viewing

There are several times when it is convenient to bypass the clipping rou-
tines. For initial constructions of a scene, we can disable clipping so that trial
placements of objects can be displayed quickly. Also, we can eliminate one or
more of the clipping planes if we know that all objects are inside those planes.

Once the view tables have been set up, we select a particular view represen-
tation on each workstation with the function

setViewIndex (viewIndex)

The view index number identifies the set of viewing-transformation parameters
that are to be applied to subsequently specified output primitives, for each of the
active workstations.

Finally, we can use the workstation transformation functions to select sec-
tions of the projection window for display on different workstations. These oper-
ations are similar to those discussed for two-dimensional viewing, except now
our window and viewport regions ase threexdimensional regions. The window
function selects a region of the unit cube, and the viewport function selects a dis-
play region for the output device. Limits, in normalized projection coordinates,
for the window are set with

setWorkstationWindow3 (ws, xwsWindmin, xwsWindmax,
ywsWindmin, ywsWindmax, zwsWindmin, zwsWindmax)

and limits, in device coordinates, for the viewport are set with

setWorkstationvViewport3 (ws, xwsVPortmin, xwsVPortmax,
ywsVPortmin, ywsVPortmax, zwsVPortmin, zwsVPortmax)

Figure 1246 shows an example of interactive selection of viewing parameters in
the PHIGS viewing pipeline, using the PHIGS Toolkit software. This software
was developed at the University of Manchester to provide an interface to PHIGS
with a viewing editor, windows, menus, and other interface tools.

For some applications, composite methods are used to create a display con-
sisting of multiple views using different camera orientations. Figure 12-47 shows

Figure 12-46
Using the PHIGS Toolkit,
. developed at the University of
‘ Manchester, to interactively control
parameters in the viewing pipeline.
| (Courtesy of T. L. |. Howard, . G. Wiliams,
y and W.T. Hewitt, Department of Computer
Science, University of Manchester, United

! Kingdom)

Figure 12-47

A wide-angle view for a virtual-
reality display generated with
seven sections, each from a slightly
different viewing direction. (Courtesy
of the Nationa! Center for Supercomputing
Applications, University of Illinois at
Irbana-Champaign.)

a wide-angle perspective display produced for a virtual-reality environment. The
wide viewing angle is attained by generating seven views of the scene from the
same viewing position, but with slight shifts in the viewing direction.

SUMMARY

Viewing procedures for three-dimensional scenes follow the general approach
used in two-dimensional viewing. That is, we first create a world-coordinate
scene from the definitions of objects in modeling coordinates. Then we set up a
viewing-coordinate reference frame and transfer object descriptions from world
coordinates to viewing coordinates. Finally, viewing-coordinate descriptions are
transformed to device-coordinates. .

Unlike two-dimensional viewing, however, three-dimensional viewing re-
quires projection routines to transform object descriptions to a viewing plane be-
fore the transformation to device coordinates. Also, three-dimensional viewing
operations involve more spatial parameters. We can use the camera analogy to
describe three-dimensional viewing parameters, which include camera position
and orientation. A viewing-coordinate reference frame is established with a view
reference point, a view-plane normal vector N, and a view-up vector V. View-
plane position is then established along the viewing z axis, and object descrip-
tions are projected to this plane. Either perspective-projection or parallel-projec-
tion methods can be used to transfer object descriptions to the view plane.

Parallel projections are either orthographic or oblique and can be specified
with a projection vector. Orthographic parallel projections that display more than
one face of an object are called axonometric projections. An isometric view of an
object is obtained with an axonometric projection that foreshortens each principal
axis by the same amount. Commonly used oblique projections are the cavalier
projection and the cabinet projection. Perspective projections of objects are ob-
tained with projection lines that meet at the projection reference point.

Objects in three-dimensional scenes are clipped against a view volume. The
top, bottom, and sides of the view volume are formed with planes that are paral-
lel to the projection lines and that pass through the view-plane window edges.
Front and back planes are used to create a closed view volume. For a parallel pro-
jection, the view volume is a parallelepiped, and for a perspective projection, the
view volume is a frustum. Objects are clipped in three-dimensional viewing by
testing object coordinates against the bounding planes of the view volume. Clip-
ping is generally carried out in graphics packages in homogeneous coordinates

Summary

467

Chapter 12

468

Three-Dimensional Viewing

after all viewing and other transformations are complete. Then, homogeneous co-
ordinates are converted to three-dimensional Cartesian coordinates.

REFERENCES

For additional information on three-dimensional viewing and clipping operations in PHIGS
and PHIGS+, see Howard et al. (1991), Gaskins (1992}, and Blake (1993). Discussions of
three-dimensional clipping and viewing algorithms can be found in Blinn and Newell
(1978), Cyrus and Beck (1978), Riesenfeld (1981), Liang and Barsky (1984), Arvo (1991),
and Blinn {1993),

EXERCISES

12-4.
12-5.
12-6.

12-7.
12-8.

12-10.

12-11
12-12.
12-13.

12-14.
12-15.

12-16.

12-17.

-1. Write a procedure to implement the evaluateViewOrientationMatrix3 func-

tion using Eqgs. 12-2 through 12-4.

-2. Write routines to implement the setViewRepresentation3 and setViewIndex

functions.

. Write a procedure to transform the vettices of a polyhedron to projection coordinates

using a parallel projection with a specified projection vector.

Write a procedure to obtain different parallel-projection views of a polyhedron by
first applying a specified rotation.

Wirite a procedure to perform a one-point perspective projection of an object.

Write a procedure to perform a two-point perspective projection of an object.
Develop a routine to perform a three-point perspective projection of an object.

Write a routine to convert a perspective projection frustum to a regular paral-

lelepiped.

. Extend the Sutherland-Hodgman polygon clipping algorithm to clip three-dimen-

sional planes against a regular parallelepiped.

Devise an algorithm to clip cbjects in a scene against a defined frustum. Compare
the operations needed in this algorithm to those needed in an algorithm that clips
against a regular parallelepiped.

. Modify the two-dimensional Liang-Barsky lineclipping algorithm to clip three-di-

mensional lines against a specified regular parallelepiped.

Modify the two-dimensional Liang-Barsky line-clipping algorithm to clip a given
polyhedron against a specified regular parallelepiped.

Set up an algorithm for clipping a polyhedron against a parailelepiped.

Write a routine to perform clipping in homogeneous coordinates.

Using any clipping procedure and orthographic parallel projections, write a program

to perform a complete viewing transformation from world coordinates to device co-
ordinates.

Using any clipping precedure, write a program to perform a complete viewing trans-
formatian from world coordinates to device coordinates for any specified parallel-
projection vector.

Write a program to perform all steps in the viewing pipeline for a perspective trans-
formation.

469

470

A major consideration in the generation of realistic graphics displays is
identifying those parts of a scene that are visible from a chosen viewing
position. There are many approaches we can take to solve this problem, and nu-
merous algorithms have been devised for efficient identification of visible objects
for different types of applications. Some methods require more memory, some in-
volve more processing time, and some apply only to special types of objects. De-
ciding upon a method for a particular application can depend on such factors as
the complexity of the scene, type of objects to be displayed, available equipment,
and whether static or animated displays are to be generated. The various algo-
rithms are referred to as visible-surface detection methods. Sometimes these
methods are also referred to as hidden-surface elimination methods, although
there can be subtle differences between identifying visible surfaces and eliminat-
ing hidden surfaces. For wireframe displays, for example, we may not want to
actually eliminate the hidden surfaces, but rather to display them with dashed
boundaries or in some other way to retain information about their shape. In this
chapter, we explore some of the most commonly used methods for detecting visi-
ble surfaces in a three-dimensional scene.

13-1
CLASSIFICATION OF VISIBLE-SURFACE DETECTION
ALGORITHMS

Visible-surface detection algorithms are broadly classified according to whether
they deal with object definitions directly or with their projected images. These
two approaches are called object-space methods and image-space methods, re-
spectively. An object-space method compares objects and parts of objects to each
other within the scene definition to determine which surfaces, as a whole, we
should label as visible. In an image-space algorithm, visibility is decided point by
point at each pixel position on the projection plane. Most visible-surface algo-
rithms use image-space methods, although object-space methods can be used ef-
fectively to locate visible surfaces in some cases. Line-display algorithms, on the
other hand, generally use object-space methods to identify visible lines in wire-
frame displays, but many image-space visible-surface algorithms can be adapted
easily to visible-line detection.

Although there are major differences in the basic approach taken by the var-
ious visible-surface detection algorithms, most use sorting and coherence meth-
ods to improve performance. Sorting is used to facilitate depth comparisons by
ordering the individual surfaces in a scene according to their distance from the

view plane. Coherence methods are used to take advantage of regularities in a
scene. An individual scan line can be expected to contain intervals (runs) of con-
stant pixel intensities, and scan-line patterns often change little from one line to
the next. Animation frames contain changes only in the vicinity of moving ob-
jects. And constant relationships often can be established between objects and
surfaces in a scene.

13-2
BACK-FACE DETECTION

A fast and simple object-space method for identifying the back faces of a polyhe-
dron is based on the “inside-outside” tests discussed in Chapter 10. A point (x, ,
2) is “inside” a polygon surface with plane parameters A, B, C, and D if

Ax+By+Cz+ D <0 (13-

When an inside point is along the line of sight to the surface, the polygon must
be a back face (we are inside that face and cannot see the front of it from our
viewing position).

We can simplify this test by considering the normal vector N to a polygon
surface, which has Cartesian components (A, B, C). In general, if V is a vector in
the viewing direction from the eye (or “camera”) position, as shown in Fig. 13-1,
then this polygon is a back face if

V-N=>0 (13-2)

Furthermore, if object descriptions have been converted to projection coordinates
and our viewing direction is parallel to the viewing z, axis, then V = (0, 0, V)
and

V-N=V.C

so that we only need to consider the sign of C, the z component of the normal
vector N

In a right-handed viewing system with viewing direction along the nega-
tive z, axis (Fig. 13-2), the polygon is a back face if C < 0. Also, we cannot see any
face whose normal has z component C = 0, since our viewing direction is grazing
that polygon. Thus, in general, we can label any polygon as a back face if its nor-
mal vector has a z-component value:

CcC=0 (13-33

N={A 8 C) _— -
Figure 13-1

Vector V in the viewing direction
and a back-face normal vector N of
a polyhedron

Section 13-2

Back-Face Detection

471

Figure 13-3

View of a concave
polyhedron with one face
partially hidden by other
faces.

472

Figure 13-2
Y. .
N=(A B,C) A polygon surface with plane
parameter C < 0in a right-handed
X, viewing coordinate system is
Vv identified as a back face when the
viewing direction is along the
2, negative 7, axis.

Similar methods can be used in packages that employ a left-handed view-
ing system. In these packages, plane parameters A, B, C, and D can be calculated
from polygon vertex coordinates specified in a clockwise direction (instead of the
counterclockwise direction used in a right-handed system). Inequality 13-1 then
remains a valid test for inside points. Also, back faces have normal vectors that
point away from the viewing position and are identified by C = 0 when the
viewing direction is along the positive z, axis.

By examining parameter C for the different planes defining an object, we
can immediately identify all the back faces. For a single convex polyhedron, such
as the pyramid in Fig. 13-2, this test identifies all the hidden surfaces on the ob-
ject, since each surface is either completely visible or completely hidden. Also, if
a scene contains only nonoverlapping convex polyhedra, then again all hidden
surfaces are identified with the back-face method.

For other objects, such as the concave polyhedron in Fig. 13-3, more tests
need to be carried out to determine whether there are additional faces that are to-
tally or partly obscured by other faces. And a general scene can be expected to
contain overlapping objects along the line of sight. We then need to determine
where the obscured objects are partially or completely hidden by other objects. In
general, back-face removal can be expected to eliminate about half of the polygon
surfaces in a scene from further visibility tests.

13-3
DEPTH-BUFFER METHOD

A commonly used image-space approach to detecting visible surfaces is the
depth-buffer method, which compares surface depths at each pixel position on
the projection plane. This procedure is also referred to as the z-buffer method,
since object depth is usually measured from the view plane along the z axis of a
viewing system. Each surface of a scene is processed separately, one point at a
time across the surface. The method is usually applied to scenes containing only
pelygon surfaces, because depth values can be computed very quickly and the
method is easy to implement. But the method can be applied to nonplanar sur-
faces.

With object descriptions converted to projection coordinates, each (x, v, 2)
position on a polygon surface corresponds to the orthographic projection point
{x, y) on the view plane. Therefore, for each pixel position (x, y) on the view
plane, object depths can be compared by comparing z values. Figure 13-4 shows
three surfaces at varying distances along the orthographic projection line from
position (x, y) in a view plane taken as the x v, plane. Surface 5, is closest at this
position, so its surface intensity value at (x, y) is saved.

We can implement the depth-buffer algorithm in normalized coordinates,
so that z values range from 0 at the back clipping plane to z_,. at the front clip-

Section 13-3
Depth-Buffer Method

Figure 13-4

At view-plane position (x, y),
surface 5; has the smallest depth
from the view plane and so is
visible at that position.

ping plane. The value of z.,, can be set either to 1 (for a unit cube) or to the
largest value that can be stored on the system.

As implied by the name of this method, two buffer areas are required. A
depth buffer is used to store depth values for each (x, y) position as surfaces are
processed, and the refresh buffer stores the intensity values for each position. Ini-
tially, all positions in the depth buffer are set to 0 (minimum depth), and the re-
fresh buffer is initialized to the background intensity. Each surface listed in the
polygon tables is then processed, one scan line at a time, calculating the depth (z
value) at each (x, y) pixel position. The calculated depth is compared to the value
previously stored in the depth buffer at that position. If the calculated depth is
greater than the value stored in the depth buffer, the new depth value is stored,
and the surface intensity at that position is determined and placed in the same xy
location in the refresh buffer.

We summarize the steps of a depth-buffer algorithm as follows:

1. Initialize the depth buffer and refresh buffer so that for all buffer posi-
tions (x,),

depth(x, y) = 0, refresh(x,) = lucgna

2. For each position on each polygon surface, compare depth values to
previously stored values in the depth buffer to determine visibility.

 Calculate the depth z for each (x, y) position on the polygon.
* If z > depth(x, y), then set

depth(x, y) =z, refresh(x, y) = L{x,y)

where Iy, g is the value for the background intensity, and Iy, 4(x,y) is
the projected intensity value for the surface at pixel position (x,y).
After all surfaces have been processed, the depth buffer contains
depth values for the visible surfaces and the refresh buffer contains
the corresponding intensity values for those surfaces.

Depth values for a surface position (x, y) are calculated from the plane
equation for each surface:

—-Ax —By—D
= T2

C (13-4)

473

y Axis
y
y-1
x x4+l x Axis
Figure 13-5

From position (x, y) on a scan
line, the next position across
the line has coordinates

{x + 1, y), and the position
immediately below on the
next line has coordinates
x,y— 1.

474

For any scan line (Fig. 13-5), adjacent horizontal positions across the line differ by
1, and a vertical y value on an adjacent scan line differs by 1. If the depth of posi-
tion (x, y) has been determined to be z, then the depth 2z’ of the next position (x +
1, y) along the scan line is obtained from Eq. 13-4 as

,_ —Ax+1)-By-D
B c

z (13-5)

or

(13-0)

N
il
5
|
O

The ratio —A/C is constant for each surface, so succeeding depth values across a
scan line are obtained from preceding values with a single addition.

On each scan line, we start by calculating the depth on a left edge of the
polygon that intersects that scan line (Fig. 13-6). Depth values at each successive
position across the scan line are then calculated by Eq. 13-6.

We first determine the y-coordinate extents of each polygon, and process
the surface from the topmost scan line to the bottom scan line, as shown in Fig.
13-6. Starting at a top vertex, we can recursively calculate x positions down a left
edge of the polygon as x’ = x — 1/m, where m is the slope of the edge (Fig. 13-7).
Depth values down the edge are then obtained recursively as

+A/m+B
C

If we are processing down a vertical edge, the slope is infinite and the recursive
calculations reduce to

' =z+

Nl

An alternate approach is to use a midpoint method or Bresenham-type al-
gorithm for determining x values on left edges for each scan line. Also the
method can be applied to curved surfaces by determining depth and intensity
values at each surface projection point.

For polygon surfaces, the depth-buffer method is very easy to implement,
and it requires no sorting of the surfaces in a scene. But it does require the avail-
ability of a second buffer in addition to the refresh buffer. A system with a resolu-

top scan line

y scan line
left edge

intersection

bottom scan line

Figure 13-6
Scan lines intersecting a polygon surface.

Figure 13-7
Intersection positions on successive scan lines along a left
polygon edge.

tion of 1024 by 1024, for example, would require over a million positions in the
depth buffer, with each position containing enough bits to represent the number
of depth increments needed. One way to reduce storage requirements is to
process one section of the scene at a time, using a smaller depth buffer. After each
view section is processed, the buffer is reused for the next section.

13-4
A-BUFFER METHOD

An extension of the ideas in the depth-buffer method is the A-buffer method (at
the other end of the alphabet from “z-buffer”, where z represents depth). The A-
buffer method represents an antialiased, area-averaged, accumulation-buffer method
developed by Lucasfilm for implementation in the surface-rendering system
called REYES (an acronym for “Renders Everything You Ever Saw”).

A drawback of the depth-buffer method is that it can only find one visible
surface at each pixel position. In other words, it deals only with opaque surfaces
and cannot accumulate intensity values for more than one surface, as is necessary
if transparent surfaces are to be displayed (Fig. 13-8). The A-buffer method ex-
pands the depth buffer so that each position in the buffer can reference a linked
list of surfaces. Thus, more than one surface intensity can be taken into consider-
ation at each pixel position, and object edges can be antialiased.

Each position in the A-buffer has two fields:

e depth field — stores a positive or negative real number
* intensity field — stores surface-intensity information or a pointer value.

background

opaque \
surface foreground Figure 13-8
transparent o
surface Viewing an opaque surface through

a transparent surface requires
multiple surface-intensity
contributions for pixel positions.

Section 13-4

A-Buffer Method

475

Chapter 13
Visible-Surface Detection Methods

476

Sur{ i |Surf
o - E -

depth intensiry depth intensity
field field fiald field
{a} {b}
Figure 13-9

Organization of an A-buffer pixel position: (a) single-surface overlap of
the co